
HPC-GAP — Reference
Manual

Release 4.12.1, 2022-10-20

The GAP Group
Reimer Behrends
Vladimir Janjic

The GAP Group Email: support@gap-system.org
Homepage: https://www.gap-system.org

Reimer Behrends Email: behrends@gmail.com

Vladimir Janjic Email: vj32@st-andrews.ac.uk

mailto://support@gap-system.org
https://www.gap-system.org
mailto://behrends@gmail.com
mailto://vj32@st-andrews.ac.uk

HPC-GAP — Reference Manual 2

Copyright
Copyright © (1987-2022) for the core part of the GAP system by the GAP Group.

Most parts of this distribution, including the core part of the GAP system are distributed under the terms
of the GNU General Public License, see https://www.gnu.org/licenses/gpl.html or the file GPL in the
etc directory of the GAP installation.

More detailed information about copyright and licenses of parts of this distribution can be found in
(Reference: Copyright and License).

GAP is developed over a long time and has many authors and contributors. More detailed information can
be found in (Reference: Authors and Maintainers).

https://www.gnu.org/licenses/gpl.html

Contents

1 Tasks 5
1.1 Overview . 5
1.2 Running tasks . 6
1.3 Information about tasks . 9
1.4 Cancelling tasks . 10
1.5 Conditions . 11
1.6 Milestones . 11

2 Variables in HPC-GAP 13
2.1 Global variables . 13
2.2 Thread-local variables . 13

3 How HPC-GAP organizes shared memory: Regions 15
3.1 Thread-local regions . 15
3.2 Shared regions . 15
3.3 Ordering of shared regions . 15
3.4 The public region . 16
3.5 The read-only region . 16
3.6 Migrating objects between regions . 16
3.7 Region names . 17
3.8 Controlling access to regions . 17
3.9 Functions relating to regions . 17
3.10 Atomic functions . 27
3.11 Write-once functionality . 27

4 Console User Interface 30
4.1 Console UI commands . 30
4.2 GAP functions to access the Shell UI . 33

5 Atomic objects 35
5.1 Atomic lists . 35
5.2 Atomic records and component objects . 37
5.3 Replacement policy functions . 38
5.4 Thread-local records . 39

6 Thread functions 41
6.1 Thread functions . 41

3

HPC-GAP — Reference Manual 4

7 Channels 44
7.1 Channels . 44

8 Semaphores 50
8.1 Semaphores . 50

9 Synchronization variables 52
9.1 Synchronization variables . 52

10 Serialization support 54
10.1 Serialization support . 54

11 Low-level functionality 57
11.1 Explicit lock and unlock primitives . 57
11.2 Hash locks . 58
11.3 Migration to the public region . 59
11.4 Memory barriers . 59
11.5 Object manipulation . 60

Index 62

Chapter 1

Tasks

1.1 Overview

Tasks provide mid- to high-level functionality for programmers to describe asynchronous workflows.
A task is an asynchronously or synchronously executing job; functions exist to create tasks that are
executed concurrently, on demand, or in the current thread; to wait for their completion, check their
status, and retrieve any results.

Here is a simple example of sorting a list in the background:
Example

gap> task := RunTask(x -> SortedList(x), [3,2,1]);;

gap> WaitTask(task);

gap> TaskResult(task);

[1, 2, 3]

RunTask (1.2.1) dispatches a task to run in the background; a task is described by a function and
zero or more arguments that are passed to RunTask (1.2.1). WaitTask (1.2.9) waits for the task to
complete; and TaskResult returns the result of the task.

TaskResult (1.2.11) does an implicit WaitTask (1.2.9), so the second line above can actually be
omitted:

Example
gap> task := RunTask(x -> SortedList(x), [3,2,1]);;

gap> TaskResult(task);

[1, 2, 3]

It is simple to run two tasks in parallel. Let’s compute the factorial of 10000 by splitting the work
between two tasks:

Example
gap> task1 := RunTask(Product, [1..5000]);;

gap> task2 := RunTask(Product, [5001..10000]);;

gap> TaskResult(task1) * TaskResult(task2) = Factorial(10000);

true

You can use DelayTask (1.2.3) to delay executing the task until its result is actually needed.
Example

gap> task1 := DelayTask(Product, [1..5000]);;

gap> task2 := DelayTask(Product, [5001..10000]);;

gap> WaitTask(task1, task2);

5

HPC-GAP — Reference Manual 6

gap> TaskResult(task1) * TaskResult(task2) = Factorial(10000);

true

Note that WaitTask (1.2.9) is used here to start execution of both tasks; otherwise, task2 would not
be started until TaskResult(task1) has been evaluated.

To start execution of a delayed task, you can also use ExecuteTask. This has no effect if a task
has already been running.

For convenience, you can also use ImmediateTask (1.2.7) to execute a task synchronously (i.e.,
the task is started immediately and the call does not return until the task has completed).

Example
gap> task := ImmediateTask(x -> SortedList(x), [3,2,1]);;

gap> TaskResult(task);

[1, 2, 3]

This is indistinguishable from calling the function directly, but provides the same interface as normal
tasks.

If e.g. you want to call a function only for its side-effects, it can be useful to ignore the result of
a task. RunAsyncTask (1.2.4) provides the necessary functionality. Such a task cannot be waited for
and its result (if any) is ignored.

Example
gap> RunAsyncTask(function() Print("Hello, world!\n"); end);;

gap> !list

--- Thread 0 [0]

--- Thread 5 [5] (pending output)

gap> !5

--- Switching to thread 5

[5] Hello, world!

!0

--- Switching to thread 0

gap>

For more information on the multi-threaded user interface, see Chapter 4.
Task arguments are generally copied so that both the task that created them and the task that uses

them can access the data concurrently without fear of race conditions. To avoid copying, arguments
should be made shared or public (see the relevant parts of section 3.6 on migrating objects between
regions); shared and public arguments will not be copied.

HPC-GAP currently has multiple implementations of the task API. To use an alternative imple-
mentation to the one documented here, set the environment variable GAP_WORKSTEALING to a non-
empty value before starting GAP.

1.2 Running tasks

1.2.1 RunTask

▷ RunTask(func[, arg1, ..., argn]) (function)

RunTask prepares a task for execution and starts it. The task will call the function func with
arguments arg1 through argn (if provided). The return value of func is the result of the task. The
RunTask call itself returns a task object that can be used by functions that expect a task argument.

HPC-GAP — Reference Manual 7

1.2.2 ScheduleTask

▷ ScheduleTask(condition, func[, arg1, ..., argn]) (function)

ScheduleTask prepares a task for execution, but, unlike RunTask (1.2.1) does not start it until
condition is met. See on how to construct conditions. Simple examples of conditions are individual
tasks, where execution occurs after the task completes, or lists of tasks, where execution occurs after
all tasks in the list complete.

Example
gap> t1 := RunTask(x->x*x, 3);;

gap> t2 := RunTask(x->x*x, 4);;

gap> t := ScheduleTask([t1, t2], function()

> return TaskResult(t1) + TaskResult(t2);

> end);;

gap> TaskResult(t);

25

While the above example could also be achieved with RunTask (1.2.1) in lieu of ScheduleTask,
since TaskResult (1.2.11) would wait for t1 and t2 to complete, the above implementation does not
actually start the final task until the others are complete, making it more efficient, since no additional
worker thread needs to be occupied.

1.2.3 DelayTask

▷ DelayTask(func[, arg1, ..., argn]) (function)

DelayTask works as RunTask (1.2.1), but its start is delayed until it is being waited for (including
implicitly by calling TaskResult (1.2.11)).

1.2.4 RunAsyncTask

▷ RunAsyncTask(func[, arg1, ..., argn]) (function)

RunAsyncTask creates an asynchronous task. It works like RunTask (1.2.1), except that its result
will be ignored.

1.2.5 ScheduleAsyncTask

▷ ScheduleAsyncTask(condition, func[, arg1, ..., argn]) (function)

ScheduleAsyncTask creates an asynchronous task. It works like ScheduleTask (1.2.2), except
that its result will be ignored.

1.2.6 MakeTaskAsync

▷ MakeTaskAsync(task) (function)

MakeTaskAsync turns a synchronous task into an asynchronous task that cannot be waited for and
whose result will be ignored.

HPC-GAP — Reference Manual 8

1.2.7 ImmediateTask

▷ ImmediateTask(func[, arg1, ..., argn]) (function)

ImmediateTask executes the task specified by its arguments synchronously, usually within the
current thread.

1.2.8 ExecuteTask

▷ ExecuteTask(task) (function)

ExecuteTask starts task if it is not already running. It has only an effect if its argument is a task
returned by DelayTask (1.2.3); otherwise, it is a no-op.

1.2.9 WaitTask

▷ WaitTask(task1, ..., taskn) (function)

▷ WaitTask(condition) (function)

▷ WaitTasks(task1, ..., taskn) (function)

WaitTask waits until task1 through taskn have completed; after that, it returns. Alternatively, a
condition can be passed to WaitTask in order to wait until a condition is met. See on how to construct
conditions. WaitTasks is an alias for WaitTask.

1.2.10 WaitAnyTask

▷ WaitAnyTask(task1, ..., taskn) (function)

The WaitAnyTask function waits for any of its arguments to finish, then returns the number of
that task.

Example
gap> task1 := DelayTask(x->SortedList(x), [3,2,1]);;

gap> task2 := DelayTask(x->SortedList(x), [6,5,4]);;

gap> which := WaitAnyTask(task1, task2);

2

gap> if which = 1 then

> Display(TaskResult(task1));Display(TaskResult(task2));

> else

> Display(TaskResult(task2));Display(TaskResult(task1));

> fi;

[4, 5, 6]

[1, 2, 3]

One can pass a list of tasks to WaitAnyTask as an argument; WaitAnyTask([task1, ..., taskn])

behaves identically to WaitAnyTask(task1, ..., taskn).

1.2.11 TaskResult

▷ TaskResult(task) (function)

HPC-GAP — Reference Manual 9

The TaskResult function returns the result of a task. It implicitly calls WaitTask (1.2.9) if that
is necessary. Multiple invocations of TaskResult with the same task argument will not do repeated
waits and always return the same value.

If the function executed by task encounters an error, TaskResult returns fail. Whether task
encountered an error can be checked via TaskSuccess (1.3.1). In case of an error, the error message
can be retrieved via TaskError (1.3.2).

1.2.12 CullIdleTasks

▷ CullIdleTasks() (function)

This function terminates unused worker threads.

1.3 Information about tasks

1.3.1 TaskSuccess

▷ TaskSuccess(task) (function)

TaskSuccess waits for task and returns true if the it finished without encountering an error.
Otherwise the function returns false.

1.3.2 TaskError

▷ TaskError(task) (function)

TaskError waits for task and returns its error message, if it encountered an error. If it did not
encounter an error, the function returns fail.

1.3.3 CurrentTask

▷ CurrentTask() (function)

The CurrentTask returns the currently running task.

1.3.4 RunningTasks

▷ RunningTasks() (function)

This function returns the number of currently running tasks. Note that it is only an approximation
and can change as new tasks are being started by other threads.

1.3.5 TaskStarted

▷ TaskStarted(task) (function)

This function returns true if the task has started executing (i.e., for any non-delayed task), false
otherwise.

