GeographicLib 2.1.2
Geocentric.cpp
Go to the documentation of this file.
1/**
2 * \file Geocentric.cpp
3 * \brief Implementation for GeographicLib::Geocentric class
4 *
5 * Copyright (c) Charles Karney (2008-2022) <charles@karney.com> and licensed
6 * under the MIT/X11 License. For more information, see
7 * https://geographiclib.sourceforge.io/
8 **********************************************************************/
9
11
12namespace GeographicLib {
13
14 using namespace std;
15
16 Geocentric::Geocentric(real a, real f)
17 : _a(a)
18 , _f(f)
19 , _e2(_f * (2 - _f))
20 , _e2m(Math::sq(1 - _f)) // 1 - _e2
21 , _e2a(fabs(_e2))
22 , _e4a(Math::sq(_e2))
23 , _maxrad(2 * _a / numeric_limits<real>::epsilon())
24 {
25 if (!(isfinite(_a) && _a > 0))
26 throw GeographicErr("Equatorial radius is not positive");
27 if (!(isfinite(_f) && _f < 1))
28 throw GeographicErr("Polar semi-axis is not positive");
29 }
30
32 static const Geocentric wgs84(Constants::WGS84_a(), Constants::WGS84_f());
33 return wgs84;
34 }
35
36 void Geocentric::IntForward(real lat, real lon, real h,
37 real& X, real& Y, real& Z,
38 real M[dim2_]) const {
39 real sphi, cphi, slam, clam;
40 Math::sincosd(Math::LatFix(lat), sphi, cphi);
41 Math::sincosd(lon, slam, clam);
42 real n = _a/sqrt(1 - _e2 * Math::sq(sphi));
43 Z = (_e2m * n + h) * sphi;
44 X = (n + h) * cphi;
45 Y = X * slam;
46 X *= clam;
47 if (M)
48 Rotation(sphi, cphi, slam, clam, M);
49 }
50
51 void Geocentric::IntReverse(real X, real Y, real Z,
52 real& lat, real& lon, real& h,
53 real M[dim2_]) const {
54 real
55 R = hypot(X, Y),
56 slam = R != 0 ? Y / R : 0,
57 clam = R != 0 ? X / R : 1;
58 h = hypot(R, Z); // Distance to center of earth
59 real sphi, cphi;
60 if (h > _maxrad) {
61 // We really far away (> 12 million light years); treat the earth as a
62 // point and h, above, is an acceptable approximation to the height.
63 // This avoids overflow, e.g., in the computation of disc below. It's
64 // possible that h has overflowed to inf; but that's OK.
65 //
66 // Treat the case X, Y finite, but R overflows to +inf by scaling by 2.
67 R = hypot(X/2, Y/2);
68 slam = R != 0 ? (Y/2) / R : 0;
69 clam = R != 0 ? (X/2) / R : 1;
70 real H = hypot(Z/2, R);
71 sphi = (Z/2) / H;
72 cphi = R / H;
73 } else if (_e4a == 0) {
74 // Treat the spherical case. Dealing with underflow in the general case
75 // with _e2 = 0 is difficult. Origin maps to N pole same as with
76 // ellipsoid.
77 real H = hypot(h == 0 ? 1 : Z, R);
78 sphi = (h == 0 ? 1 : Z) / H;
79 cphi = R / H;
80 h -= _a;
81 } else {
82 // Treat prolate spheroids by swapping R and Z here and by switching
83 // the arguments to phi = atan2(...) at the end.
84 real
85 p = Math::sq(R / _a),
86 q = _e2m * Math::sq(Z / _a),
87 r = (p + q - _e4a) / 6;
88 if (_f < 0) swap(p, q);
89 if ( !(_e4a * q == 0 && r <= 0) ) {
90 real
91 // Avoid possible division by zero when r = 0 by multiplying
92 // equations for s and t by r^3 and r, resp.
93 S = _e4a * p * q / 4, // S = r^3 * s
94 r2 = Math::sq(r),
95 r3 = r * r2,
96 disc = S * (2 * r3 + S);
97 real u = r;
98 if (disc >= 0) {
99 real T3 = S + r3;
100 // Pick the sign on the sqrt to maximize abs(T3). This minimizes
101 // loss of precision due to cancellation. The result is unchanged
102 // because of the way the T is used in definition of u.
103 T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc); // T3 = (r * t)^3
104 // N.B. cbrt always returns the real root. cbrt(-8) = -2.
105 real T = cbrt(T3); // T = r * t
106 // T can be zero; but then r2 / T -> 0.
