GeographicLib 2.1.2
DST.hpp
Go to the documentation of this file.
1/**
2 * \file DST.hpp
3 * \brief Header for GeographicLib::DST class
4 *
5 * Copyright (c) Charles Karney (2022) <charles@karney.com> and licensed under
6 * the MIT/X11 License. For more information, see
7 * https://geographiclib.sourceforge.io/
8 **********************************************************************/
9
10#if !defined(GEOGRAPHICLIB_DST_HPP)
11#define GEOGRAPHICLIB_DST_HPP 1
12
14
15#include <functional>
16#include <memory>
17
18/// \cond SKIP
19template<typename scalar_t>
20class kissfft;
21/// \endcond
22
23namespace GeographicLib {
24
25 /**
26 * \brief Discrete sine transforms
27 *
28 * This decomposes periodic functions \f$ f(\sigma) \f$ (period \f$ 2\pi \f$)
29 * which are odd about \f$ \sigma = 0 \f$ and even about \f$ \sigma = \frac12
30 * \pi \f$ into a Fourier series
31 * \f[
32 * f(\sigma) = \sum_{l=0}^\infty F_l \sin\bigl((2l+1)\sigma\bigr).
33 * \f]
34 *
35 * The first \f$ N \f$ components of \f$ F_l \f$, for \f$0 \le l < N\f$ may
36 * be approximated by
37 * \f[
38 * F_l = \frac2N \sum_{j=1}^{N}
39 * p_j f(\sigma_j) \sin\bigl((2l+1)\sigma_j\bigr),
40 * \f]
41 * where \f$ \sigma_j = j\pi/(2N) \f$ and \f$ p_j = \frac12 \f$ for \f$ j = N
42 * \f$ and \f$ 1 \f$ otherwise. \f$ F_l \f$ is a discrete sine transform of
43 * type DST-III and may be conveniently computed using the fast Fourier
44 * transform, FFT; this is implemented with the DST::transform method.
45 *
46 * Having computed \f$ F_l \f$ based on \f$ N \f$ evaluations of \f$
47 * f(\sigma) \f$ at \f$ \sigma_j = j\pi/(2N) \f$, it is possible to
48 * refine these transform values and add another \f$ N \f$ coefficients by
49 * evaluating \f$ f(\sigma) \f$ at \f$ (j-\frac12)\pi/(2N) \f$; this is
50 * implemented with the DST::refine method.
51 *
52 * Here we compute FFTs using the kissfft package
53 * https://github.com/mborgerding/kissfft by Mark Borgerding.
54 *
55 * Example of use:
56 * \include example-DST.cpp
57 *
58 * \note The FFTW package https://www.fftw.org/ can also be used. However
59 * this is a more complicated dependency, its CMake support is broken, and it
60 * doesn't work with mpreals (GEOGRAPHICLIB_PRECISION = 5).
61 **********************************************************************/
62
63 class DST {
64 private:
65 typedef Math::real real;
66 int _N;
67 typedef kissfft<real> fft_t;
68 std::shared_ptr<fft_t> _fft;
69 // Implement DST-III (centerp = false) or DST-IV (centerp = true)
70 void fft_transform(real data[], real F[], bool centerp) const;
71 // Add another N terms to F
72 void fft_transform2(real data[], real F[]) const;
73 public:
74 /**
75 * Constructor specifying the number of points to use.
76 *
77 * @param[in] N the number of points to use.
78 **********************************************************************/
79 GEOGRAPHICLIB_EXPORT DST(int N = 0);
80
81 /**
82 * Reset the given number of points.
83 *
84 * @param[in] N the number of points to use.
85 **********************************************************************/
87
88 /**
89 * Return the number of points.
90 *
91 * @return the number of points to use.
92 **********************************************************************/
93 int N() const { return _N; }
94
95 /**
96 * Determine first \e N terms in the Fourier series
97 *
98 * @param[in] f the function used for evaluation.
99 * @param[out] F the first \e N coefficients of the Fourier series.
100 *
101 * The evaluates \f$ f(\sigma) \f$ at \f$ \sigma = (j + 1) \pi / (2 N) \f$
102 * for integer \f$ j \in [0, N) \f$. \e F should be an array of length at
103 * least \e N.
