Next: Examples of Rule of Float and Rational Contagion, Previous: Floating-point Computations, Up: Floating-point Computations
When rationals and floats are combined by a numerical function, the rational is first converted to a float of the same format. For functions such as + that take more than two arguments, it is permitted that part of the operation be carried out exactly using rationals and the rest be done using floating-point arithmetic.
When rationals and floats are compared by a numerical function, the function rational is effectively called to convert the float to a rational and then an exact comparison is performed. In the case of complex numbers, the real and imaginary parts are effectively handled individually.