[Ber00] Bereczky, Á., Maximal overgroups of Singer elements in classical groups, J. Algebra, 234 (1) (2000), 187–206.
[BG] Breuer, T. and Guralnick, R. M., Finite groups can be generated by a pi-subgroup and a pi'-subgroup, arXiv:2103.17216.
[BGK08] Breuer, T., Guralnick, R. M. and Kantor, W. M., Probabilistic generation of finite simple groups, II, J. Algebra, 320 (2) (2008), 443–494.
[BGL+10] Breuer, T., Guralnick, R. M., Lucchini, A., Maróti, A. and Nagy, G. P., Hamiltonian cycles in the generating graphs of finite groups, Bull. London Math. Soc., 42 (4) (2010), 621–633.
[BGS11] Burness, T. C., Guralnick, R. M. and Saxl, J., On base sizes for symmetric groups, Bull. Lond. Math. Soc., 43 (2) (2011), 386–391.
[BMO17] Breuer, T., Malle, G. and O'Brien, E. A., Reliability and reproducibility of Atlas information, in Finite simple groups: thirty years of the atlas and beyond, Amer. Math. Soc., Contemp. Math., 694, Providence, RI (2017), 21–31.
[BN95] Breuer, T. and Norton, S. P.,
Improvements to the Atlas,
The Clarendon Press Oxford University Press,
London Mathematical Society Monographs. New Series,
11,
New York
(1995),
297–327
(Appendix 2 by T. Breuer and S. Norton,
Oxford Science Publications).
[BP98] Breuer, T. and Pfeiffer, G., Finding possible permutation characters, J. Symbolic Comput., 26 (3) (1998), 343–354.
[Brea] Breuer, T., Ambiguous Class Fusions in the GAP Character Table Library, https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf.
[Breb] Breuer, T., GAP computations concerning probabilistic generation of finite simple groups, arXiv:0710.3267.
[Brec] Breuer, T., Using Table Automorphisms for Constructing Character Tables in GAP, https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf.
[Bre91] Breuer, T., Potenzabbildungen, Untergruppenfusionen, Tafel-Automorphismen, Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany (1991).
[Bre11] Breuer, T., Computing character tables of groups of type M.G.A, LMS J. Comput. Math., 14 (2011), 173–178.
[Bre22] Breuer, T.,
The GAP Character Table
Library, Version 1.3.3
(2022)
(GAP package),
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib.
[BW75] Brenner, J. L. and Wiegold, J., Two-generator groups. I, Michigan Math. J., 22 (1975), 53–64.
[CCN+85] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.,
Atlas of finite groups,
Oxford University Press,
Eynsham
(1985),
xxxiv+252 pages
(Maximal subgroups and ordinary characters for simple groups,
With computational assistance from J. G. Thackray).
[CP96] Cannon, J. J. and Playoust, C., An introduction to algebraic programming in Magma, School of Mathematics and Statistics, University of Sydney, Sydney, Australia (1996), http://www.math.usyd.edu.au:8000/u/magma.
[Dad66] Dade, E. C., Blocks with cyclic defect groups, Ann. of Math. (2), 84 (1966), 20–48.
[DNT13] Dolfi, S., Navarro, G. and Tiep, P. H., Finite groups whose same degree characters are Galois conjugate, Israel J. Math., 198 (1) (2013), 283–331.
[Fei82] Feit, W.,
The representation theory of finite groups,
North-Holland Publishing Co.,
North-Holland Mathematical Library,
25
(1982)
(xiv+502 pp., ISBN 0-444-86155-6).
[Gag86] Gagola, Jr., S. M., Formal character tables, Michigan Math. J., 33 (1) (1986), 3–10.
[GAP21] GAP – Groups, Algorithms, and Programming, Version 4.11.1, The GAP Group (2021), https://www.gap-system.org.
[GJMS89] Griess Jr., R. L., Meierfrankenfeld, U. and Segev, Y., A uniqueness proof for the Monster, Ann. of Math. (2), 130 (3) (1989), 567–602.
[GK00] Guralnick, R. M. and Kantor, W. M.,
Probabilistic generation of finite simple groups,
J. Algebra,
234 (2)
(2000),
743–792
(Special issue in honor of Helmut Wielandt).
[GM01] Ganief, S. and Moori, J., On the spread of the sporadic simple groups, Comm. Algebra, 29 (8) (2001), 3239–3255.
[GPPS99] Guralnick, R., Penttila, T., Praeger, C. E. and Saxl, J., Linear groups with orders having certain large prime divisors, Proc. London Math. Soc., 78 (1) (1999), 167–214.
[HL89] Hiss, G. and Lux, K., Brauer trees of sporadic groups, The Clarendon Press, Oxford University Press, Oxford Science Publications, New York (1989), x+526 pages.
[HL94] Hiss, G. and Lux, K.,
The 5-modular characters of the sporadic simple
Fischer
groups Fi_{22} and Fi_{23},
Comm. Algebra,
22 (9)
(1994),
3563–3590
(With an appendix by Thomas Breuer).
[Hol08] Holt, D.,
cohomolo,
computing cohomology groups and Schur multipliers,
Version 1.6
(2008)
(GAP package),
http://www.maths.warwick.ac.uk/~dfh/cohomolo.
