SYNOPSIS
git sparse-checkout (init | list | set | add | reapply | disable) [<options>]
DESCRIPTION
This command is used to create sparse checkouts, which change the working tree from having all tracked files present to only having a subset of those files. It can also switch which subset of files are present, or undo and go back to having all tracked files present in the working copy.
The subset of files is chosen by providing a list of directories in cone mode (the default), or by providing a list of patterns in non-cone mode.
When in a sparse-checkout, other Git commands behave a bit differently.
For example, switching branches will not update paths outside the
sparse-checkout directories/patterns, and git commit -a
will not record
paths outside the sparse-checkout directories/patterns as deleted.
THIS COMMAND IS EXPERIMENTAL. ITS BEHAVIOR, AND THE BEHAVIOR OF OTHER COMMANDS IN THE PRESENCE OF SPARSE-CHECKOUTS, WILL LIKELY CHANGE IN THE FUTURE.
COMMANDS
- list
-
Describe the directories or patterns in the sparse-checkout file.
- set
-
Enable the necessary sparse-checkout config settings (
core.sparseCheckout
,core.sparseCheckoutCone
, andindex.sparse
) if they are not already set to the desired values, populate the sparse-checkout file from the list of arguments following the set subcommand, and update the working directory to match.To ensure that adjusting the sparse-checkout settings within a worktree does not alter the sparse-checkout settings in other worktrees, the set subcommand will upgrade your repository config to use worktree-specific config if not already present. The sparsity defined by the arguments to the set subcommand are stored in the worktree-specific sparse-checkout file. See git-worktree(1) and the documentation of
extensions.worktreeConfig
in git-config(1) for more details.When the
--stdin
option is provided, the directories or patterns are read from standard in as a newline-delimited list instead of from the arguments.By default, the input list is considered a list of directories, matching the output of
git ls-tree -d --name-only
. This includes interpreting pathnames that begin with a double quote (") as C-style quoted strings. Note that all files under the specified directories (at any depth) will be included in the sparse checkout, as well as files that are siblings of either the given directory or any of its ancestors (see CONE PATTERN SET below for more details). In the past, this was not the default, and--cone
needed to be specified orcore.sparseCheckoutCone
needed to be enabled.When
--no-cone
is passed, the input list is considered a list of patterns. This mode has a number of drawbacks, including not working with some options like--sparse-index
. As explained in the "Non-cone Problems" section below, we do not recommend using it.Use the
--[no-]sparse-index
option to use a sparse index (the default is to not use it). A sparse index reduces the size of the index to be more closely aligned with your sparse-checkout definition. This can have significant performance advantages for commands such asgit status
orgit add
. This feature is still experimental. Some commands might be slower with a sparse index until they are properly integrated with the feature.WARNING: Using a sparse index requires modifying the index in a way that is not completely understood by external tools. If you have trouble with this compatibility, then run
git sparse-checkout init --no-sparse-index
to rewrite your index to not be sparse. Older versions of Git will not understand the sparse directory entries index extension and may fail to interact with your repository until it is disabled. - add
-
Update the sparse-checkout file to include additional directories (in cone mode) or patterns (in non-cone mode). By default, these directories or patterns are read from the command-line arguments, but they can be read from stdin using the
--stdin
option. - reapply
-
Reapply the sparsity pattern rules to paths in the working tree. Commands like merge or rebase can materialize paths to do their work (e.g. in order to show you a conflict), and other sparse-checkout commands might fail to sparsify an individual file (e.g. because it has unstaged changes or conflicts). In such cases, it can make sense to run
git sparse-checkout reapply
later after cleaning up affected paths (e.g. resolving conflicts, undoing or committing changes, etc.).The
reapply
command can also take--[no-]cone
and--[no-]sparse-index
flags, with the same meaning as the flags from theset
command, in order to change which sparsity mode you are using without needing to also respecify all sparsity paths. - disable
-
Disable the
core.sparseCheckout
config setting, and restore the working directory to include all files. - init
-
Deprecated command that behaves like
set
with no specified paths. May be removed in the future.Historically,
set
did not handle all the necessary config settings, which meant that bothinit
andset
had to be called. Invoking both meant theinit
step would first remove nearly all tracked files (and in cone mode, ignored files too), then theset
step would add many of the tracked files (but not ignored files) back. In addition to the lost files, the performance and UI of this combination was poor.Also, historically,
init
would not actually initialize the sparse-checkout file if it already existed. This meant it was possible to return to a sparse-checkout without remembering which paths to pass to a subsequent set or add command. However,--cone
and--sparse-index
options would not be remembered across the disable command, so the easy restore of calling a plaininit
decreased in utility.