HPC-GAP — Reference Manual 10

1.3.6 TaskFinished

▷ TaskFinished(task) (function)

This function returns true if the task has finished executing and its result is available, false other-
wise.

1.3.7 TaskIsAsync

▷ TaskIsAsync(task) (function)

This function returns true if the task is asynchronous, true otherwise.

1.4 Cancelling tasks

HPC-GAP uses a cooperative model for task cancellation. A programmer can request the cancellation
of another task, but it is up to that other task to actually terminate itself. The tasks library has functions
to request cancellation, to test for the cancellation state of a task, and to perform actions in response
to cancellation requests.

1.4.1 CancelTask

▷ CancelTask(task) (function)

CancelTask submits a request that task is to be cancelled.

1.4.2 TaskCancellationRequested

▷ TaskCancellationRequested(task) (function)

TaskCancellationRequested returns true if CancelTask (1.4.1) has been called for task , false
otherwise.

1.4.3 OnTaskCancellation

▷ OnTaskCancellation(exit_func) (function)

OnTaskCancellation tests if cancellation for the current task has been requested. If so, then
exit_func will be called (as a parameterless function) and the current task will be aborted. The
result of the current task will be the value of exit_func() .

Example
gap> task := RunTask(function()

> while true do

> OnTaskCancellation(function() return 314; end);

> od;

> end);;

gap> CancelTask(task);

gap> TaskResult(task);

314

HPC-GAP — Reference Manual 11

1.4.4 OnTaskCancellationReturn

▷ OnTaskCancellationReturn(value) (function)

OnTaskCancellationReturn is a convenience function that does the same as:
OnTaskCancellation(function() return value; end);

1.5 Conditions

ScheduleTask (1.2.2) and WaitTask (1.2.9) can be made to wait on more complex conditions than
just tasks. A condition is either a milestone, a task, or a list of milestones and tasks. ScheduleTask
(1.2.2) starts its task and WaitTask (1.2.9) returns when the condition has been met. A condition
represented by a task is met when the task has completed. A condition represented by a milestone is
met when the milestone has been achieved (see below). A condition represented by a list is met when
all conditions in the list have been met.

1.6 Milestones

Milestones are a way to represent abstract conditions to which multiple tasks can contribute.

1.6.1 NewMilestone

▷ NewMilestone([list]) (function)

The NewMilestone function creates a new milestone. Its argument is a list of targets, which must
be a list of integers and/or strings. If omitted, the list defaults to [0].

1.6.2 ContributeToMilestone

▷ ContributeToMilestone(milestone, target) (function)

The ContributeToMilestone milestone function contributes the specified target to the mile-
stone. Once all targets have been contributed to a milestone, it has been achieved.

1.6.3 AchieveMilestone

▷ AchieveMilestone(milestone) (function)

The AchieveMilestone function allows a program to achieve a milestone in a single step with-
out adding individual targets to it. This is most useful in conjunction with the default value for
NewMilestone (1.6.1), e.g.

Example
gap> m := NewMilestone();;

gap> AchieveMilestone(m);

>

HPC-GAP — Reference Manual 12

1.6.4 IsMilestoneAchieved

▷ IsMilestoneAchieved(milestone) (function)

IsMilestoneAchieved tests explicitly if a milestone has been achieved. It returns true on suc-
cess, false otherwise.

Example
gap> m := NewMilestone([1,2]);;

gap> ContributeToMilestone(m, 1);

gap> IsMilestoneAchieved(m);

false

gap> ContributeToMilestone(m, 2);

gap> IsMilestoneAchieved(m);

true

Chapter 2

Variables in HPC-GAP

Variables with global scope have revised semantics in HPC-GAP in order to address concurrency
issues. The normal semantics of global variables that are only accessed by a single thread remain
unaltered.

2.1 Global variables

Global variables in HPC-GAP can be accessed by all threads concurrently without explicit synchro-
nization. Concurrent access is safe, but it is not deterministic. If multiple threads attempt to modify
the same global variable simultaneously, the resulting value of the variable is random; it will be one
of the values assigned by a thread, but it is impossible to predict with certainty which specific one will
be assigned.

2.2 Thread-local variables

HPC-GAP supports the notion of thread-local variables. Thread-local variables are (after being de-
clared as such) accessed and modified like global variables. However, unlike global variables, each
thread can assign a distinct value to a thread-local variable.

Example
gap> MakeThreadLocal("x");

gap> x := 1;;

gap> WaitTask(RunTask(function() x := 2; end));

gap> x;

1

As can be seen here, the assignment to x in a separate thread does not overwrite the value of x in the
main thread.

2.2.1 MakeThreadLocal

▷ MakeThreadLocal(name) (function)

MakeThreadLocal makes the variable described by the string name a thread-local variable.
It normally does not give it an initial value; either explicit per-thread assignment or a call to

13

HPC-GAP — Reference Manual 14

BindThreadLocal (2.2.2) or BindThreadLocalConstructor (2.2.3) to provide a default value is
necessary.

If a global variable with the same name exists and is bound at the time of the call, its value will be
used as the default value as though BindThreadLocal (2.2.2) had been called with that value as its
second argument.

2.2.2 BindThreadLocal

▷ BindThreadLocal(name, obj) (function)

BindThreadLocal gives the thread-local variable described by the string name the default value
obj . The first time the thread-local variable is accessed in a thread thereafter, it will yield obj as its
value if it hasn’t been assigned a specific value yet.

2.2.3 BindThreadLocalConstructor

▷ BindThreadLocalConstructor(name, func) (function)

BindThreadLocal (2.2.2) gives the thread-local variable described by the string name the con-
structor func . The first time the thread-local variable is accessed in a thread thereafter, it will yield
func() as its value if it hasn’t been assigned a specific value yet.

2.2.4 ThreadVar

▷ ThreadVar (global variable)

All thread-local variables are stored in the thread-local record ThreadVar. Thus, if x is a thread-
local variable, using ThreadVar.x is the same as using x.

Chapter 3

How HPC-GAP organizes shared
memory: Regions

HPC-GAP allows multiple threads to access data shared between them; to avoid common concurrency
errors, such as race conditions, it partitions GAP objects into regions. Access to regions is regulated
so that no two threads can modify objects in the same region at the same time and so that objects that
are being read by one thread cannot concurrently be modified by another.

3.1 Thread-local regions

Each thread has an associated thread-local region. When a thread implicitly or explicitly creates a new
object, that object initially belongs to the thread’s thread-local region.

Only the thread can read or modify objects in its thread-local region. For other threads to access
an object, that object has to be migrated into a different region first.

3.2 Shared regions

Shared regions are explicitly created through the ShareObj (3.9.9) and ShareSingleObj (3.9.15)
primitives (see below). Multiple threads can access them concurrently, but accessing them requires
that a thread uses an atomic statement to acquire a read or write lock beforehand.

See the section on atomic statements (3.9.43) for details.

3.3 Ordering of shared regions

Shared regions are by default ordered; each shared region has an associated numeric precedence level.
Regions can generally only be locked in order of descending precedence. The purpose of this mecha-
nism is to avoid accidental deadlocks.

The ordering requirement can be overridden in two ways: regions with a negative precedence are
excluded from it. This exception should be used with care, as it can lead to deadlocks.

Alternatively, two or more regions can be locked simultaneously via the atomic statement. In this
case, the ordering of these regions relative to each other can be arbitrary.

15

HPC-GAP — Reference Manual 16

3.4 The public region

A special public region contains objects that only permit atomic operations. These include, in particu-
lar, all immutable objects (immutable in the sense that their in-memory representation cannot change).

All threads can access objects in the public region at all times without needing to acquire a read-
or write-lock beforehand.

3.5 The read-only region

The read-only region is another special region that contains objects that are only meant to be read;
attempting to modify an object in that region will result in a runtime error. To obtain a modifiable
copy of such an object, the CopyRegion (3.9.29) primitive can be used.

3.6 Migrating objects between regions

Objects can be migrated between regions using a number of functions. In order to migrate an object,
the current thread must have exclusive access to that object; the object must be in its thread-local
region or it must be in a shared region for which the current thread holds a write lock.

The ShareObj (3.9.9) and ShareSingleObj (3.9.15) functions create a new shared region and
migrate their respective argument to that region; ShareObj will also migrate all subobjects that are
within the same region, while ShareSingleObj will leave the subobjects unaffected.

The MigrateObj (3.9.21) and MigrateSingleObj (3.9.22) functions migrate objects to an exist-
ing region. The first argument of either function is the object to be migrated; the second is either a
region (as returned by the RegionOf (3.9.7) function) or an object whose containing region the first
argument is to be migrated to.

The current thread needs exclusive access to the target region (denoted by the second argument)
for the operation to succeed. If successful, the first argument will be in the same region as the second
argument afterwards. In the case of MigrateObj (3.9.21), all subobjects within the same region as the
first argument will also be migrated to the target region.

Finally, AdoptObj (3.9.26) and AdoptSingleObj (3.9.27) are special cases of MigrateObj

(3.9.21) and MigrateSingleObj (3.9.22), where the target region is the thread-local region of the
current thread.

To migrate objects to the read-only region, one can use MakeReadOnlyObj (3.9.35) and
MakeReadOnlySingleObj (3.9.36). The first migrates its argument and all its subjobjects that are
within the same region to the read-only region; the second migrates only the argument itself, but not
its subobjects.

It is generally not possible to migrate objects explicitly to the public region; only objects with
purely atomic operations can be made public and that is done automatically when they are created.

The exception are immutable objects. When MakeImmutable (Reference: MakeImmutable) is
used, its argument is automatically moved to the public region.

Example
gap> RegionOf(MakeImmutable([1,2,3]));

<public region>

HPC-GAP — Reference Manual 17

3.7 Region names

Regions can be given names, either explicitly via SetRegionName (3.9.38) or when they are created
via ShareObj (3.9.9) and ShareSingleObj (3.9.15). Thread-local regions, the public, and the read-
only region are given names by default.

Multiple regions can have the same name.

3.8 Controlling access to regions

If either GAP code or a kernel primitive attempts to access an object that it is not allowed to access
according to these semantics, either a "write guard error" (for a failed write access) or a "read guard
error" (for a failed read access) will be raised. The global variable LastInaccessible will contain
the object that caused such an error.

One exception is that threads can modify objects in regions that they have only read access (but
not write access) to using write-once functions - see section 3.11.

To inspect objects whose contents lie in other regions (and therefore cannot be displayed by
PrintObj (Reference: PrintObj) or ViewObj (Reference: ViewObj), the functions ViewShared

(3.9.41) and UNSAFE_VIEW (3.9.42) can be used.

3.9 Functions relating to regions

3.9.1 NewRegion

▷ NewRegion([name,]prec) (function)

The function NewRegion creates a new shared region. If the optional argument name is provided,
then the name of the new region will be set to name .

Example
gap> NewRegion("example region");

<region: example region>

NewRegion will create a region with a high precedence level. It is intended to be called by user
code. The exact precedence level can be adjusted with prec , which must be an integer in the range
[-1000..1000]; prec will be added to the normal precedence level.

3.9.2 NewLibraryRegion

▷ NewLibraryRegion([name,]prec) (function)

NewLibraryRegion functions like NewRegion (3.9.1), except that the precedence of the region
it creates is below that of NewRegion (3.9.1). It is intended to be used by user libraries and GAP
packages.

