GeographicLib 2.1.2
GeographicLib::TransverseMercatorExact Class Reference

An exact implementation of the transverse Mercator projection. More...

#include <GeographicLib/TransverseMercatorExact.hpp>

Public Member Functions

 TransverseMercatorExact (real a, real f, real k0, bool extendp=false)
 
void Forward (real lon0, real lat, real lon, real &x, real &y, real &gamma, real &k) const
 
void Reverse (real lon0, real x, real y, real &lat, real &lon, real &gamma, real &k) const
 
void Forward (real lon0, real lat, real lon, real &x, real &y) const
 
void Reverse (real lon0, real x, real y, real &lat, real &lon) const
 
Inspector functions
Math::real EquatorialRadius () const
 
Math::real Flattening () const
 
Math::real CentralScale () const
 

Static Public Member Functions

static const TransverseMercatorExactUTM ()
 

Detailed Description

An exact implementation of the transverse Mercator projection.

Implementation of the Transverse Mercator Projection given in

Lee gives the correct results for forward and reverse transformations subject to the branch cut rules (see the description of the extendp argument to the constructor). The maximum error is about 8 nm (8 nanometers), ground distance, for the forward and reverse transformations. The error in the convergence is 2 × 10−15", the relative error in the scale is 7 × 10−12%%. See Sec. 3 of arXiv:1002.1417 for details. The method is "exact" in the sense that the errors are close to the round-off limit and that no changes are needed in the algorithms for them to be used with reals of a higher precision. Thus the errors using long double (with a 64-bit fraction) are about 2000 times smaller than using double (with a 53-bit fraction).

This algorithm is about 4.5 times slower than the 6th-order Krüger method, TransverseMercator, taking about 11 us for a combined forward and reverse projection on a 2.66 GHz Intel machine (g++, version 4.3.0, -O3).

The ellipsoid parameters and the central scale are set in the constructor. The central meridian (which is a trivial shift of the longitude) is specified as the lon0 argument of the TransverseMercatorExact::Forward and TransverseMercatorExact::Reverse functions. The latitude of origin is taken to be the equator. See the documentation on TransverseMercator for how to include a false easting, false northing, or a latitude of origin.

See tm-grid.kmz, for an illustration of the transverse Mercator grid in Google Earth.

This class also returns the meridian convergence gamma and scale k. The meridian convergence is the bearing of grid north (the y axis) measured clockwise from true north.

See TransverseMercatorExact.cpp for more information on the implementation.

See Transverse Mercator projection for a discussion of this projection.

Example of use:

// Example of using the GeographicLib::TransverseMercatorExact class
#include <iostream>
#include <iomanip>
#include <exception>
using namespace std;
using namespace GeographicLib;
int main() {
try {
// Alternatively:
// const TransverseMercatorExact& proj = TransverseMercatorExact::UTM();
double lon0 = -75; // Central meridian for UTM zone 18
{
// Sample forward calculation
double lat = 40.3, lon = -74.7; // Princeton, NJ
double x, y;
proj.Forward(lon0, lat, lon, x, y);
cout << x << " " << y << "\n";
}
{
// Sample reverse calculation
double x = 25e3, y = 4461e3;
double lat, lon;
proj.Reverse(lon0, x, y, lat, lon);
cout << lat << " " << lon << "\n";
}
}
catch (const exception& e) {
cerr << "Caught exception: " << e.what() << "\n";
return 1;
}
}
int main(int argc, const char *const argv[])
Definition: CartConvert.cpp:29
Header for GeographicLib::TransverseMercatorExact class.
An exact implementation of the transverse Mercator projection.
Namespace for GeographicLib.
Definition: Accumulator.cpp:12

TransverseMercatorProj is a command-line utility providing access to the functionality of TransverseMercator and TransverseMercatorExact.

Definition at line 85 of file TransverseMercatorExact.hpp.

Constructor & Destructor Documentation

◆ TransverseMercatorExact()

GeographicLib::TransverseMercatorExact::TransverseMercatorExact ( real  a,
real  f,
real  k0,
bool  extendp = false 
)

Constructor for an ellipsoid with

Parameters
[in]aequatorial radius (meters).
[in]fflattening of ellipsoid.
[in]k0central scale factor.
[in]extendpuse extended domain.
Exceptions
GeographicErrif a, f, or k0 is not positive.

The transverse Mercator projection has a branch point singularity at lat = 0 and lonlon0 = 90 (1 − e) or (for TransverseMercatorExact::UTM) x = 18381 km, y = 0m. The extendp argument governs where the branch cut is placed. With extendp = false, the "standard" convention is followed, namely the cut is placed along x > 18381 km, y = 0m. Forward can be called with any lat and lon then produces the transformation shown in Lee, Fig 46. Reverse analytically continues this in the ± x direction. As a consequence, Reverse may map multiple points to the same geographic location; for example, for TransverseMercatorExact::UTM, x = 22051449.037349 m, y = −7131237.022729 m and x = 29735142.378357 m, y = 4235043.607933 m both map to lat = −2°, lon = 88°.