EXAMPLES
-
git sparse-checkout set MY/DIR1 SUB/DIR2
-
Change to a sparse checkout with all files (at any depth) under MY/DIR1/ and SUB/DIR2/ present in the working copy (plus all files immediately under MY/ and SUB/ and the toplevel directory). If already in a sparse checkout, change which files are present in the working copy to this new selection. Note that this command will also delete all ignored files in any directory that no longer has either tracked or non-ignored-untracked files present.
-
git sparse-checkout disable
-
Repopulate the working directory with all files, disabling sparse checkouts.
-
git sparse-checkout add SOME/DIR/ECTORY
-
Add all files under SOME/DIR/ECTORY/ (at any depth) to the sparse checkout, as well as all files immediately under SOME/DIR/ and immediately under SOME/. Must already be in a sparse checkout before using this command.
-
git sparse-checkout reapply
-
It is possible for commands to update the working tree in a way that does not respect the selected sparsity directories. This can come from tools external to Git writing files, or even affect Git commands because of either special cases (such as hitting conflicts when merging/rebasing), or because some commands didn’t fully support sparse checkouts (e.g. the old
recursive
merge backend had only limited support). This command reapplies the existing sparse directory specifications to make the working directory match.
INTERNALS — SPARSE CHECKOUT
"Sparse checkout" allows populating the working directory sparsely. It uses the skip-worktree bit (see git-update-index(1)) to tell Git whether a file in the working directory is worth looking at. If the skip-worktree bit is set, and the file is not present in the working tree, then its absence is ignored. Git will avoid populating the contents of those files, which makes a sparse checkout helpful when working in a repository with many files, but only a few are important to the current user.
The $GIT_DIR/info/sparse-checkout
file is used to define the
skip-worktree reference bitmap. When Git updates the working
directory, it updates the skip-worktree bits in the index based
on this file. The files matching the patterns in the file will
appear in the working directory, and the rest will not.
INTERNALS — NON-CONE PROBLEMS
The $GIT_DIR/info/sparse-checkout
file populated by the set
and
add
subcommands is defined to be a bunch of patterns (one per line)
using the same syntax as .gitignore
files. In cone mode, these
patterns are restricted to matching directories (and users only ever
need supply or see directory names), while in non-cone mode any
gitignore-style pattern is permitted. Using the full gitignore-style
patterns in non-cone mode has a number of shortcomings:
-
Fundamentally, it makes various worktree-updating processes (pull, merge, rebase, switch, reset, checkout, etc.) require O(N*M) pattern matches, where N is the number of patterns and M is the number of paths in the index. This scales poorly.
-
Avoiding the scaling issue has to be done via limiting the number of patterns via specifying leading directory name or glob.
-
Passing globs on the command line is error-prone as users may forget to quote the glob, causing the shell to expand it into all matching files and pass them all individually along to sparse-checkout set/add. While this could also be a problem with e.g. "git grep — *.c", mistakes with grep/log/status appear in the immediate output. With sparse-checkout, the mistake gets recorded at the time the sparse-checkout command is run and might not be problematic until the user later switches branches or rebases or merges, thus putting a delay between the user’s error and when they have a chance to catch/notice it.
-
Related to the previous item, sparse-checkout has an add subcommand but no remove subcommand. Even if a remove subcommand were added, undoing an accidental unquoted glob runs the risk of "removing too much", as it may remove entries that had been included before the accidental add.
-
Non-cone mode uses gitignore-style patterns to select what to include (with the exception of negated patterns), while .gitignore files use gitignore-style patterns to select what to exclude (with the exception of negated patterns). The documentation on gitignore-style patterns usually does not talk in terms of matching or non-matching, but on what the user wants to "exclude". This can cause confusion for users trying to learn how to specify sparse-checkout patterns to get their desired behavior.
-
Every other git subcommand that wants to provide "special path pattern matching" of some sort uses pathspecs, but non-cone mode for sparse-checkout uses gitignore patterns, which feels inconsistent.
-
It has edge cases where the "right" behavior is unclear. Two examples:
First, two users are in a subdirectory, and the first runs git sparse-checkout set '/toplevel-dir/*.c' while the second runs git sparse-checkout set relative-dir Should those arguments be transliterated into current/subdirectory/toplevel-dir/*.c and current/subdirectory/relative-dir before inserting into the sparse-checkout file? The user who typed the first command is probably aware that arguments to set/add are supposed to be patterns in non-cone mode, and probably would not be happy with such a transliteration. However, many gitignore-style patterns are just paths, which might be what the user who typed the second command was thinking, and they'd be upset if their argument wasn't transliterated.
Second, what should bash-completion complete on for set/add commands for non-cone users? If it suggests paths, is it exacerbating the problem above? Also, if it suggests paths, what if the user has a file or directory that begins with either a '!' or '#' or has a '*', '\', '?', '[', or ']' in its name? And if it suggests paths, will it complete "/pro" to "/proc" (in the root filesytem) rather than to "/progress.txt" in the current directory? (Note that users are likely to want to start paths with a leading '/' in non-cone mode, for the same reason that .gitignore files often have one.) Completing on files or directories might give nasty surprises in all these cases.
-
The excessive flexibility made other extensions essentially impractical.
--sparse-index
is likely impossible in non-cone mode; even if it is somehow feasible, it would have been far more work to implement and may have been too slow in practice. Some ideas for adding coupling between partial clones and sparse checkouts are only practical with a more restricted set of paths as well.
For all these reasons, non-cone mode is deprecated. Please switch to using cone mode.
INTERNALS — CONE MODE HANDLING
The "cone mode", which is the default, lets you specify only what directories to include. For any directory specified, all paths below that directory will be included, and any paths immediately under leading directories (including the toplevel directory) will also be included. Thus, if you specified the directory Documentation/technical/ then your sparse checkout would contain:
-
all files in the toplevel-directory
-
all files immediately under Documentation/
-
all files at any depth under Documentation/technical/
Also, in cone mode, even if no directories are specified, then the files in the toplevel directory will be included.
When changing the sparse-checkout patterns in cone mode, Git will inspect each
tracked directory that is not within the sparse-checkout cone to see if it
contains any untracked files. If all of those files are ignored due to the
.gitignore
patterns, then the directory will be deleted. If any of the
untracked files within that directory is not ignored, then no deletions will
occur within that directory and a warning message will appear. If these files
are important, then reset your sparse-checkout definition so they are included,
use git add
and git commit
to store them, then remove any remaining files
manually to ensure Git can behave optimally.
See also the "Internals — Cone Pattern Set" section to learn how the directories are transformed under the hood into a subset of the Full Pattern Set of sparse-checkout.
INTERNALS — FULL PATTERN SET
The full pattern set allows for arbitrary pattern matches and complicated
inclusion/exclusion rules. These can result in O(N*M) pattern matches when
updating the index, where N is the number of patterns and M is the number
of paths in the index. To combat this performance issue, a more restricted
pattern set is allowed when core.sparseCheckoutCone
is enabled.