3.9.3 NewSystemRegion

▷ NewSystemRegion([name,]prec) (function)

HPC-GAP — Reference Manual 18

NewSystemRegion functions like NewRegion (3.9.1), except that the precedence of the region it
creates is below that of NewLibraryRegion (3.9.2). It is intended to be used by the standard GAP
library.

3.9.4 NewKernelRegion

▷ NewKernelRegion([name,]prec) (function)

NewKernelRegion functions like NewRegion (3.9.1), except that the precedence of the region it
creates is below that of NewSystemRegion (3.9.3). It is intended to be used by the GAP kernel, and
GAP library code that interacts closely with the kernel.

3.9.5 NewInternalRegion

▷ NewInternalRegion([name]) (function)

NewInternalRegion functions like NewRegion (3.9.1), except that the precedence of the region
it creates is the lowest available. It is intended to be used for regions that are self-contained; i.e. no
function that uses such a region may lock another region while accessing it. The precedence level of
an internal region cannot be adjusted.

3.9.6 NewSpecialRegion

▷ NewSpecialRegion([name]) (function)

NewLibraryRegion (3.9.2) functions like NewRegion (3.9.1), except that the precedence of the
region it creates is negative. It is thus exempt from normal ordering and deadlock checks.

3.9.7 RegionOf

▷ RegionOf(obj) (function)

Example
gap> RegionOf(1/2);

<public region>

gap> RegionOf([1,2,3]);

<region: thread region #0>

gap> RegionOf(ShareObj([1,2,3]));

<region 0x45deaa0>

gap> RegionOf(ShareObj([1,2,3]));

<region 0x45deaa0>

gap> RegionOf(ShareObj([1,2,3], "test region"));

<region: test region>

Note that the unique number that each region is identified with is system-specific and can change each
time the code is being run. Region objects returned by RegionOf can be compared:

Example
gap> RegionOf([1,2,3]) = RegionOf([4,5,6]);

true

HPC-GAP — Reference Manual 19

The result in this example is true because both lists are in the same thread-local region.

3.9.8 RegionPrecedence

▷ RegionPrecedence(obj) (function)

RegionPrecedence will return the precedence of the region of obj .
Example

gap> RegionPrecedence(NewRegion("Test"));

30000

gap> RegionPrecedence(NewRegion("Test2", 1));

30001

gap> RegionPrecedence(NewLibraryRegion("LibTest", -1));

19999

3.9.9 ShareObj

▷ ShareObj(obj[[, name], prec]) (function)

The ShareObj function creates a new shared region and migrates the object and all its subobjects
to that region. If the optional argument name is provided, then the name of the new region is set to
name .

ShareObj will create a region with a high precedence level. It is intended to be called by user
code. The actual precedence level can be adjusted by the optional prec argument in the same way as
for NewRegion (3.9.1).

3.9.10 ShareLibraryObj

▷ ShareLibraryObj(obj[[, name], prec]) (function)

ShareLibraryObj functions like ShareObj (3.9.9), except that the precedence of the region it
creates is below that of ShareObj (3.9.9). It is intended to be used by user libraries and GAP pack-
ages.

3.9.11 ShareSystemObj

▷ ShareSystemObj(obj[[, name], prec]) (function)

ShareSystemObj functions like ShareObj (3.9.9), except that the precedence of the region it
creates is below that of ShareLibraryObj (3.9.10). It is intended to be used by the standard GAP
library.

3.9.12 ShareKernelObj

▷ ShareKernelObj(obj[[, name], prec]) (function)

ShareKernelObj functions like ShareObj (3.9.9), except that the precedence of the region it
creates is below that of ShareSystemObj (3.9.11). It is intended to be used by the GAP kernel, and
GAP library code that interacts closely with the kernel.

HPC-GAP — Reference Manual 20

3.9.13 ShareInternalObj

▷ ShareInternalObj(obj[, name]) (function)

ShareInternalObj functions like ShareObj (3.9.9), except that the precedence of the region it
creates is the lowest available. It is intended to be used for regions that are self-contained; i.e. no
function that uses such a region may lock another region while accessing it.

3.9.14 ShareSpecialObj

▷ ShareSpecialObj(obj[, name]) (function)

ShareSpecialObj functions like ShareObj (3.9.9), except that the precedence of the region it
creates is negative. It is thus exempt from normal ordering and deadlock checks.

3.9.15 ShareSingleObj

▷ ShareSingleObj(obj[[, name], prec]) (function)

The ShareSingleObj function creates a new shared region and migrates the object, but not its
subobjects, to that region. If the optional argument name is provided, then the name of the new region
is set to name .

Example
gap> m := [[1, 2], [3, 4]];;

gap> ShareSingleObj(m);;

gap> atomic readonly m do

> Display([IsShared(m), IsShared(m[1]), IsShared(m[2])]);

> od;

[true, false, false]

ShareSingleObj will create a region with a high precedence level. It is intended to be called by user
code. The actual precedence level can be adjusted by the optional prec argument in the same way as
for NewRegion (3.9.1).

3.9.16 ShareSingleLibraryObj

▷ ShareSingleLibraryObj(obj[[, name], prec]) (function)

ShareSingleLibraryObj functions like ShareSingleObj (3.9.15), except that the precedence
of the region it creates is below that of ShareSingleObj (3.9.15). It is intended to be used by user
libraries and GAP packages.

3.9.17 ShareSingleSystemObj

▷ ShareSingleSystemObj(obj[[, name], prec]) (function)

ShareSingleSystemObj functions like ShareSingleObj (3.9.15), except that the precedence of
the region it creates is below that of ShareSingleLibraryObj (3.9.16). It is intended to be used by
the standard GAP library.

HPC-GAP — Reference Manual 21

3.9.18 ShareSingleKernelObj

▷ ShareSingleKernelObj(obj[[, name], prec]) (function)

ShareSingleKernelObj functions like ShareSingleObj (3.9.15), except that the precedence of
the region it creates is below that of ShareSingleSystemObj (3.9.17). It is intended to be used by
the GAP kernel, and GAP library code that interacts closely with the kernel.

3.9.19 ShareSingleInternalObj

▷ ShareSingleInternalObj(obj[, name]) (function)

ShareSingleInternalObj functions like ShareSingleObj (3.9.15), except that the precedence
of the region it creates is the lowest available. It is intended to be used for regions that are self-
contained; i.e. no function that uses such a region may lock another region while accessing it.

3.9.20 ShareSingleSpecialObj

▷ ShareSingleSpecialObj(obj[, name]) (function)

ShareSingleLibraryObj (3.9.16) functions like ShareSingleObj (3.9.15), except that the
precedence of the region it creates is negative. It is thus exempt from normal ordering and deadlock
checks.

3.9.21 MigrateObj

▷ MigrateObj(obj, target) (function)

The MigrateObj function migrates obj (and all subobjects contained within the same region) to
the region denoted by the target argument. Here, target can either be a region object returned by
RegionOf (3.9.7) or a normal gap object. If target is a normal gap object, obj will be migrated to
the region containing target.

For the operation to succeed, the current thread must have exclusive access to the target region and
the object being migrated.

3.9.22 MigrateSingleObj

▷ MigrateSingleObj(obj, target) (function)

The MigrateSingleObj function works like MigrateObj (3.9.21), except that it does not migrate
the subobjects of obj.

3.9.23 LockAndMigrateObj

▷ LockAndMigrateObj(obj, target) (function)

The LockAndMigrateObj function works like MigrateObj (3.9.21), except that it will automati-
cally try to acquire a lock for the region containing target if it does not have one already.

HPC-GAP — Reference Manual 22

3.9.24 IncorporateObj

▷ IncorporateObj(target, index, value) (function)

The IncorporateObj function allows convenient migration to a shared list or record. If target
is a list, then IncorporateObj is equivalent to:

Example
IncorporateObj := function(target, index, value)

atomic value do

target[index] := MigrateObj(value, target)

od;

end;

If target is a record, then it is equivalent to:
Example

IncorporateObj := function(target, index, value)

atomic value do

target.(index) := MigrateObj(value, target)

od;

end;

The intended purpose is the population of a shared list or record with values after its creation. Exam-
ple:

Example
gap> list := ShareObj([]);

gap> atomic list do

> IncorporateObj(list, 1, [1,2,3]);

> IncorporateObj(list, 2, [4,5,6]);

> IncorporateObj(list, 3, [7,8,9]);

> od;

gap> ViewShared(list);

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Using plain assignment would leave the newly created lists in the thread-local region.

3.9.25 AtomicIncorporateObj

▷ AtomicIncorporateObj(target, index, value) (function)

AtomicIncorporateObj extends IncorporateObj (3.9.24) by also locking the target. I.e., for a
list, it is equivalent to:

Example
AtomicIncorporateObj := function(target, index, value)

atomic target, value do

target[index] := MigrateObj(value, target)

od;

end;

If target is a record, then it is equivalent to:

HPC-GAP — Reference Manual 23

Example
AtomicIncorporateObj := function(target, index, value)

atomic value do

target.(index) := MigrateObj(value, target)

od;

end;

3.9.26 AdoptObj

▷ AdoptObj(obj) (function)

The AdoptObj function migrates obj (and all its subobjects contained within the same region) to
the thread’s current region. It requires exclusive access to obj .

Example
gap> l := ShareObj([1,2,3]);;

gap> IsThreadLocal(l);

false

gap> atomic l do AdoptObj(l); od;

gap> IsThreadLocal(l);

true

3.9.27 AdoptSingleObj

▷ AdoptSingleObj(obj) (function)

The AdoptSingleObj function works like AdoptObj (3.9.26), except that it does not migrate the
subobjects of obj .

3.9.28 LockAndAdoptObj

▷ LockAndAdoptObj(obj) (function)

The LockAndAdoptObj function works like AdoptObj (3.9.26), except that it will attempt acquire
an exclusive lock for the region containing obj if it does not have one already.

3.9.29 CopyRegion

▷ CopyRegion(obj) (function)

The CopyRegion function performs a structural copy of obj . The resulting objects will be located
in the current thread’s thread-local region. The function returns the copy as its result.

Example
gap> l := MakeReadOnlyObj([1,2,3]);

[1, 2, 3]

gap> l2 := CopyRegion(l);

[1, 2, 3]

gap> RegionOf(l) = RegionOf(l2);

false

gap> IsIdenticalObj(l, l2);

HPC-GAP — Reference Manual 24

false

gap> l = l2;

true

3.9.30 IsPublic

▷ IsPublic(obj) (function)

The IsPublic function returns true if its argument is an object in the public region, false other-
wise.

Example
gap> IsPublic(1/2);

true

gap> IsPublic([1,2,3]);

false

gap> IsPublic(ShareObj([1,2,3]));

false

gap> IsPublic(MakeImmutable([1,2,3]));

true

3.9.31 IsThreadLocal

▷ IsThreadLocal(obj) (function)

The IsThreadLocal function returns true if its argument is an object in the current thread’s
thread-local region, false otherwise.