104 **********************************************************************/
105 void GEOGRAPHICLIB_EXPORT transform(std::function<real(real)> f, real F[])
106 const;
107
108 /**
109 * Refine the Fourier series by doubling the number of points sampled
110 *
111 * @param[in] f the function used for evaluation.
112 * @param[inout] F on input the first \e N coefficents of the Fourier
113 * series; on output the refined transform based on 2\e N points, i.e.,
114 * the first 2\e N coefficents.
115 *
116 * The evaluates \f$ f(\sigma) \f$ at additional points \f$ \sigma = (j +
117 * \frac12) \pi / (2 N) \f$ for integer \f$ j \in [0, N) \f$, computes the
118 * DST-IV transform of these, and combines this with the input \e F to
119 * compute the 2\e N term DST-III discrete sine transform. This is
120 * equivalent to calling transform with twice the value of \e N but is more
121 * efficient, given that the \e N term coefficients are already known. See
122 * the example code above.
123 **********************************************************************/
124 void GEOGRAPHICLIB_EXPORT refine(std::function<real(real)> f, real F[])
125 const;
126
127 /**
128 * Evaluate the Fourier sum given the sine and cosine of the angle
129 *
130 * @param[in] sinx sin&sigma;.
131 * @param[in] cosx cos&sigma;.
132 * @param[in] F the array of Fourier coefficients.
133 * @param[in] N the number of Fourier coefficients.
134 * @return the value of the Fourier sum.
135 **********************************************************************/
136 static real GEOGRAPHICLIB_EXPORT eval(real sinx, real cosx,
137 const real F[], int N);
138
139 /**
140 * Evaluate the integral of Fourier sum given the sine and cosine of the
141 * angle
142 *
143 * @param[in] sinx sin&sigma;.
144 * @param[in] cosx cos&sigma;.
145 * @param[in] F the array of Fourier coefficients.
146 * @param[in] N the number of Fourier coefficients.
147 * @return the value of the integral.
148 *
149 * The constant of integration is chosen so that the integral is zero at
150 * \f$ \sigma = \frac12\pi \f$.
151 **********************************************************************/
152 static real GEOGRAPHICLIB_EXPORT integral(real sinx, real cosx,
153 const real F[], int N);
154
155 /**
156 * Evaluate the definite integral of Fourier sum given the sines and
157 * cosines of the angles at the endpoints.
158 *
159 * @param[in] sinx sin&sigma;<sub>1</sub>.
160 * @param[in] cosx cos&sigma;<sub>1</sub>.
161 * @param[in] siny sin&sigma;<sub>2</sub>.
162 * @param[in] cosy cos&sigma;<sub>2</sub>.
163 * @param[in] F the array of Fourier coefficients.
164 * @param[in] N the number of Fourier coefficients.
165 * @return the value of the integral.
166 *
167 * The integral is evaluated between limits &sigma;<sub>1</sub> and
168 * &sigma;<sub>2</sub>.
169 **********************************************************************/
170 static real GEOGRAPHICLIB_EXPORT integral(real sinx, real cosx,
171 real siny, real cosy,
172 const real F[], int N);
173 };
174
175} // namespace GeographicLib
176
177#endif // GEOGRAPHICLIB_DST_HPP
Header for GeographicLib::Constants class.
#define GEOGRAPHICLIB_EXPORT
Definition: Constants.hpp:67
GeographicLib::Math::real real
Definition: GeodSolve.cpp:31
Discrete sine transforms.
Definition: DST.hpp:63
void reset(int N)
Definition: DST.cpp:24
void transform(std::function< real(real)> f, real F[]) const
Definition: DST.cpp:77
DST(int N=0)
Definition: DST.cpp:19
static real eval(real sinx, real cosx, const real F[], int N)
Definition: DST.cpp:93
int N() const
Definition: DST.hpp:93
void refine(std::function< real(real)> f, real F[]) const
Definition: DST.cpp:85
static real integral(real sinx, real cosx, const real F[], int N)
Definition: DST.cpp:110
Namespace for GeographicLib.
Definition: Accumulator.cpp:12