The sparse-checkout file uses the same syntax as .gitignore
files;
see gitignore(5) for details. Here, though, the patterns are
usually being used to select which files to include rather than which
files to exclude. (However, it can get a bit confusing since
gitignore-style patterns have negations defined by patterns which
begin with a !, so you can also select files to not include.)
For example, to select everything, and then to remove the file
unwanted
(so that every file will appear in your working tree except
the file named unwanted
):
git sparse-checkout set --no-cone '/*' '!unwanted'
These patterns are just placed into the
$GIT_DIR/info/sparse-checkout
as-is, so the contents of that file
at this point would be
/*
!unwanted
See also the "Sparse Checkout" section of git-read-tree(1) to learn more about the gitignore-style patterns used in sparse checkouts.
INTERNALS — CONE PATTERN SET
In cone mode, only directories are accepted, but they are translated into the same gitignore-style patterns used in the full pattern set. We refer to the particular patterns used in those mode as being of one of two types:
-
Recursive: All paths inside a directory are included.
-
Parent: All files immediately inside a directory are included.
Since cone mode always includes files at the toplevel, when running
git sparse-checkout set
with no directories specified, the toplevel
directory is added as a parent pattern. At this point, the
sparse-checkout file contains the following patterns:
/*
!/*/
This says "include everything immediately under the toplevel directory, but nothing at any level below that."
When in cone mode, the git sparse-checkout set
subcommand takes a
list of directories. The command git sparse-checkout set A/B/C
sets
the directory A/B/C
as a recursive pattern, the directories A
and
A/B
are added as parent patterns. The resulting sparse-checkout file
is now
/*
!/*/
/A/
!/A/*/
/A/B/
!/A/B/*/
/A/B/C/
Here, order matters, so the negative patterns are overridden by the positive patterns that appear lower in the file.
Unless core.sparseCheckoutCone
is explicitly set to false
, Git will
parse the sparse-checkout file expecting patterns of these types. Git will
warn if the patterns do not match. If the patterns do match the expected
format, then Git will use faster hash-based algorithms to compute inclusion
in the sparse-checkout. If they do not match, git will behave as though
core.sparseCheckoutCone
was false, regardless of its setting.
In the cone mode case, despite the fact that full patterns are written
to the $GIT_DIR/info/sparse-checkout file, the git sparse-checkout
list
subcommand will list the directories that define the recursive
patterns. For the example sparse-checkout file above, the output is as
follows:
$ git sparse-checkout list
A/B/C
If core.ignoreCase=true
, then the pattern-matching algorithm will use a
case-insensitive check. This corrects for case mismatched filenames in the
git sparse-checkout set command to reflect the expected cone in the working
directory.
INTERNALS — SUBMODULES
If your repository contains one or more submodules, then submodules
are populated based on interactions with the git submodule
command.
Specifically, git submodule init -- <path>
will ensure the submodule
at <path>
is present, while git submodule deinit [-f] -- <path>
will remove the files for the submodule at <path>
(including any
untracked files, uncommitted changes, and unpushed history). Similar
to how sparse-checkout removes files from the working tree but still
leaves entries in the index, deinitialized submodules are removed from
the working directory but still have an entry in the index.
Since submodules may have unpushed changes or untracked files,
removing them could result in data loss. Thus, changing sparse
inclusion/exclusion rules will not cause an already checked out
submodule to be removed from the working copy. Said another way, just
as checkout
will not cause submodules to be automatically removed or
initialized even when switching between branches that remove or add
submodules, using sparse-checkout
to reduce or expand the scope of
"interesting" files will not cause submodules to be automatically
deinitialized or initialized either.
Further, the above facts mean that there are multiple reasons that
"tracked" files might not be present in the working copy: sparsity
pattern application from sparse-checkout, and submodule initialization
state. Thus, commands like git grep
that work on tracked files in
the working copy may return results that are limited by either or both
of these restrictions.
SEE ALSO
GIT
Part of the git(1) suite