Example
gap> IsThreadLocal([1,2,3]);

true

gap> IsThreadLocal(ShareObj([1,2,3]));

false

gap> IsThreadLocal(1/2);

false

gap> RegionOf(1/2);

<public region>

3.9.32 IsShared

▷ IsShared(obj) (function)

The IsShared function returns true if its argument is an object in a shared region. Note that if the
current thread does not hold a lock on that shared region, another thread can migrate obj to a different
region before the result is being evaluated; this can lead to race conditions. The function is intended
primarily for debugging, not to build actual program logic around.

3.9.33 HaveReadAccess

▷ HaveReadAccess(obj) (function)

HPC-GAP — Reference Manual 25

The HaveReadAccess function returns true if the current thread has read access to obj .
Example

gap> HaveReadAccess([1,2,3]);

true

gap> l := ShareObj([1,2,3]);;

gap> HaveReadAccess(l);

false

gap> atomic readonly l do t := HaveReadAccess(l); od;; t;

true

3.9.34 HaveWriteAccess

▷ HaveWriteAccess(obj) (function)

The HaveWriteAccess function returns true if the current thread has write access to obj .
Example

gap> HaveWriteAccess([1,2,3]);

true

gap> l := ShareObj([1,2,3]);;

gap> HaveWriteAccess(l);

false

gap> atomic readwrite l do t := HaveWriteAccess(l); od;; t;

true

3.9.35 MakeReadOnlyObj

▷ MakeReadOnlyObj(obj) (function)

The MakeReadOnlyObj function migrates obj and all its subobjects that are within the same
region as obj to the read-only region. It returns obj .

3.9.36 MakeReadOnlySingleObj

▷ MakeReadOnlySingleObj(obj) (function)

The MakeReadOnlySingleObj function migrates obj , but not any of its subobjects, to the read-
only region. It returns obj .

3.9.37 IsReadOnlyObj

▷ IsReadOnlyObj(obj) (function)

The IsReadOnlyObj function returns true if obj is in the read-only region, false otherwise.
Example

gap> IsReadOnlyObj([1,2,3]);

false

gap> IsReadOnlyObj(MakeImmutable([1,2,3]));

false

gap> IsReadOnlyObj(MakeReadOnlyObj([1,2,3]));

true

HPC-GAP — Reference Manual 26

3.9.38 SetRegionName

▷ SetRegionName(obj, name) (function)

The SetRegionName function sets the name of the region of obj to name .

3.9.39 ClearRegionName

▷ ClearRegionName(obj) (function)

The ClearRegionName function clears the name of the region of obj to name .

3.9.40 RegionName

▷ RegionName(obj) (function)

The RegionName function returns the name of the region of obj . If that region does not have a
name, fail will be returned.

3.9.41 ViewShared

▷ ViewShared(obj) (function)

The ViewShared function allows the inspection of objects in shared regions. It will try to lock the
region and then call ViewObj(obj). If it cannot acquire a lock for the region, it will simply display
the normal description of the object.

3.9.42 UNSAFE_VIEW

▷ UNSAFE_VIEW(obj) (function)

The UNSAFE_VIEW (3.9.42) function allows the inspection of any object in the system, regardless
of whether the current thread has access to the region containing it. It should be used with care: If the
object inspected is being modified by another thread concurrently, the resulting behavior is undefined.

Moreover, the function works by temporarily disabling read and write guards for regions, so other
threads may corrupt memory rather than producing errors.

It is generally safe to use if all threads but the current one are paused.

3.9.43 The atomic statement.

The atomic statement ensures exclusive or read-only access to one or more shared regions for state-
ments within its scope. It has the following syntax:

Example
atomic ([readwrite|readonly] expr (, expr)*)* do

statements

od;

HPC-GAP — Reference Manual 27

Each expression is evaluated and the region containing the resulting object is locked with either a read-
write or read-only lock, depending on the keyword preceding the expression. If neither the readwrite
nor the readonly keyword was provided, read-write locks are used by default. Examples:

Example
gap> l := ShareObj([1,2,3]);;

gap> atomic readwrite l do l[3] := 9; od;

gap> atomic l do l[2] := 4; od;

gap> atomic readonly l do Display(l); od;

[1, 4, 9]

Example
gap> l := ShareObj([1,2,3,4,5]);;

gap> l2 := ShareObj([6,7,8]);;

gap> atomic readwrite l, readonly l2 do

> for i in [1..3] do l[i] := l2[i]; od;

> l3 := AdoptObj(l);

> od;

gap> l3;

[6, 7, 8, 4, 5]

Atomic statements must observe region ordering. That means that the highest precedence level of a
region locked by an atomic statement must be less than the lowest precedene level of a region that is
locked by the same thread at the time the atomic statement is executed.

3.10 Atomic functions

Instead of atomic regions, entire functions can be declared to be atomic. This has the same effect
as though the function’s body were enclosed in an atomic statement. Function arguments can be
declared either readwrite or readonly; they will be locked in the same way as for a lock statement.
If a function argument is preceded by neither readwrite nor readonly, the corresponding object will
not be locked. Example:

Example
gap> AddAtomic := atomic function(readwrite list, readonly item)

> Add(list, item);

> end;

3.11 Write-once functionality

There is an exception to the rule that objects can only be modified if a thread has write access to a
region. A limited sets of objects can be modified using the "bind once" family of functions. These
allow the modifications of objects to which a thread has read access in a limited fashion.

For reasons of implementation symmetry, these functions can also be used on the atomic versions
of these objects.

Implementation note: The functionality is not currently available for component objects.

3.11.1 BindOnce

▷ BindOnce(obj, index, value) (function)

HPC-GAP — Reference Manual 28

BindOnce modifies obj , which can be a positional object, atomic positional object, compo-
nent object, or atomic component object. It inspects obj![index] for the positional versions or
obj!.(index) for the component versions. If the respective element is not yet bound, value is as-
signed to that element. Otherwise, no modification happens. The test and modification occur as one
atomic step. The function returns the value of the element; i.e. the old value if the element was bound
and value if it was unbound.

The intent of this function is to allow concurrent initialization of objects, where multiple threads
may attempt to set a value concurrently. Only one will succeed; all threads can then use the return
value of BindOnce as the definitive value of the element. It also allows for the lazy initialization of
objects in the read-only region.

The current thread needs to have at least read access to obj , but does not require write access.

3.11.2 TestBindOnce

▷ TestBindOnce(obj, index, value) (function)

TestBindOnce works like BindOnce (3.11.1), except that it returns true if the value could be
bound and false otherwise.

3.11.3 BindOnceExpr

▷ BindOnceExpr(obj, index, expr) (function)

BindOnceExpr works like BindOnce (3.11.1), except that it evaluates the parameterless function
expr to determine the value. It will only evaluate expr if the element is not bound.

For positional objects, the implementation works as follows:
Example

BindOnceExprPosObj := function(obj, index, expr)

if not IsBound(obj![index]) then

return BindOnce(obj, index, expr());

else

return obj![index]);

fi;

end;

The implementation for component objects works analogously.
The intent is to avoid unnecessary computations if the value is already bound. Note that this cannot

be avoided entirely, because obj![index] or obj!.(index) can be bound while expr is evaluated,
but it can minimize such occurrences.

3.11.4 TestBindOnceExpr

▷ TestBindOnceExpr(obj, index, expr) (function)

TestBindOnceExpr works like BindOnceExpr (3.11.3), except that it returns true if the value
could be bound and false otherwise.

HPC-GAP — Reference Manual 29

3.11.5 StrictBindOnce

▷ StrictBindOnce(obj, index, expr) (function)

StrictBindOnce works like BindOnce (3.11.1), except that it raises an error if the element is
already bound. This is intended for cases where a read-only object is initialized, but where another
thread trying to initialize it concurrently would be an error.

Chapter 4

Console User Interface

HPC-GAP has a multi-threaded user interface to assist with the development and debugging of con-
current programs. This user interface is enabled by default; to disable it, and use the single-threaded
interface, GAP has to be started with the -S option.

4.1 Console UI commands

The console user interface provides the user with the option to control threads by commands prefixed
with an exclamation mark ("!"). Those commands are listed below.

For ease of use, users only need to type as many letters of each commands so that it can be
unambiguously selected. Thus, the shell will recognize !l as an abbreviation for !list.

4.1.1 !shell [name]

Starts a new shell thread and switches to it. Optionally, a name for the thread can be provided.
Example

gap> !shell

--- Switching to thread 4

[4] gap>

4.1.2 !fork [name]

Starts a new background shell thread. Optionally, a name for the thread can be provided.
Example

gap> !fork

--- Created new thread 5

4.1.3 !list

List all current threads that are interacting with the user. This does not list threads created with
CreateThread() that have not entered a break loop.

Example
gap> !list

--- Thread 0 [0]

--- Thread 4 [4]

--- Thread 5 [5] (pending output)

30

HPC-GAP — Reference Manual 31

4.1.4 !kill id

Terminates the specified thread.

4.1.5 !break id

Makes the specified thread enter a break loop.

4.1.6 !name [id] name

Give the thread with the numerical identifier or name id the name name.
Example

gap> !name 5 test

gap> !list

--- Thread 0 [0]

--- Thread 4 [4]

--- Thread test [5] (pending output)

4.1.7 !info id

Provide information about the thread with the numerical identifier or name id. Not yet implemented.

4.1.8 !hide [id|*]

Hide output from the thread with the numerical identifier or name id when it is not the foreground
thread. If no thread is specified, make this the default behavior for future threads.

4.1.9 !watch [id|*]

Show output from the thread with the numerical identifier or name id even when it is not the fore-
ground thread. If no thread is specified, make this the default behavior for future threads.

4.1.10 !keep num

Keep num lines of output from each thread.

4.1.11 !prompt (id|*) string

Set the prompt for the specified thread (or for all newly created threads if * was specified) to be
string. If the string contains the pattern id, it is replaced with the numerical id of the thread; if it
contains the pattern name, it is replaced with the name of the thread; if the thread has no name, the
numerical id is displayed instead.

4.1.12 !prefix (id|*) string

Prefix the output from the specified thread (or for all newly created threads if * was specified) wiht
string. The same substitution rules as for the !prompt command apply.

HPC-GAP — Reference Manual 32

4.1.13 !select id

Make the specified thread the foreground thread.
Example

gap> !select 4

gap> !select 4

--- Switching to thread 4

[4] gap>

4.1.14 !next

Make the next thread in numerical order the foreground thread.

4.1.15 !previous

Make the previous thread in numerical order the foreground thread.

4.1.16 !replay num [id]

Display the last num lines of output of the specified thread. If no thread was specified, display the last
num lines of the current foreground thread.

4.1.17 !id

!id is a shortcut for !select id.

4.1.18 !source file

Read commands from file file.

4.1.19 !alias shortcut expansion

Create an alias. After defining the alias, !shortcut 'rest of line' will be replaced with
!expansion 'rest of line'.

4.1.20 !unalias shortcut

Removes the specified alias.

4.1.21 !eval expr

Evaluates expr as a command.

4.1.22 !run function string

Calls the function with name function, passing it the single argument string as a GAP string.

HPC-GAP — Reference Manual 33

4.2 GAP functions to access the Shell UI

There are several functions to access the basic functionality of the shell user interface. Other than
TextUIRegisterCommand (4.2.1), they can only be called from within a registered command.

Threads can be specified either by their numerical identifier or by their name (as a string). The
empty string can be used to specify the current foreground thread.

4.2.1 TextUIRegisterCommand

▷ TextUIRegisterCommand(name, func) (function)

Registers the command !name with the shell UI. It will call <func> with the rest of the command
line passed as a string argument when typed.

4.2.2 TextUIForegroundThread

▷ TextUIForegroundThread() (function)

Returns the numerical identifier of the current foreground thread.

4.2.3 TextUIForegroundThreadName

▷ TextUIForegroundThreadName() (function)

Returns the name of the current foreground thread or fail if the current foreground thread has no
name.

4.2.4 TextUISelectThread

▷ TextUISelectThread(id) (function)

Makes id the current foreground thread. Returns true or false to indicate success.

4.2.5 TextUIOutputHistory

▷ TextUIOutputHistory(id, count) (function)

Returns the last count lines of the thread specified by id (which can be a numerical identifier or
a name). Returns fail if there is no such thread.

4.2.6 TextUISetOutputHistoryLength

▷ TextUISetOutputHistoryLength(length) (function)

By default, retain length lines of output history from each thread.

HPC-GAP — Reference Manual 34

4.2.7 TextUINewSession

▷ TextUINewSession(foreground, name) (function)

Creates a new shell thread. Here, foreground is a boolean variable specifying whether it should
be made the new foreground thread and name is the name of the thread. The empty string can be used
to leave the thread without a name.

4.2.8 TextUIRunCommand

▷ TextUIRunCommand(command) (function)

Run the command denoted by command as though a user had typed it. The command must not
contain a newline character.

4.2.9 TextUIWritePrompt

▷ TextUIWritePrompt() (function)

Display a prompt for the current thread.

Chapter 5

Atomic objects

HPC-GAP provides a number of atomic object types. These can be accessed by multiple threads
concurrently without requiring explicit synchronization, but can have non-deterministic behavior for
complex operations. Atomic lists are fixed-size lists; they can be assigned to and read from like
normal plain lists. Atomic records are atomic versions of plain records. Unlike plain records, though,
it is not possible to delete elements from an atomic record. The primary use of atomic lists and
records is to facilitate storing the result of idempotent operations and to support certain low-level
operations. Atomic lists and records can have three different replacement policies: write-once, strict
write-once, and rewritable. The replacement policy determines whether an already assigned element
can be changed. The write-once policy allows elements to be assigned only once, with subsequent
assignments being ignored; the strict write-once policy allows elements also to be assigned only once,
but subsequent assignments will raise an error; the rewritable policy allows elements to be assigned
different values repeatedly. The default for new atomic objects is to be rewritable. Thread-local
records are variants of plain records that are replicated on a per-thread basis.

5.1 Atomic lists

Atomic lists are created using the AtomicList or FixedAtomicList functions. After creation, they
can be used exactly like any other list, except that atomic lists created with FixedAtomicList cannot
be resized. Their contents can also be read as normal plain lists using FromAtomicList.

Example
gap> a := AtomicList([1,2,4]);

<atomic list of size 3>

gap> WaitTask(RunTask(function() a[1] := a[1] + a[2]; end));

gap> a[1];

3

gap> FromAtomicList(a);

[3, 2, 4]

Because multiple threads can read and write the list concurrently without synchronization, the results
of modifying the list may be non-deterministic. It is faster to write to fixed atomic lists than to a
resizable atomic list.

35

HPC-GAP — Reference Manual 36

5.1.1 AtomicList

▷ AtomicList(list) (function)

▷ AtomicList(count, obj) (function)

AtomicList is used to create a new atomic list. It takes either a plain list as an argument, in which
case it will create a new atomic list of the same size, populated by the same elements; or it takes a
count and an object argument. In that case, it creates an atomic list with count elements, each set to
the value of obj .

Example
gap> al := AtomicList([3, 1, 4]);

<atomic list of size 3>

gap> al[3];

4

gap> al := AtomicList(10, `"alpha");

<atomic list of size 10>

gap> al[3];

"alpha"

gap> WaitTask(RunTask(function() al[3] := `"beta"; end));

gap> al[3];

"beta"

5.1.2 FixedAtomicList

▷ FixedAtomicList(list) (function)

▷ FixedAtomicList(count, obj) (function)

FixedAtomicList works like AtomicList (5.1.1) except that the resulting list cannot be resized.

5.1.3 MakeFixedAtomicList

▷ MakeFixedAtomicList(list) (function)

MakeFixedAtomicList turns a resizable atomic list into a fixed atomic list.
Example

gap> a := AtomicList([99]);

<atomic list of size 1>

gap> a[2] := 100;

100

gap> MakeFixedAtomicList(a);

<fixed atomic list of size 2>

gap> a[3] := 101;

Error, Atomic List Element: <pos>=3 is an invalid index for <list>

5.1.4 FromAtomicList

▷ FromAtomicList(atomic_list) (function)

HPC-GAP — Reference Manual 37

FromAtomicList returns a plain list containing the same elements as atomic_list at the time
of the call. Because other threads can write concurrently to that list, the result is not guaranteed to be
deterministic.

Example
gap> al := AtomicList([10, 20, 30]);;

gap> WaitTask(RunTask(function() al[2] := 40; end));

gap> FromAtomicList(al);

[10, 40, 30]

5.1.5 ATOMIC_ADDITION

▷ ATOMIC_ADDITION(atomic_list, index, value) (function)

ATOMIC_ADDITION (5.1.5) is a low-level operation that atomically adds value to
atomic_list[index] . It returns the value of atomic_list[index] after the addition has been
performed.

Example
gap> al := FixedAtomicList([4,5,6]);;

gap> ATOMIC_ADDITION(al, 2, 7);

12

gap> FromAtomicList(al);

[4, 12, 6]

5.1.6 COMPARE_AND_SWAP

▷ COMPARE_AND_SWAP(atomic_list, index, old, new) (function)

COMPARE_AND_SWAP (5.1.6) is an atomic operation. It atomically compares
atomic_list[index] to old and, if they are identical, replaces the value (in the same atomic step)
with new . It returns true if the replacement took place, false otherwise.

The primary use of COMPARE_AND_SWAP (5.1.6) is to implement certain concurrency primitives;
most programmers will not need to use it.

5.2 Atomic records and component objects

Atomic records are atomic counterparts to plain records. They support assignment to individual record
fields, and conversion to and from plain records.

Assignment semantics can be specified on a per-record basis if the assigned record field is already
populated, allowing either an overwrite, keeping the existing value, or raising an error.

It is not possible to unbind atomic record elements.
Like plain records, atomic records can be converted to component objects using Objectify.

5.2.1 AtomicRecord

▷ AtomicRecord(capacity) (function)

▷ AtomicRecord(record) (function)

HPC-GAP — Reference Manual 38

AtomicRecord is used to create a new atomic record. Its single optional argument is either a
positive integer, denoting the intended capacity (i.e., number of elements to be held) of the record,
in which case a new empty atomic record with that initial capacity will be created. Alternatively, the
caller can provide a plain record with which to initially populate the atomic record.

Example
gap> r := AtomicRecord(rec(x := 2));

<atomic record 1/2 full>

gap> r.y := 3;

3

gap> TaskResult(RunTask(function() return r.x + r.y; end));

5

gap> [r.x, r.y];

[2, 3]

Any atomic record can later grow beyond its initial capacity. There is no limit to the number of
elements it can hold other than available memory.

5.2.2 FromAtomicRecord

▷ FromAtomicRecord(record) (function)

FromAtomicRecord returns a plain record copy of the atomic record record . This copy is shal-
low; elements of record will not also be copied.

Example
gap> r := AtomicRecord();;

gap> r.x := 1;; r.y := 2;; r.z := 3;;

gap> FromAtomicRecord(r);

rec(x := 1, y := 2, z := 3)

5.3 Replacement policy functions

There are three functions that set the replacement policy of an atomic object. All three can also be
used with plain lists and records, in which case an atomic version of the list or record is first created.
This allows programmers to elide AtomicList (5.1.1) and AtomicRecord (5.2.1) calls when the next
step is to change their policy.

5.3.1 MakeWriteOnceAtomic

▷ MakeWriteOnceAtomic(obj) (function)

MakeWriteOnceAtomic takes a list, record, atomic list, atomic record, atomic positional object,
or atomic component object as its argument. If the argument is a non-atomic list or record, then the
function first creates an atomic copy of the argument. The function then changes the replacement
policy of the object to write-once: if an element of the object is already bound, then further attempts
to assign to it will be ignored.

HPC-GAP — Reference Manual 39

5.3.2 MakeStrictWriteOnceAtomic

▷ MakeStrictWriteOnceAtomic(obj) (function)

MakeStrictWriteOnceAtomic works like MakeWriteOnceAtomic (5.3.1), except that the re-
placement policy is being changed to being strict write-once: if an element is already bound, then
further attempts to assign to it will raise an error.

5.3.3 MakeReadWriteAtomic

▷ MakeReadWriteAtomic(obj) (function)

MakeReadWriteAtomic is the inverse of MakeWriteOnceAtomic (5.3.1) and
MakeStrictWriteOnceAtomic (5.3.2) in that the replacement policy is being changed to be-
ing rewritable: Elements can be replaced even if they are already bound.

5.4 Thread-local records

Thread-local records allow an easy way to have a separate copy of a record for each indvidual thread
that is accessed by the same name in each thread.

Example
gap> r := ThreadLocalRecord();; # create new thread-local record

gap> r.x := 99;;

gap> WaitThread(CreateThread(function()

> r.x := 100;

> Display(r.x);

> end));

100

gap> r.x;

99

As can be seen above, even though r.x is overwritten in the second thread, it does not affect the value
of r.x| in the first thread

5.4.1 ThreadLocalRecord

▷ ThreadLocalRecord([defaults[, constructors]]) (function)

ThreadLocalRecord creates a new thread-local record. It accepts up to two initial arguments.
The defaults argument is a record of default values with which each thread-local copy is initially
populated (this happens on demand, so values are not actually read until needed). The second argu-
ment is a record of constructors; parameterless functions that return an initial value for the respective
element. Constructors are evaluated only once per thread and only if the respective element is accessed
without having previously been assigned a value.

Example
gap> r := ThreadLocalRecord(rec(x := 99),

> rec(y := function() return 101; end));;

gap> r.x;

99

HPC-GAP — Reference Manual 40

gap> r.y;

101

gap> TaskResult(RunTask(function() return r.x; end));

99

gap> TaskResult(RunTask(function() return r.y; end));

101

5.4.2 SetTLDefault

▷ SetTLDefault(record, name, value) (function)

SetTLDefault can be used to set the default value of a record field after its creation. Here,
record is a thread-local record, name is the string of the field name, and value is the value.

Example
gap> r := ThreadLocalRecord();;

gap> SetTLDefault(r, "x", 314);

gap> r.x;

314

gap> TaskResult(RunTask(function() return r.x; end));

314

5.4.3 SetTLConstructor

▷ SetTLConstructor(record, name, func) (function)

SetTLConstructor can be used to set the constructor of a thread-local record field after its cre-
ation, similar to SetTLDefault (5.4.2).

Example
gap> r := ThreadLocalRecord();;

gap> SetTLConstructor(r, "x", function() return 2718; end);

gap> r.x;

2718

gap> TaskResult(RunTask(function() return r.x; end));

2718

Chapter 6

Thread functions

HPC-GAP has low-level functionality to support explicit creation of threads. In practice, programmers
should use higher-level functionality, such as tasks, to describe concurrency. The thread functions
described here exist to facilitate the construction of higher level libraries and are not meant to be used
directly.