With extendp = true, the branch cut is moved to the lower left quadrant. The various symmetries of the transverse Mercator projection can be used to explore the projection on any sheet. In this mode the domains of lat, lon, x, and y are restricted to

  • the union of
    • lat in [0, 90] and lonlon0 in [0, 90]
    • lat in (-90, 0] and lonlon0 in [90 (1 − e), 90]
  • the union of
    • x/(k0 a) in [0, ∞) and y/(k0 a) in [0, E(e2)]
    • x/(k0 a) in [K(1 − e2) − E(1 − e2), ∞) and y/(k0 a) in (−∞, 0]

See Sec. 5 of arXiv:1002.1417 for a full discussion of the treatment of the branch cut.

The method will work for all ellipsoids used in terrestrial geodesy. The method cannot be applied directly to the case of a sphere (f = 0) because some the constants characterizing this method diverge in that limit, and in practice, f should be larger than about numeric_limits<real>::epsilon(). However, TransverseMercator treats the sphere exactly.

Definition at line 55 of file TransverseMercatorExact.cpp.

Member Function Documentation

◆ Forward() [1/2]

void GeographicLib::TransverseMercatorExact::Forward ( real  lon0,
real  lat,
real  lon,
real &  x,
real &  y,
real &  gamma,
real &  k 
) const

Forward projection, from geographic to transverse Mercator.

Parameters
[in]lon0central meridian of the projection (degrees).
[in]latlatitude of point (degrees).
[in]lonlongitude of point (degrees).
[out]xeasting of point (meters).
[out]ynorthing of point (meters).
[out]gammameridian convergence at point (degrees).
[out]kscale of projection at point.

No false easting or northing is added. lat should be in the range [−90°, 90°].

Definition at line 350 of file TransverseMercatorExact.cpp.

References GeographicLib::Math::AngDiff(), GeographicLib::Math::degree(), GeographicLib::EllipticFunction::E(), GeographicLib::Math::hd, GeographicLib::EllipticFunction::K(), GeographicLib::Math::LatFix(), GeographicLib::Math::qd, GeographicLib::EllipticFunction::sncndn(), GeographicLib::Math::tand(), GeographicLib::Math::tauf(), and GeographicLib::Math::taupf().

Referenced by main().

◆ Reverse() [1/2]

void GeographicLib::TransverseMercatorExact::Reverse ( real  lon0,
real  x,
real  y,
real &  lat,
real &  lon,
real &  gamma,
real &  k 
) const

Reverse projection, from transverse Mercator to geographic.

Parameters
[in]lon0central meridian of the projection (degrees).
[in]xeasting of point (meters).
[in]ynorthing of point (meters).
[out]latlatitude of point (degrees).
[out]lonlongitude of point (degrees).
[out]gammameridian convergence at point (degrees).
[out]kscale of projection at point.

No false easting or northing is added. The value of lon returned is in the range [−180°, 180°].

Definition at line 410 of file TransverseMercatorExact.cpp.

References GeographicLib::Math::AngNormalize(), GeographicLib::Math::degree(), GeographicLib::EllipticFunction::E(), GeographicLib::Math::hd, GeographicLib::EllipticFunction::K(), GeographicLib::EllipticFunction::KE(), GeographicLib::Math::qd, GeographicLib::EllipticFunction::sncndn(), and GeographicLib::Math::tauf().

Referenced by main().

◆ Forward() [2/2]

void GeographicLib::TransverseMercatorExact::Forward ( real  lon0,
real  lat,
real  lon,
real &  x,
real &  y 
) const
inline

TransverseMercatorExact::Forward without returning the convergence and scale.

Definition at line 212 of file TransverseMercatorExact.hpp.

◆ Reverse() [2/2]

void GeographicLib::TransverseMercatorExact::Reverse ( real  lon0,
real  x,
real  y,
real &  lat,
real &  lon 
) const
inline

TransverseMercatorExact::Reverse without returning the convergence and scale.

Definition at line 222 of file TransverseMercatorExact.hpp.

◆ EquatorialRadius()

Math::real GeographicLib::TransverseMercatorExact::EquatorialRadius ( ) const
inline
Returns
a the equatorial radius of the ellipsoid (meters). This is the value used in the constructor.

Definition at line 235 of file TransverseMercatorExact.hpp.

◆ Flattening()

Math::real GeographicLib::TransverseMercatorExact::Flattening ( ) const
inline
Returns
f the flattening of the ellipsoid. This is the value used in the constructor.

Definition at line 241 of file TransverseMercatorExact.hpp.

◆ CentralScale()

Math::real GeographicLib::TransverseMercatorExact::CentralScale ( ) const
inline
Returns
k0 central scale for the projection. This is the value of k0 used in the constructor and is the scale on the central meridian.

Definition at line 247 of file TransverseMercatorExact.hpp.

◆ UTM()

const TransverseMercatorExact & GeographicLib::TransverseMercatorExact::UTM ( )
static

A global instantiation of TransverseMercatorExact with the WGS84 ellipsoid and the UTM scale factor. However, unlike UTM, no false easting or northing is added.

Definition at line 80 of file TransverseMercatorExact.cpp.

References GeographicLib::Constants::UTM_k0(), GeographicLib::Constants::WGS84_a(), and GeographicLib::Constants::WGS84_f().


The documentation for this class was generated from the following files: