The output raster map will show one or more least-cost paths between each user-provided location(s) and the minima (low category values) in the raster input map. If the -d flag is used the output least-cost paths will be found using the direction raster map. By default, the output will be an integer CELL map with category 1 along the least cost path, and null cells elsewhere.
With the -c (copy) flag, the input raster map cell values are copied verbatim along the path. With the -a (accumulate) flag, the accumulated cell value from the starting point up to the current cell is written on output. With either the -c or the -a flags, the output map is created with the same cell type as the input raster map (integer, float or double). With the -n (number) flag, the cells are numbered consecutively from the starting point to the final point. The -c, -a, and -n flags are mutually incompatible.
For an elevation surface, the path is calculated by choosing the steeper "slope" between adjacent cells. The slope calculation accurately accounts for the variable scale in lat-lon projections. For a cost surface, the path is calculated by following the movement direction surface back to the start point given in r.walk or r.cost. The path search stops as soon as a region border or a neighboring NULL cell is encountered, because in these cases the direction can not be determined (the path could continue outside the current region).
The start_coordinates parameter consists of map E and N grid coordinates of a starting point. Each x,y pair is the easting and northing (respectively) of a starting point from which a least-cost corridor will be developed. The start_points parameter can take multiple vector maps containing additional starting points. Up to 1024 starting points can be input from a combination of the start_coordinates and start_points parameters.
Input: Output: ELEVATION SURFACE LEAST COST PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19. 20. 18. 19. 16. 15. 15. . . . . . . . . . . --- . . . . . . . . . . . . . . . . . . . . . . . . . . 20| 19| 17. 16. 17. 16. 16. . . 1 . 1 . 1 . . . . . . --- . . . . . . . . . . . . . . . . . . . . . . . . . . 18. 18. 24. 18. 15. 12. 11. . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22. 16. 16. 18. 10. 10. 10. . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17. 15. 15. 15. 10. 8 . 8 . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24. 16. 8 . 7 . 8 . 0 . 12. . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17. 9 . 8 . 7 . 8 . 6 . 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The user-provided starting location in the above example is the boxed 19 in the left-hand map. The path in the output shows the least-cost corridor for moving from the starting box to the lowest (smallest) possible point. This is the path a raindrop would take in this landscape.
With the -c (copy) flag, you get the following result:
Input: Output: ELEVATION SURFACE LEAST COST PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19. 20. 18. 19. 16. 15. 15. . . . . . . . . . . --- . . . . . . . . . . . . . . . . . . . . . . . . . . 20| 19| 17. 16. 17. 16. 16. . . 19. 17. 16. . . . . . --- . . . . . . . . . . . . . . . . . . . . . . . . . . 18. 18. 24. 18. 15. 12. 11. . . . . . 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22. 16. 16. 18. 10. 10. 10. . . . . . 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17. 15. 15. 15. 10. 8 . 8 . . . . . . . 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24. 16. 8 . 7 . 8 . 0 .12 . . . . . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17. 9 . 8 . 7 . 8 . 6 .12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Note that the last 0 will not be put in the null values map.
With the -a (accumulate) flag, you get the following result:
Input: Output: ELEVATION SURFACE LEAST COST PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19. 20. 18. 19. 16. 15. 15. . . . . . . . . . . --- . . . . . . . . . . . . . . . . . . . . . . . . . . 20| 19| 17. 16. 17. 16. 16. . . 19. 36. 52. . . . . . --- . . . . . . . . . . . . . . . . . . . . . . . . . . 18. 18. 24. 18. 15. 12. 11. . . . . . 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22. 16. 16. 18. 10. 10. 10. . . . . . 77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17. 15. 15. 15. 10. 8 . 8 . . . . . . . 85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24. 16. 8 . 7 . 8 . 0 .12 . . . . . . . 85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17. 9 . 8 . 7 . 8 . 6 .12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
With the -n (number) flag, you get the following result:
Input: Output: ELEVATION SURFACE LEAST COST PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19. 20. 18. 19. 16. 15. 15. . . . . . . . . . . --- . . . . . . . . . . . . . . . . . . . . . . . . . . 20| 19| 17. 16. 17. 16. 16. . . 1 . 2 . 3 . . . . . . --- . . . . . . . . . . . . . . . . . . . . . . . . . . 18. 18. 24. 18. 15. 12. 11. . . . . . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22. 16. 16. 18. 10. 10. 10. . . . . . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17. 15. 15. 15. 10. 8 . 8 . . . . . . . 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24. 16. 8 . 7 . 8 . 0 .12 . . . . . . . 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17. 9 . 8 . 7 . 8 . 6 .12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The directions are recorded as degrees CCW from East: 112.5 67.5 i.e. a cell with the value 135 157.5 135 90 45 22.5 means the next cell is to the North-West 180 x 0 202.5 225 270 315 337.5 247.5 292.5
r.drain will not give sane results at the region boundary. On outer rows and columns bordering the edge of the region, the flow direction is always directly out of the map. In this case, the user could try adjusting the region extents slightly with g.region to allow additional outlet paths for r.drain.
v.in.ascii input=- output=start format=point separator=comma <<EOF 638667.15686275,220610.29411765 638610.78431373,220223.03921569 EOF
r.drain input=elev_lid792_1m output=drain_path drain=drain start_points=start
r.colors map=elev_lid792_1m color=elevation r.relief input=elev_lid792_1m output=relief
d.shade shade=relief color=elev_lid792_1m d.vect map=drain_path color=0:0:61 width=4 legend_label="drainage paths" d.vect map=start color=none fill_color=224:0:0 icon=basic/circle size=15 legend_label=origins d.legend.vect -b
r.watershed elevation=elev_lid792_1m accumulation=accum drainage=drain_dir
r.mapcalc "drain_deg = if(drain_dir != 0, 45. * abs(drain_dir), null())"
r.mapcalc "const1 = 1"
r.drain -d input=const1 direction=drain_deg output=drain_path_2 drain=drain_2 start_points=start
Sometimes, when the differences among integer cell category values in the r.cost cumulative cost surface output are small, this cumulative cost output cannot accurately be used as input to r.drain (r.drain will output bad results). This problem can be circumvented by making the differences between cell category values in the cumulative cost output bigger. It is recommended that if the output from r.cost is to be used as input to r.drain, the user multiply the r.cost input cost surface map by the value of the map's cell resolution, before running r.cost. This can be done using r.mapcalc. The map resolution can be found using g.region. This problem doesn't arise with floating point maps.
Available at: r.drain source code (history)
Accessed: Sunday Jan 22 07:37:43 2023
Main index | Raster index | Topics index | Keywords index | Graphical index | Full index
© 2003-2023 GRASS Development Team, GRASS GIS 8.2.1 Reference Manual