6.1 Thread functions

6.1.1 CreateThread

▷ CreateThread(func[, arg1, ..., argn]) (function)

New threads are created with the function CreateThread. The thread takes at least one function
as its argument that it will call in the newly created thread; it also accepts zero or more parameters that
will be passed to that function.

The function returns a thread object describing the thread.
Only a finite number of threads can be active at a time (that limit is system-dependent). To reclaim

the resources occupied by one thread, use the WaitThread (6.1.2) function.

6.1.2 WaitThread

▷ WaitThread(threadID) (function)

The WaitThread function waits for the thread identified by threadID to finish; it does not return
any value. When it returns, it returns all resources occupied by the thread it waited for, such as thread-
local memory and operating system structures, to the system.

6.1.3 CurrentThread

▷ CurrentThread() (function)

The CurrentThread function returns the thread object for the current thread.

41

HPC-GAP — Reference Manual 42

6.1.4 ThreadID

▷ ThreadID(thread) (function)

The ThreadID function returns a numeric thread id for the given thread. The thread id of the main
thread is always 0.

Example
gap> CurrentThread();

<thread #0: running>

gap> ThreadID(CurrentThread());

0

6.1.5 KillThread

▷ KillThread(thread) (function)

The KillThread function terminates the given thread. Any region locks that the thread currently
holds will be unlocked. The thread can be specified as a thread object or via its numeric id.

The implementation for KillThread is dependent on the interpreter actually executing statements.
Threads performing system calls, for example, will not be terminated until the system call returns.
Similarly, long-running kernel functions will delay termination until the kernel function returns.

Use of CALL_WITH_CATCH will not prevent a thread from being terminated. If you wish to make
sure that catch handlers will be visited, use InterruptThread (6.1.8) instead. KillThread should
be used for threads that cannot be controlled anymore in any other way but still eat system resources.

6.1.6 PauseThread

▷ PauseThread(thread) (function)

The PauseThread function suspends execution for the given thread. The thread can be specified
as a thread object or via its numeric id.

The implementation for PauseThread is dependent on the interpreter actually executing state-
ments. Threads performing system calls, for example, will not pause until the system call returns.
Similarly, long-running kernel functions will not pause until the kernel function returns.

While a thread is paused, the thread that initiated the pause can access the paused thread’s thread-
local region.

Example
gap> loop := function() while true do Sleep(1); od; end;;

gap> x := fail;;

gap> th := CreateThread(function() x := [1, 2, 3]; loop(); end);;

gap> PauseThread(th);

gap> x;

[1, 2, 3]

6.1.7 ResumeThread

▷ ResumeThread(thread) (function)

HPC-GAP — Reference Manual 43

The ResumeThread function resumes execution for the given thread that was paused with
PauseThread (6.1.6). The thread can be specified as a thread object or via its numeric id.

If the thread isn’t paused, ResumeThread is a no-op.

6.1.8 InterruptThread

▷ InterruptThread(thread, interrupt) (function)

The InterruptThread function calls an interrupt handler for the given thread. The thread can be
specified as a thread object or via its numeric id. The interrupt is specified as an integer between 0 and
MAX_INTERRUPT (6.1.11).

An interrupt number of zero (or an interrupt number for which no interrupt handler has been set
up with SetInterruptHandler (6.1.9) will cause the thread to enter a break loop. Otherwise, the
respective interrupt handler that has been created with SetInterruptHandler (6.1.9) will be called.

The implementation for InterruptThread is dependent on the interpreter actually executing
statements. Threads performing system calls, for example, will not call interrupt handlers until the
system call returns. Similarly, long-running kernel functions will delay invocation of the interrupt
handler until the kernel function returns.

6.1.9 SetInterruptHandler

▷ SetInterruptHandler(interrupt, handler) (function)

The SetInterruptHandler function allows the programmer to set up interrupt handlers for the
current thread. The interrupt number must be in the range from 1 to MAX_INTERRUPT (6.1.11) (inclu-
sive); the handler must be a parameterless function (or fail to remove a handler).

6.1.10 NewInterruptID

▷ NewInterruptID() (function)

The NewInterruptID function returns a previously unused number (starting at 1). These numbers
can be used to globally coordinate interrupt numbers.

Example
gap> StopTaskInterrupt := NewInterruptID();

1

gap> SetInterruptHandler(StopTaskInterrupt, StopTaskHandler);

6.1.11 MAX_INTERRUPT

▷ MAX_INTERRUPT (global variable)

The global variable MAX_INTERRUPT (6.1.11) is an integer containing the maximum value for the
interrupt arguments to InterruptThread (6.1.8) and SetInterruptHandler (6.1.9).

Chapter 7

Channels

7.1 Channels

Channels are FIFO queues that threads can use to coordinate their activities.

7.1.1 CreateChannel

▷ CreateChannel([capacity]) (function)

CreateChannel returns a FIFO communication channel that can be used to exchange information
between threads. Its optional argument is a capacity (positive integer). If insufficient resources are
available to create a channel, it returns -1. If the capacity is not a positive integer, an error will be
raised.

If a capacity is not provided, by default the channel can hold an indefinite number of objects.
Otherwise, attempts to store objects in the channel beyond its capacity will block.

Example
gap> ch1:=CreateChannel();

<channel 0x460339c: 0 elements, 0 waiting>

gap> ch2:=CreateChannel(5);

<channel 0x460324c: 0/5 elements, 0 waiting>

7.1.2 SendChannel

▷ SendChannel(channel, obj) (function)

SendChannel accepts two arguments, a channel object returned by CreateChannel (7.1.1), and
an arbitrary GAP object. It stores obj in channel . If channel has a finite capacity and is currently
full, then SendChannel will block until at least one element has been removed from the channel, e.g.
using ReceiveChannel (7.1.6).

SendChannel performs automatic region migration for thread-local objects. If obj is thread-local
for the current thread, it will be migrated (along with all subobjects contained in the same region)
to the receiving thread’s thread-local data space. In between sending and receiving, obj cannot be
accessed by either thread.

This example demonstrates sending messages across a channel.

44

HPC-GAP — Reference Manual 45

Example
gap> ch1 := CreateChannel();;

gap> SendChannel(ch1,1);

gap> ch1;

<channel 0x460339c: 1 elements, 0 waiting>

gap> ReceiveChannel(ch1);

1

gap> ch1;

<channel 0x460339c: 0 elements, 0 waiting>

Sleep in the following example is used to demonstrate blocking.
Example

gap> ch2 := CreateChannel(5);;

gap> ch3 := CreateChannel();;

gap> for i in [1..5] do SendChannel(ch2,i); od;

gap> ch2;

<channel 0x460324c: 5/5 elements, 0 waiting>

gap> t:=CreateThread(

> function()

> local x;

> Sleep(10);

> x:=ReceiveChannel(ch2);

> Sleep(10);

> SendChannel(ch3,x);

> Print("Thread finished\n");

> end);;

> SendChannel(ch2,3); # this blocks until the thread reads from ch2

gap> ReceiveChannel(ch3); # the thread is blocked until we read from ch3

1

Thread finished

gap> WaitThread(t);

7.1.3 TransmitChannel

▷ TransmitChannel(channel, obj) (function)

TransmitChannel is identical to SendChannel (7.1.2), except that it does not perform automatic
region migration of thread-local objects.

Example
gap> ch := CreateChannel(5);;

gap> l := [1, 2, 3];;

gap> original_region := RegionOf(l);;

gap> SendChannel(ch, l);

gap> WaitThread(CreateThread(function()

> local ob; ob := ReceiveChannel(ch);

> Display(RegionOf(ob) = original_region);

> end));

false

gap> l := [1, 2, 3];;

gap> original_region := RegionOf(l);;

gap> TransmitChannel(ch, l);

HPC-GAP — Reference Manual 46

gap> WaitThread(CreateThread(function()

> local ob; ob := ReceiveChannel(ch);

> Display(RegionOf(ob) = original_region);

> end));

true

7.1.4 TrySendChannel

▷ TrySendChannel(channel, obj) (function)

TrySendChannel is identical to SendChannel (7.1.2), except that it returns if the channel is full
instead of blocking. It returns true if the send was successful and false otherwise.

Example
gap> ch := CreateChannel(1);;

gap> TrySendChannel(ch, 99);

true

gap> TrySendChannel(ch, 99);

false

7.1.5 TryTransmitChannel

▷ TryTransmitChannel(channel, obj) (function)

TryTransmitChannel is identical to TrySendChannel (7.1.4), except that it does not perform
automatic region migration of thread-local objects.

7.1.6 ReceiveChannel

▷ ReceiveChannel(channel) (function)

ReceiveChannel is used to retrieve elements from a channel. If channel is empty, the call will
block until an element has been added to the channel via SendChannel (7.1.2) or a similar primitive.

See SendChannel (7.1.2) for an example.

7.1.7 TryReceiveChannel

▷ TryReceiveChannel(channel, default) (function)

TryReceiveChannel, like ReceiveChannel (7.1.6), attempts to retrieve an object from
channel . If it does not succeed, however, it will return default rather than blocking.

Example
gap> ch := CreateChannel();;

gap> SendChannel(ch, 99);

gap> TryReceiveChannel(ch, fail);

99

gap> TryReceiveChannel(ch, fail);

fail

HPC-GAP — Reference Manual 47

7.1.8 MultiSendChannel

▷ MultiSendChannel(channel, list) (function)

MultiSendChannel allows the sending of all the objects contained in the list list to channel

as a single operation. The list must be dense and is not modified by the call. The function will send
elements starting at index 1 until all elements have been sent. If a channel with finite capacity is full,
then the operation will block until all elements can be sent.

The operation is designed to be more efficient than sending all elements individually via
SendChannel (7.1.2) by minimizing potentially expensive concurrency operations.

See MultiReceiveChannel (7.1.10) for an example.

7.1.9 TryMultiSendChannel

▷ TryMultiSendChannel(channel, list) (function)

TryMultiSendChannel operates like MultiSendChannel (7.1.8), except that it returns rather
than blocking if it cannot send any more elements if the channel is full. It returns the number of
elements it has sent. If channel does not have finite capacity, TryMultiSendChannel will always
send all elements in the list.

7.1.10 MultiReceiveChannel

▷ MultiReceiveChannel(channel, amount) (function)

MultiReceiveChannel is the receiving counterpart to MultiSendChannel (7.1.8).It will try to
receive up to amount objects from channel . If the channel contains less than amount objects, it will
return rather than blocking.

The function returns a list of all the objects received.
Example

gap> ch:=CreateChannel();;

gap> MultiSendChannel(ch, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);

gap> MultiReceiveChannel(ch,7);

[1, 2, 3, 4, 5, 6, 7]

gap> MultiReceiveChannel(ch,7);

[8, 9, 10]

gap> MultiReceiveChannel(ch,7);

[]

7.1.11 ReceiveAnyChannel

▷ ReceiveAnyChannel(channel_1, ..., channel_n) (function)

▷ ReceiveAnyChannel(channel_list) (function)

ReceiveAnyChannel is a multiplexing variant ofReceiveChannel (7.1.6). It blocks until at least
one of the channels provided contains an object. It will then retrieve that object from the channel and
return it.

