Next: Fitting regularized linear regression example 2, Previous: Fitting multi-parameter linear regression example, Up: Fitting Examples [Index]
The next program demonstrates the difference between ordinary and regularized least squares when the design matrix is near-singular. In this program, we generate two random normally distributed variables u and v, with v = u + noise so that u and v are nearly colinear. We then set a third dependent variable y = u + v + noise and solve for the coefficients c_1,c_2 of the model Y(c_1,c_2) = c_1 u + c_2 v. Since u \approx v, the design matrix X is nearly singular, leading to unstable ordinary least squares solutions.
Here is the program output:
matrix condition number = 1.025113e+04 === Unregularized fit === best fit: y = -43.6588 u + 45.6636 v residual norm = 31.6248 solution norm = 63.1764 chisq/dof = 1.00213 === Regularized fit (L-curve) === optimal lambda: 4.51103 best fit: y = 1.00113 u + 1.0032 v residual norm = 31.6547 solution norm = 1.41728 chisq/dof = 1.04499 === Regularized fit (GCV) === optimal lambda: 0.0232029 best fit: y = -19.8367 u + 21.8417 v residual norm = 31.6332 solution norm = 29.5051 chisq/dof = 1.00314
We see that the ordinary least squares solution is completely wrong, while the L-curve regularized method with the optimal \lambda = 4.51103 finds the correct solution c_1 \approx c_2 \approx 1. The GCV regularized method finds a regularization parameter \lambda = 0.0232029 which is too small to give an accurate solution, although it performs better than OLS. The L-curve and its computed corner, as well as the GCV curve and its minimum are plotted below.
The program is given below.
#include <gsl/gsl_math.h> #include <gsl/gsl_vector.h> #include <gsl/gsl_matrix.h> #include <gsl/gsl_rng.h> #include <gsl/gsl_randist.h> #include <gsl/gsl_multifit.h> int main() { const size_t n = 1000; /* number of observations */ const size_t p = 2; /* number of model parameters */ size_t i; gsl_rng *r = gsl_rng_alloc(gsl_rng_default); gsl_matrix *X = gsl_matrix_alloc(n, p); gsl_vector *y = gsl_vector_alloc(n); for (i = 0; i < n; ++i) { /* generate first random variable u */ double ui = 5.0 * gsl_ran_gaussian(r, 1.0); /* set v = u + noise */ double vi = ui + gsl_ran_gaussian(r, 0.001); /* set y = u + v + noise */ double yi = ui + vi + gsl_ran_gaussian(r, 1.0); /* since u =~ v, the matrix X is ill-conditioned */ gsl_matrix_set(X, i, 0, ui); gsl_matrix_set(X, i, 1, vi); /* rhs vector */ gsl_vector_set(y, i, yi); } { const size_t npoints = 200; /* number of points on L-curve and GCV curve */ gsl_multifit_linear_workspace *w = gsl_multifit_linear_alloc(n, p); gsl_vector *c = gsl_vector_alloc(p); /* OLS solution */ gsl_vector *c_lcurve = gsl_vector_alloc(p); /* regularized solution (L-curve) */ gsl_vector *c_gcv = gsl_vector_alloc(p); /* regularized solution (GCV) */ gsl_vector *reg_param = gsl_vector_alloc(npoints); gsl_vector *rho = gsl_vector_alloc(npoints); /* residual norms */ gsl_vector *eta = gsl_vector_alloc(npoints); /* solution norms */ gsl_vector *G = gsl_vector_alloc(npoints); /* GCV function values */ double lambda_l; /* optimal regularization parameter (L-curve) */ double lambda_gcv; /* optimal regularization parameter (GCV) */ double G_gcv; /* G(lambda_gcv) */ size_t reg_idx; /* index of optimal lambda */ double rcond; /* reciprocal condition number of X */ double chisq, rnorm, snorm; /* compute SVD of X */ gsl_multifit_linear_svd(X, w); rcond = gsl_multifit_linear_rcond(w); fprintf(stderr, "matrix condition number = %e\n", 1.0 / rcond); /* unregularized (standard) least squares fit, lambda = 0 */ gsl_multifit_linear_solve(0.0, X, y, c, &rnorm, &snorm, w); chisq = pow(rnorm, 2.0); fprintf(stderr, "=== Unregularized fit ===\n"); fprintf(stderr, "best fit: y = %g u + %g v\n", gsl_vector_get(c, 0), gsl_vector_get(c, 1)); fprintf(stderr, "residual norm = %g\n", rnorm); fprintf(stderr, "solution norm = %g\n", snorm); fprintf(stderr, "chisq/dof = %g\n", chisq / (n - p)); /* calculate L-curve and find its corner */ gsl_multifit_linear_lcurve(y, reg_param, rho, eta, w); gsl_multifit_linear_lcorner(rho, eta, ®_idx); /* store optimal regularization parameter */ lambda_l = gsl_vector_get(reg_param, reg_idx); /* regularize with lambda_l */ gsl_multifit_linear_solve(lambda_l, X, y, c_lcurve, &rnorm, &snorm, w); chisq = pow(rnorm, 2.0) + pow(lambda_l * snorm, 2.0); fprintf(stderr, "=== Regularized fit (L-curve) ===\n"); fprintf(stderr, "optimal lambda: %g\n", lambda_l); fprintf(stderr, "best fit: y = %g u + %g v\n", gsl_vector_get(c_lcurve, 0), gsl_vector_get(c_lcurve, 1)); fprintf(stderr, "residual norm = %g\n", rnorm); fprintf(stderr, "solution norm = %g\n", snorm); fprintf(stderr, "chisq/dof = %g\n", chisq / (n - p)); /* calculate GCV curve and find its minimum */ gsl_multifit_linear_gcv(y, reg_param, G, &lambda_gcv, &G_gcv, w); /* regularize with lambda_gcv */ gsl_multifit_linear_solve(lambda_gcv, X, y, c_gcv, &rnorm, &snorm, w); chisq = pow(rnorm, 2.0) + pow(lambda_gcv * snorm, 2.0); fprintf(stderr, "=== Regularized fit (GCV) ===\n"); fprintf(stderr, "optimal lambda: %g\n", lambda_gcv); fprintf(stderr, "best fit: y = %g u + %g v\n", gsl_vector_get(c_gcv, 0), gsl_vector_get(c_gcv, 1)); fprintf(stderr, "residual norm = %g\n", rnorm); fprintf(stderr, "solution norm = %g\n", snorm); fprintf(stderr, "chisq/dof = %g\n", chisq / (n - p)); /* output L-curve and GCV curve */ for (i = 0; i < npoints; ++i) { printf("%e %e %e %e\n", gsl_vector_get(reg_param, i), gsl_vector_get(rho, i), gsl_vector_get(eta, i), gsl_vector_get(G, i)); } /* output L-curve corner point */ printf("\n\n%f %f\n", gsl_vector_get(rho, reg_idx), gsl_vector_get(eta, reg_idx)); /* output GCV curve corner minimum */ printf("\n\n%e %e\n", lambda_gcv, G_gcv); gsl_multifit_linear_free(w); gsl_vector_free(c); gsl_vector_free(c_lcurve); gsl_vector_free(reg_param); gsl_vector_free(rho); gsl_vector_free(eta); gsl_vector_free(G); } gsl_rng_free(r); gsl_matrix_free(X); gsl_vector_free(y); return 0; }