107 u += T + (T != 0 ? r2 / T : 0);
108 } else {
109 // T is complex, but the way u is defined the result is real.
110 real ang = atan2(sqrt(-disc), -(S + r3));
111 // There are three possible cube roots. We choose the root which
112 // avoids cancellation. Note that disc < 0 implies that r < 0.
113 u += 2 * r * cos(ang / 3);
114 }
115 real
116 v = sqrt(Math::sq(u) + _e4a * q), // guaranteed positive
117 // Avoid loss of accuracy when u < 0. Underflow doesn't occur in
118 // e4 * q / (v - u) because u ~ e^4 when q is small and u < 0.
119 uv = u < 0 ? _e4a * q / (v - u) : u + v, // u+v, guaranteed positive
120 // Need to guard against w going negative due to roundoff in uv - q.
121 w = fmax(real(0), _e2a * (uv - q) / (2 * v)),
122 // Rearrange expression for k to avoid loss of accuracy due to
123 // subtraction. Division by 0 not possible because uv > 0, w >= 0.
124 k = uv / (sqrt(uv + Math::sq(w)) + w),
125 k1 = _f >= 0 ? k : k - _e2,
126 k2 = _f >= 0 ? k + _e2 : k,
127 d = k1 * R / k2,
128 H = hypot(Z/k1, R/k2);
129 sphi = (Z/k1) / H;
130 cphi = (R/k2) / H;
131 h = (1 - _e2m/k1) * hypot(d, Z);
132 } else { // e4 * q == 0 && r <= 0
133 // This leads to k = 0 (oblate, equatorial plane) and k + e^2 = 0
134 // (prolate, rotation axis) and the generation of 0/0 in the general
135 // formulas for phi and h. using the general formula and division by 0
136 // in formula for h. So handle this case by taking the limits:
137 // f > 0: z -> 0, k -> e2 * sqrt(q)/sqrt(e4 - p)
138 // f < 0: R -> 0, k + e2 -> - e2 * sqrt(q)/sqrt(e4 - p)
139 real
140 zz = sqrt((_f >= 0 ? _e4a - p : p) / _e2m),
141 xx = sqrt( _f < 0 ? _e4a - p : p ),
142 H = hypot(zz, xx);
143 sphi = zz / H;
144 cphi = xx / H;
145 if (Z < 0) sphi = -sphi; // for tiny negative Z (not for prolate)
146 h = - _a * (_f >= 0 ? _e2m : 1) * H / _e2a;
147 }
148 }
149 lat = Math::atan2d(sphi, cphi);
150 lon = Math::atan2d(slam, clam);
151 if (M)
152 Rotation(sphi, cphi, slam, clam, M);
153 }
154
155 void Geocentric::Rotation(real sphi, real cphi, real slam, real clam,
156 real M[dim2_]) {
157 // This rotation matrix is given by the following quaternion operations
158 // qrot(lam, [0,0,1]) * qrot(phi, [0,-1,0]) * [1,1,1,1]/2
159 // or
160 // qrot(pi/2 + lam, [0,0,1]) * qrot(-pi/2 + phi , [-1,0,0])
161 // where
162 // qrot(t,v) = [cos(t/2), sin(t/2)*v[1], sin(t/2)*v[2], sin(t/2)*v[3]]
163
164 // Local X axis (east) in geocentric coords
165 M[0] = -slam; M[3] = clam; M[6] = 0;
166 // Local Y axis (north) in geocentric coords
167 M[1] = -clam * sphi; M[4] = -slam * sphi; M[7] = cphi;
168 // Local Z axis (up) in geocentric coords
169 M[2] = clam * cphi; M[5] = slam * cphi; M[8] = sphi;
170 }
171
172} // namespace GeographicLib
Header for GeographicLib::Geocentric class.
GeographicLib::Math::real real
Definition: GeodSolve.cpp:31
Geocentric coordinates
Definition: Geocentric.hpp:67
static const Geocentric & WGS84()
Definition: Geocentric.cpp:31
Exception handling for GeographicLib.
Definition: Constants.hpp:316
Mathematical functions needed by GeographicLib.
Definition: Math.hpp:76
static T LatFix(T x)
Definition: Math.hpp:300
static void sincosd(T x, T &sinx, T &cosx)
Definition: Math.cpp:106
static T atan2d(T y, T x)
Definition: Math.cpp:183
static T sq(T x)
Definition: Math.hpp:212
Namespace for GeographicLib.
Definition: Accumulator.cpp:12
void swap(GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &a, GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &b)