HPC-GAP — Reference Manual 48

Example
gap> ch1 := CreateChannel();;

gap> ch2 := CreateChannel();;

gap> SendChannel(ch2, [1, 2, 3]);;

gap> ReceiveAnyChannel(ch1, ch2);

[1, 2, 3]

7.1.12 ReceiveAnyChannelWithIndex

▷ ReceiveAnyChannelWithIndex(channel_1, ..., channel_n) (function)

▷ ReceiveAnyChannelWithIndex(channel_list) (function)

ReceiveAnyChannelWithIndex works like ReceiveAnyChannel (7.1.11), except that it returns
a list with two elements, the first being the object being received, the second being the number of the
channel from which the object has been retrieved.

Example
gap> ch1 := CreateChannel();;

gap> ch2 := CreateChannel();;

gap> SendChannel(ch2, [1, 2, 3]);;

gap> ReceiveAnyChannelWithIndex(ch1, ch2);

[[1, 2, 3], 2]

7.1.13 TallyChannel

▷ TallyChannel(channel) (function)

TallyChannel returns the number of objects that a channel contains. This number can increase
or decrease, as data is sent to or received from this channel. Send operations will only ever increase
and receive operations will only ever decrease this count. Thus, if there is only one thread receiving
data from the channel, it can use the result as a lower bound for the number of elements that will be
available in the channel.

Example
gap> ch := CreateChannel();;

gap> SendChannel(ch, 2);

gap> SendChannel(ch, 3);

gap> SendChannel(ch, 5);

gap> TallyChannel(ch);

3

7.1.14 InspectChannel

▷ InspectChannel(channel) (function)

InspectChannel returns a list of the objects that a channel contains. Note that objects that are
not in the shared, public, or read-only region will be temporarily stored in the so-called limbo region
while in transit and will be inaccessible through normal means until they have been received.

Example
gap> ch := CreateChannel();;

gap> SendChannel(ch, 2);

HPC-GAP — Reference Manual 49

gap> SendChannel(ch, 3);

gap> SendChannel(ch, 5);

gap> InspectChannel(ch);

[2, 3, 5]

This function is primarly intended for debugging purposes.

Chapter 8

Semaphores

8.1 Semaphores

Semaphores are synchronized counters; they can also be used to simulate locks.

8.1.1 CreateSemaphore

▷ CreateSemaphore([value]) (function)

The function CreateSemaphore takes an optional argument, which defaults to zero. It is the
counter with which the semaphore is initialized.

Example
gap> sem := CreateSemaphore(1);

<semaphore 0x1108e81c0: count = 1>

8.1.2 WaitSemaphore

▷ WaitSemaphore(sem) (function)

WaitSemaphore receives a previously created semaphore as its argument. If the semaphore’s
counter is greater than zero, it decrements the counter and returns; if the counter is zero, it waits until
another thread increases it via SignalSemaphore (8.1.3), then decrements the counter and returns.

Example
gap> sem := CreateSemaphore(1);

<semaphore 0x1108e81c0: count = 1>

gap> WaitSemaphore(sem);

gap> sem;

<semaphore 0x1108e81c0: count = 0>

8.1.3 SignalSemaphore

▷ SignalSemaphore(sem) (function)

SignalSemaphore receives a previously created semaphore as its argument. It increments the
semaphore’s counter and returns.

50

HPC-GAP — Reference Manual 51

Example
gap> sem := CreateSemaphore(1);

<semaphore 0x1108e81c0: count = 1>

gap> WaitSemaphore(sem);

gap> sem;

<semaphore 0x1108e81c0: count = 0>

gap> SignalSemaphore(sem);

gap> sem;

<semaphore 0x1108e81c0: count = 1>

8.1.4 Simulating locks

In order to use semaphores to simulate locks, create a semaphore with an initial value of 1.
WaitSemaphore (8.1.2) is then equivalent to a lock operation, SignalSemaphore (8.1.3) is equiv-
alent to an unlock operation.

Chapter 9

Synchronization variables

9.1 Synchronization variables

Synchronization variables (also often called dataflow variables in the literature) are variables that can
be written only once; attempts to read the variable block until it has been written to.

Synchronization variables are created with CreateSyncVar (9.1.1), written with SyncWrite

(9.1.2) and read with SyncRead (9.1.3).
Example

gap> sv := CreateSyncVar();;

gap> RunAsyncTask(function()

> Sleep(10);

> SyncWrite(sv, MakeImmutable([1, 2, 3]));

> end);;

gap> SyncRead(sv);

[1, 2, 3]

9.1.1 CreateSyncVar

▷ CreateSyncVar() (function)

The function CreateSyncVar takes no arguments. It returns a new synchronization variable.
There is no need to deallocate it; the garbage collector will free the memory and all related resources
when it is no longer accessible.

9.1.2 SyncWrite

▷ SyncWrite(syncvar, obj) (function)

SyncWrite attempts to assign the value obj to syncvar . If syncvar has been previously as-
signed a value, the call will fail with a runtime error; otherwise, obj will be assigned to syncvar .

In order to make sure that the recipient can read the result, the obj argument should not be a
thread-local object; it should be public, read-only, or shared.

52

HPC-GAP — Reference Manual 53

9.1.3 SyncRead

▷ SyncRead(syncvar) (function)

SyncRead reads the value previously assigned to syncvar with SyncWrite (9.1.2). If no value
has been assigned yet, it blocks. It returns the assigned value.

Chapter 10

Serialization support

10.1 Serialization support

HPC-GAP has support to serialize most GAP data. While functions in particular cannot be serialized,
it is possible to serialize all primitive types (booleans, integers, cyclotomics, permutations, floats, etc.)
as well as all lists and records.

Custom serialization support can be written for data objects, positional objects, and component
objects; serialization of compressed vectors is already supported by the standard library.

10.1.1 SerializeToNativeString

▷ SerializeToNativeString(obj) (function)

SerializeToNativeString takes the object passed as an argument and turns it into a string,
from which a copy of the original can be extracted using DeserializeNativeString (10.1.2).

10.1.2 DeserializeNativeString

▷ DeserializeNativeString(str) (function)

DeserializeNativeString reverts the serialization process.
Example:

Example
gap> DeserializeNativeString(SerializeToNativeString([1,2,3]));

[1, 2, 3]

10.1.3 InstallTypeSerializationTag

▷ InstallTypeSerializationTag(type, tag) (function)

InstallTypeSerializationTag allows the serialization of data objects, positional objects, and
component objects. The value of tag must be unique for each type; it can be a string or integer.
Non-negative integers are reserved for use by the standard library; users should use negative integers
or strings instead.

54

HPC-GAP — Reference Manual 55

Objects of such a type are serialized in a straightforward way: During serialization, data objects are
converted into byte streams, positional objects into lists, and component objects into records. These
objects are then serialized along with their tags; deserialization uses the type corresponding to the tag
in conjunction with Objectify (Reference: Objectify) to reconstruct a copy of the original object.

Note that this functionality may be inadequate for objects that have complex data structures at-
tached that are not meant to be replicated. The following alternative is meant for such objects.

10.1.4 InstallSerializer

▷ InstallSerializer(description, filters, method) (function)

The more general InstallSerializer allows for arbitarily complex serialization code. It installs
method as the method to serialize objects matching filters ; description has the same role as for
InstallMethod (Reference: InstallMethod).

The method must return a plain list matching a specific format. The first element must be a non-
negative integer, the second must be a string descriptor that is unique to the serializer; these can then
be followed by an arbitrary number of arguments.

As many of the arguments (starting with the third element of the list) as specified by the first
element of the list will be converted from their object representation into a serializable representation.
Data objects will be converted into untyped data objects, positional objects will be converted into plain
lists, and component objects into records. Conversion will not modify the objects in place, but work
on copies. The remaining arguments will remain untouched.

Upon deserialization, these arguments will be passed to a function specified by the second element
of the list.

Example:
Example

InstallSerializer("8-bit vectors", [Is8BitVectorRep], function(obj)

return [1, "Vec8Bit", obj, Q_VEC8BIT(obj), IS_MUTABLE_OBJ(obj)];

end);

Here, obj will be converted into its underlying representation, while the remaining arguments are left
alone. "Vec8Bit" is the name that is used to look up the deserializer function.

10.1.5 InstallDeserializer

▷ InstallDeserializer(descriptor, func) (function)

The descriptor value must be the same as the second element of the list returned by the serial-
izer; func must be a function that takes as many arguments as there were arguments after the second
element of that list. For deserialization, this function is invoked and needs to return the deserialized
object constructed from the arguments.

Example:
Example

InstallDeserializer("Vec8Bit", function(obj, q, mut)

SET_TYPE_OBJ(obj, TYPE_VEC8BIT(q, mut));

return obj;

end);

HPC-GAP — Reference Manual 56

Here, the untyped obj that was passed to the deserializer needs to be given the correct type, which is
calculated from q and mut.

Chapter 11

Low-level functionality

The functionality described in this section should only be used by experts, and even by those only with
caution (especially the parts that relate to the memory model).

Not only is it possible to crash or hang the GAP kernel, it can happen in ways that are very difficult
to reproduce, leading to software defects that are discovered only long after deployment of a package
and then become difficult to correct.

The performance benefit of using these primitives is generally minimal; while concurrency can
induce some overhead, the benefit from micromanaging concurrency in an interpreted language such
as GAP is likely to be small.

These low-level primitives exist primarily for the benefit of kernel programmers; it allows them to
prototype new kernel functionality in GAP before implementing it in C.

11.1 Explicit lock and unlock primitives

The LOCK (11.1.1) operation combined with UNLOCK (11.1.3) is a low-level interface for the function-
ality of the statement.

11.1.1 LOCK

▷ LOCK([arg_1, ..., arg_n]) (function)

LOCK takes zero or more pairs of parameters, where each is either an object or a boolean value. If
an argument is an object, the region containing it will be locked. If an argument is the boolean value
false, all subsequent locks will be read locks; if it is the boolean value true, all subsequent locks
will be write locks. If the first argument is not a boolean value, all locks until the first boolean value
will be write locks.

Locks are managed internally as a stack of locked regions; LOCK returns an integer indicating a
pointer to the top of the stack; this integer is used later by the UNLOCK (11.1.3) operation to unlock
locks on the stack up to that position. If LOCK should fail for some reason, it will return fail.

Calling LOCK with no parameters returns the current lock stack pointer.

11.1.2 TRYLOCK

▷ TRYLOCK([arg_1, ..., arg_n]) (function)

57

HPC-GAP — Reference Manual 58

TRYLOCK works similarly to LOCK (11.1.1). If it cannot acquire all region locks, it returns fail
and does not lock any regions. Otherwise, its semantics are identical to LOCK (11.1.1).

11.1.3 UNLOCK

▷ UNLOCK(stackpos) (function)

UNLOCK unlocks all regions on the stack at stackpos or higher and sets the stack pointer to
stackpos .

