GNU Radio Manual and C++ API Reference 3.10.5.1
The Free & Open Software Radio Ecosystem
pfb_decimator_ccf.h
Go to the documentation of this file.
1/* -*- c++ -*- */
2/*
3 * Copyright 2009,2012 Free Software Foundation, Inc.
4 *
5 * This file is part of GNU Radio
6 *
7 * SPDX-License-Identifier: GPL-3.0-or-later
8 *
9 */
10
11
12#ifndef INCLUDED_PFB_DECIMATOR_CCF_H
13#define INCLUDED_PFB_DECIMATOR_CCF_H
14
15#include <gnuradio/filter/api.h>
16#include <gnuradio/sync_block.h>
17
18namespace gr {
19namespace filter {
20
21/*!
22 * \brief Polyphase filterbank bandpass decimator with gr_complex
23 * input, gr_complex output and float taps
24 * \ingroup channelizers_blk
25 *
26 * \details
27 * This block takes in a signal stream and performs integer down-
28 * sampling (decimation) with a polyphase filterbank. The first
29 * input is the integer specifying how much to decimate by. The
30 * second input is a vector (Python list) of floating-point taps
31 * of the prototype filter. The third input specifies the channel
32 * to extract. By default, the zeroth channel is used, which is
33 * the baseband channel (first Nyquist zone).
34 *
35 * The <EM>channel</EM> parameter specifies which channel to use
36 * since this class is capable of bandpass decimation. Given a
37 * complex input stream at a sampling rate of <EM>fs</EM> and a
38 * decimation rate of <EM>decim</EM>, the input frequency domain
39 * is split into <EM>decim</EM> channels that represent the
40 * Nyquist zones. Using the polyphase filterbank, we can select
41 * any one of these channels to decimate.
42 *
43 * The output signal will be the basebanded and decimated signal
44 * from that channel. This concept is very similar to the PFB
45 * channelizer (see #gr::filter::pfb_channelizer_ccf) where only a single
46 * channel is extracted at a time.
47 *
48 * The filter's taps should be based on the sampling rate before
49 * decimation.
50 *
51 * For example, using the GNU Radio's firdes utility to building
52 * filters, we build a low-pass filter with a sampling rate of
53 * <EM>fs</EM>, a 3-dB bandwidth of <EM>BW</EM> and a transition
54 * bandwidth of <EM>TB</EM>. We can also specify the out-of-band
55 * attenuation to use, <EM>ATT</EM>, and the filter window
56 * function (a Blackman-harris window in this case). The first
57 * input is the gain of the filter, which we specify here as
58 * unity.
59 *
60 * <B><EM>self._taps = filter.firdes.low_pass_2(1, fs, BW, TB,
61 * attenuation_dB=ATT, window=fft.window.WIN_BLACKMAN_hARRIS)</EM></B>
62 *
63 * The PFB decimator code takes the taps generated above and
64 * builds a set of filters. The set contains <EM>decim</EM>
65 * filters and each filter contains ceil(taps.size()/decim)
66 * taps. Each tap from the filter prototype is
67 * sequentially inserted into the next filter. When all of the
68 * input taps are used, the remaining filters in the filterbank
69 * are filled out with 0's to make sure each filter has the same
70 * number of taps.
71 *
72 * The theory behind this block can be found in Chapter 6 of
73 * the following book:
74 *
75 * <B><EM>f. harris, "Multirate Signal Processing for Communication
76 * Systems," Upper Saddle River, NJ: Prentice Hall, Inc. 2004.</EM></B>
77 */
78
80{
81public:
82 // gr::filter::pfb_decimator_ccf::sptr
83 typedef std::shared_ptr<pfb_decimator_ccf> sptr;
84
85 /*!
86 * Build the polyphase filterbank decimator.
87 * \param decim (unsigned integer) Specifies the decimation rate to use
88 * \param taps (vector/list of floats) The prototype filter to populate the
89 * filterbank. \param channel (unsigned integer) Selects the channel to return
90 * [default=0]. \param use_fft_rotator (bool) Rotate channels using FFT method instead
91 * of exp(phi). For larger values of \p channel, the FFT method will perform better.
92 * Generally, this value of \p channel is small (~5), but could be
93 * architecture-specific (Default: true).
94 * \param use_fft_filters (bool) Use FFT filters (fast convolution) instead of FIR
95 * filters. FFT filters perform better for larger numbers of taps but is
96 * architecture-specific (Default: true).
97 */
98 static sptr make(unsigned int decim,
99 const std::vector<float>& taps,
100 unsigned int channel,
101 bool use_fft_rotator = true,
102 bool use_fft_filters = true);
103
104 /*!
105 * Resets the filterbank's filter taps with the new prototype filter
106 * \param taps (vector/list of floats) The prototype filter to populate the
107 * filterbank.
108 */
109 virtual void set_taps(const std::vector<float>& taps) = 0;
110
111 /*!
112 * Return a vector<vector<>> of the filterbank taps
113 */
114 virtual std::vector<std::vector<float>> taps() const = 0;
115
116 /*!
117 * Print all of the filterbank taps to screen.
118 */
119 virtual void print_taps() = 0;
120
121 virtual void set_channel(const unsigned int channel) = 0;
122};
123
124} /* namespace filter */
125} /* namespace gr */
126
127#endif /* INCLUDED_PFB_DECIMATOR_CCF_H */
Polyphase filterbank bandpass decimator with gr_complex input, gr_complex output and float taps.
Definition: pfb_decimator_ccf.h:80
std::shared_ptr< pfb_decimator_ccf > sptr
Definition: pfb_decimator_ccf.h:83
virtual std::vector< std::vector< float > > taps() const =0
virtual void set_channel(const unsigned int channel)=0
virtual void set_taps(const std::vector< float > &taps)=0
static sptr make(unsigned int decim, const std::vector< float > &taps, unsigned int channel, bool use_fft_rotator=true, bool use_fft_filters=true)
synchronous 1:1 input to output with history
Definition: sync_block.h:26
#define FILTER_API
Definition: gr-filter/include/gnuradio/filter/api.h:18
static constexpr float taps[NSTEPS+1][NTAPS]
Definition: interpolator_taps.h:9
GNU Radio logging wrapper.
Definition: basic_block.h:29