Format specifiers

The acceptable formats (if not in time/date mode) are:

Tic-mark label numerical format specifiers
Format Explanation
%f floating point notation
%e or %E exponential notation; an "e" or "E" before the power
%g or %G the shorter of %e (or %E) and %f
%h or %H like %g with "x10^{%S}" or "*10^{%S}" instead of "e%S"
%x or %X hex
%o or %O octal
%t mantissa to base 10
%l mantissa to base of current logscale
%s mantissa to base of current logscale; scientific power
%T power to base 10
%L power to base of current logscale
%S scientific power
%c character replacement for scientific power
%b mantissa of ISO/IEC 80000 notation (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi)
%B prefix of ISO/IEC 80000 notation (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi)
%P multiple of pi

A 'scientific' power is one such that the exponent is a multiple of three. Character replacement of scientific powers ("%c") has been implemented for powers in the range -18 to +18. For numbers outside of this range the format reverts to exponential.

Other acceptable modifiers (which come after the "%" but before the format specifier) are "-", which left-justifies the number; "+", which forces all numbers to be explicitly signed; " " (a space), which makes positive numbers have a space in front of them where negative numbers have "-"; "#", which places a decimal point after floats that have only zeroes following the decimal point; a positive integer, which defines the field width; "0" (the digit, not the letter) immediately preceding the field width, which indicates that leading zeroes are to be used instead of leading blanks; and a decimal point followed by a non-negative integer, which defines the precision (the minimum number of digits of an integer, or the number of digits following the decimal point of a float).

Some systems may not support all of these modifiers but may also support others; in case of doubt, check the appropriate documentation and then experiment.

Examples:

     set format y "%t"; set ytics (5,10)          # "5.0" and "1.0"
     set format y "%s"; set ytics (500,1000)      # "500" and "1.0"
     set format y "%+-12.3f"; set ytics(12345)    # "+12345.000  "
     set format y "%.2t*10^%+03T"; set ytic(12345)# "1.23*10^+04"
     set format y "%s*10^{%S}"; set ytic(12345)   # "12.345*10^{3}"
     set format y "%s %cg"; set ytic(12345)       # "12.345 kg"
     set format y "%.0P pi"; set ytic(6.283185)   # "2 pi"
     set format y "%.0f%%"; set ytic(50)          # "50%"

     set log y 2; set format y '%l'; set ytics (1,2,3)
     #displays "1.0", "1.0" and "1.5" (since 3 is 1.5 * 2^1)

There are some problem cases that arise when numbers like 9.999 are printed with a format that requires both rounding and a power.

If the data type for the axis is time/date, the format string must contain valid codes for the 'strftime' function (outside of gnuplot, type "man strftime"). See set timefmt (p. [*]) for a list of the allowed input format codes.