Example
gap> l1 := ShareObj([1,2,3]);;

gap> l2 := ShareObj([4,5,6]);;

gap> p := LOCK(l1);

0

gap> LOCK(l2);

1

gap> UNLOCK(p); # unlock both RegionOf(l1) and RegionOf(l2)

gap> LOCK(); # current stack pointer

0

11.2 Hash locks

HPC-GAP supports hash locks; internally, the kernel maintains a fixed size array of locks; objects are
mapped to a lock via hash function. The hash function is based on the object reference, not its contents
(except for short integers and finite field elements).

Example
gap> l := [1, 2, 3];;

gap> f := l -> Sum(l);;

gap> HASH_LOCK(l); # lock 'l'

gap> f(l); # do something with 'l'

6

gap> HASH_UNLOCK(l); # unlock 'l'

Hash locks should only be used for very short operations, since there is a chance that two concurrently
locked objects map to the same hash value, leading to unnecessary contention.

Hash locks are unrelated to the locks used by the atomic statements and the LOCK (11.1.1) and
UNLOCK (11.1.3) primitives.

11.2.1 HASH_LOCK

▷ HASH_LOCK(obj) (function)

HASH_LOCK (11.2.1) obtains the read-write lock for the hash value associated with obj.

11.2.2 HASH_UNLOCK

▷ HASH_UNLOCK(obj) (function)

HASH_UNLOCK (11.2.2) releases the read-write lock for the hash value associated with obj.

HPC-GAP — Reference Manual 59

11.2.3 HASH_LOCK_SHARED

▷ HASH_LOCK_SHARED(obj) (function)

HASH_LOCK_SHARED (11.2.3) obtains the read-only lock for the hash value associated with obj.

11.2.4 HASH_UNLOCK_SHARED

▷ HASH_UNLOCK_SHARED(obj) (function)

HASH_UNLOCK_SHARED (11.2.4) releases the read-only lock for the hash value associated with
obj.

11.3 Migration to the public region

HPC-GAP allows migration of arbitrary objects to the public region. This functionality is potentially
dangerous; for example, if two threads try resize a plain list simultaneously, this can result in memory
corruption.

Accordingly, such data should never be accessed except through operations that protect accesses
through locks, memory barriers, or other mechanisms.

11.3.1 MAKE_PUBLIC

▷ MAKE_PUBLIC(obj) (function)

MAKE_PUBLIC (11.3.1) makes obj and all its subobjects members of the public region.

11.3.2 MAKE_PUBLIC_NORECURSE

▷ MAKE_PUBLIC_NORECURSE(obj) (function)

MAKE_PUBLIC_NORECURSE (11.3.2) makes obj , but not any of its subobjects members of the
public region.

11.4 Memory barriers

The memory models of some processors do no guarantee that read and writes reflect accesses to main
memory in the same order in which the processor performed them; for example, code may write
variable v1 first, and v2 second; but the cache line containing v2 is flushed to main memory first so
that other processors see the change to v2 before the change to v1.

Memory barriers can be used to prevent such counter-intuitive reordering of memory accesses.

11.4.1 ORDERED_WRITE

▷ ORDERED_WRITE(expr) (function)

HPC-GAP — Reference Manual 60

The ORDERED_WRITE (11.4.1) function guarantees that all writes that occur prior to its execution
or during the evaluation of expr become visible to other processors before any of the code executed
after.

Example:
Example

gap> y:=0;; f := function() y := 1; return 2; end;;

gap> x := ORDERED_WRITE(f());

2

Here, the write barrier ensure that the assignment to y that occurs during the call of f() becomes
visible to other processors before or at the same time as the assignment to x.

This can also be done differently, with the same semantics:
Example

gap> t := f();; # temporary variable

gap> ORDERED_WRITE(0);; # dummy argument

gap> x := t;

2

11.4.2 ORDERED_READ

▷ ORDERED_READ(expr) (function)

Conversely, the ORDERED_READ (11.4.2) function ensures that reads that occur before its call or
during the evaluation of expr are not reordered with respects to memory reads occurring after it.

11.5 Object manipulation

There are two new functions to exchange a pair of objects.

11.5.1 SWITCH_OBJ

▷ SWITCH_OBJ(obj1, obj2) (function)

SWITCH_OBJ (11.5.1) exchanges its two arguments. All variables currently referencing obj1 will
reference obj2 instead after the operation completes, and vice versa. Both objects stay within their
previous regions.

Example
gap> a := [1, 2, 3];;

gap> b := [4, 5, 6];;

gap> SWITCH_OBJ(a, b);

gap> a;

[4, 5, 6]

gap> b;

[1, 2, 3]

The function requires exclusive access to both objects, which may necessitate using an atomic state-
ment, e.g.:

HPC-GAP — Reference Manual 61

Example
gap> a := ShareObj([1, 2, 3]);;

gap> b := ShareObj([4, 5, 6]);;

gap> atomic a, b do SWITCH_OBJ(a, b); od;

gap> atomic readonly a do Display(a); od;

[4, 5, 6]

gap> atomic readonly b do Display(b); od;

[1, 2, 3]

11.5.2 FORCE_SWITCH_OBJ

▷ FORCE_SWITCH_OBJ(obj1, obj2) (function)

FORCE_SWITCH_OBJ (11.5.2) works like SWITCH_OBJ (11.5.1), except that it can also exchange
objects in the public region:

Example
gap> a := ShareObj([1, 2, 3]);;

gap> b := MakeImmutable([4, 5, 6]);;

gap> atomic a do FORCE_SWITCH_OBJ(a, b); od;

gap> a;

[4, 5, 6]

This function should be used with extreme caution and only with public objects for which only the
current thread has a reference. Otherwise, undefined behavior and crashes can result from other threads
accessing the public object concurrently.

Index

AchieveMilestone, 11
AdoptObj, 23
AdoptSingleObj, 23
atomic

no value, 26
AtomicIncorporateObj, 22
AtomicList, 36

for a count and an object, 36
AtomicRecord, 37

for a record, 37
ATOMIC_ADDITION, 37

BindOnce, 27
BindOnceExpr, 28
BindThreadLocal, 14
BindThreadLocalConstructor, 14

CancelTask, 10
ClearRegionName, 26
COMPARE_AND_SWAP, 37
ContributeToMilestone, 11
CopyRegion, 23
CreateChannel, 44
CreateSemaphore, 50
CreateSyncVar, 52
CreateThread, 41
CullIdleTasks, 9
CurrentTask, 9
CurrentThread, 41

DelayTask, 7
DeserializeNativeString, 54

ExecuteTask, 8

FixedAtomicList, 36
for a count and an object, 36

FORCE_SWITCH_OBJ, 61
FromAtomicList, 36
FromAtomicRecord, 38

HASH_LOCK, 58
HASH_LOCK_SHARED, 59
HASH_UNLOCK, 58
HASH_UNLOCK_SHARED, 59
HaveReadAccess, 24
HaveWriteAccess, 25

ImmediateTask, 8
IncorporateObj, 22
InspectChannel, 48
InstallDeserializer, 55
InstallSerializer, 55
InstallTypeSerializationTag, 54
InterruptThread, 43
IsMilestoneAchieved, 12
IsPublic, 24
IsReadOnlyObj, 25
IsShared, 24
IsThreadLocal, 24

KillThread, 42

LOCK, 57
LockAndAdoptObj, 23
LockAndMigrateObj, 21

MakeFixedAtomicList, 36
MakeReadOnlyObj, 25
MakeReadOnlySingleObj, 25
MakeReadWriteAtomic, 39
MakeStrictWriteOnceAtomic, 39
MakeTaskAsync, 7
MakeThreadLocal, 13
MakeWriteOnceAtomic, 38
MAKE_PUBLIC, 59
MAKE_PUBLIC_NORECURSE, 59
MAX_INTERRUPT, 43
MigrateObj, 21
MigrateSingleObj, 21
MultiReceiveChannel, 47

62

HPC-GAP — Reference Manual 63

MultiSendChannel, 47

NewInternalRegion, 18
NewInterruptID, 43
NewKernelRegion, 18
NewLibraryRegion, 17
NewMilestone, 11
NewRegion, 17
NewSpecialRegion, 18
NewSystemRegion, 17

OnTaskCancellation, 10
OnTaskCancellationReturn, 11
ORDERED_READ, 60
ORDERED_WRITE, 59

PauseThread, 42

ReceiveAnyChannel, 47
for a list of channels, 47

ReceiveAnyChannelWithIndex, 48
for a list of channels, 48

ReceiveChannel, 46
RegionName, 26
RegionOf, 18
RegionPrecedence, 19
ResumeThread, 42
RunAsyncTask, 7
RunningTasks, 9
RunTask, 6

ScheduleAsyncTask, 7
ScheduleTask, 7
SendChannel, 44
SerializeToNativeString, 54
SetInterruptHandler, 43
SetRegionName, 26
SetTLConstructor, 40
SetTLDefault, 40
ShareInternalObj, 20
ShareKernelObj, 19
ShareLibraryObj, 19
ShareObj, 19
ShareSingleInternalObj, 21
ShareSingleKernelObj, 21
ShareSingleLibraryObj, 20
ShareSingleObj, 20
ShareSingleSpecialObj, 21

ShareSingleSystemObj, 20
ShareSpecialObj, 20
ShareSystemObj, 19
SignalSemaphore, 50
StrictBindOnce, 29
SWITCH_OBJ, 60
SyncRead, 53
SyncWrite, 52

TallyChannel, 48
TaskCancellationRequested, 10
TaskError, 9
TaskFinished, 10
TaskIsAsync, 10
TaskResult, 8
TaskStarted, 9
TaskSuccess, 9
TestBindOnce, 28
TestBindOnceExpr, 28
TextUIForegroundThread, 33
TextUIForegroundThreadName, 33
TextUINewSession, 34
TextUIOutputHistory, 33
TextUIRegisterCommand, 33
TextUIRunCommand, 34
TextUISelectThread, 33
TextUISetOutputHistoryLength, 33
TextUIWritePrompt, 34
ThreadID, 42
ThreadLocalRecord, 39
ThreadVar, 14
TransmitChannel, 45
TRYLOCK, 57
TryMultiSendChannel, 47
TryReceiveChannel, 46
TrySendChannel, 46
TryTransmitChannel, 46

UNLOCK, 58
UNSAFE_VIEW, 26

ViewShared, 26

WaitAnyTask, 8
WaitSemaphore, 50
WaitTask, 8

with a condition, 8
WaitTasks, 8

HPC-GAP — Reference Manual 64

WaitThread, 41

	Tasks
	Overview
	Running tasks
	Information about tasks
	Cancelling tasks
	Conditions
	Milestones

	Variables in HPC-GAP
	Global variables
	Thread-local variables

	How HPC-GAP organizes shared memory: Regions
	Thread-local regions
	Shared regions
	Ordering of shared regions
	The public region
	The read-only region
	Migrating objects between regions
	Region names
	Controlling access to regions
	Functions relating to regions
	Atomic functions
	Write-once functionality

	Console User Interface
	Console UI commands
	GAP functions to access the Shell UI

	Atomic objects
	Atomic lists
	Atomic records and component objects
	Replacement policy functions
	Thread-local records

	Thread functions
	Thread functions

	Channels
	Channels

	Semaphores
	Semaphores

	Synchronization variables
	Synchronization variables

	Serialization support
	Serialization support

	Low-level functionality
	Explicit lock and unlock primitives
	Hash locks
	Migration to the public region
	Memory barriers
	Object manipulation

	Index

