Next: Incomplete Fermi-Dirac Integrals, Up: Fermi-Dirac Function [Index]
The complete Fermi-Dirac integral F_j(x) is given by,
F_j(x) := (1/\Gamma(j+1)) \int_0^\infty dt (t^j / (\exp(t-x) + 1))
Note that the Fermi-Dirac integral is sometimes defined without the normalisation factor in other texts.
These routines compute the complete Fermi-Dirac integral with an index of -1. This integral is given by F_{-1}(x) = e^x / (1 + e^x).
These routines compute the complete Fermi-Dirac integral with an index of 0. This integral is given by F_0(x) = \ln(1 + e^x).
These routines compute the complete Fermi-Dirac integral with an index of 1, F_1(x) = \int_0^\infty dt (t /(\exp(t-x)+1)).
These routines compute the complete Fermi-Dirac integral with an index of 2, F_2(x) = (1/2) \int_0^\infty dt (t^2 /(\exp(t-x)+1)).
These routines compute the complete Fermi-Dirac integral with an integer index of j, F_j(x) = (1/\Gamma(j+1)) \int_0^\infty dt (t^j /(\exp(t-x)+1)).
These routines compute the complete Fermi-Dirac integral F_{-1/2}(x).
These routines compute the complete Fermi-Dirac integral F_{1/2}(x).
These routines compute the complete Fermi-Dirac integral F_{3/2}(x).
Next: Incomplete Fermi-Dirac Integrals, Up: Fermi-Dirac Function [Index]