[HP89] Holt, D. F. and Plesken, W.,
Perfect groups,
The Clarendon Press Oxford University Press,
Oxford Mathematical Monographs,
New York
(1989),
xii+364 pages
(With an appendix by W. Hanrath,
Oxford Science Publications).
[Hul05] Hulpke, A., Constructing transitive permutation groups, J. Symbolic Comput., 39 (1) (2005), 1–30.
[Hup67] Huppert, B., Endliche Gruppen. I, Springer-Verlag, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Berlin (1967), xii+793 pages.
[HW04] Holmes, P. E. and Wilson, R. A., PSL_2(59) is a subgroup of the Monster, J. London Math. Soc., 69 (1) (2004), 141–152.
[HW08] Holmes, P. E. and Wilson, R. A., On subgroups of the Monster containing A_5's, J. Algebra, 319 (7) (2008), 2653–2667.
[Isa76] Isaacs, I. M.,
Character theory of finite groups,
Academic Press [Harcourt Brace Jovanovich Publishers],
New York
(1976),
xii+303 pages
(Pure and Applied Mathematics, No. 69).
[JLPW95] Jansen, C., Lux, K., Parker, R. and Wilson, R.,
An atlas of Brauer characters,
The Clarendon Press Oxford University Press,
London Mathematical Society Monographs. New Series,
11,
New York
(1995),
xviii+327 pages
(Appendix 2 by T. Breuer and S. Norton,
Oxford Science Publications).
[KL90] Kleidman, P. and Liebeck, M., The subgroup structure of the finite classical groups, Cambridge University Press, London Mathematical Society Lecture Note Series, 129, Cambridge (1990), x+303 pages.
[Kle87] Kleidman, P. B., The maximal subgroups of the finite 8-dimensional orthogonal groups PΩ^+_8(q) and of their automorphism groups, J. Algebra, 110 (1) (1987), 173–242.
[LP10] Lux, K. and Pahlings, H.,
Representations of groups,
Cambridge University Press,
Cambridge Studies in Advanced Mathematics,
124,
Cambridge
(2010),
x+460 pages
(A computational approach).
[LW91] Linton, S. A. and Wilson, R. A., The maximal subgroups of the Fischer groups Fi_{24} and Fi'_{24}, Proc. London Math. Soc. (3), 63 (1) (1991), 113–164.
[MSW94] Malle, G., Saxl, J. and Weigel, T., Generation of classical groups, Geom. Dedicata, 49 (1) (1994), 85–116.
[Nav98] Navarro, G., Characters and blocks of finite groups, Cambridge University Press, London Mathematical Society Lecture Note Series, 250, Cambridge (1998), x+287 pages.
[NMP18] Naughton, L., Merkwitz, T. and Pfeiffer, G.,
TomLib,
The GAP Library of Tables of Marks,
Version 1.2.7
(2018)
(GAP package),
http://schmidt.nuigalway.ie/tomlib.
[Nor] Norton, S. P., Improvements to the ATLAS–II, http://brauer.maths.qmul.ac.uk/Atlas/info/fullatlasmods.html.
[NPP84] Neubüser, J., Pahlings, H. and Plesken, W. (Atkinson, M. D., Ed.), CAS; design and use of a system for the handling of characters of finite groups, in Computational group theory (Durham, 1982), Academic Press, London (1984), 195–247.
[NR14] Navarro, G. and Rizo, N., Nilpotent and perfect groups with the same set of character degrees, J. Algebra Appl., 13 (8) (2014), 1450061, 3.
[NW02] Norton, S. P. and Wilson, R. A., Anatomy of the Monster. II, Proc. London Math. Soc. (3), 84 (3) (2002), 581–598.
[NW13] Norton, S. P. and Wilson, R. A., A correction to the 41-structure of the Monster, a construction of a new maximal subgroup L_2(41) and a new Moonshine phenomenon, J. Lond. Math. Soc. (2), 87 (3) (2013), 943–962.
[Ost86] Ostermann, T., Charaktertafeln von Sylownormalisatoren sporadischer einfacher Gruppen, Universität Essen, Universität Essen Fachbereich Mathematik, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], 14, Essen (1986), x+187 pages.
[Vdo00] Vdovin, E. P., Large nilpotent subgroups of finite simple groups, Algebra Log., 39 (5) (2000), 526–546, 630.
[Wil] Wilson, R. A., ATLAS: Monster group M, http://brauer.maths.qmul.ac.uk/Atlas/spor/M.
[Wil93a] Wilson, R. A., More on maximal subgroups of the Baby Monster, Arch. Math. (Basel), 61 (6) (1993), 497–507.
[Wil93b] Wilson, R. A., Some new subgroups of the Baby Monster, Bull. London Math. Soc., 25 (1) (1993), 23–28.
[Wil98] Wilson, R. A., The McKay conjecture is true for the sporadic simple groups, J. Algebra, 207 (1) (1998), 294–305.
[Wil99] Wilson, R. A., The maximal subgroups of the Baby Monster. I, J. Algebra, 211 (1) (1999), 1–14.
[Wil10] Wilson, R. A., New computations in the Monster, in Moonshine: the first quarter century and beyond, Cambridge Univ. Press, London Math. Soc. Lecture Note Ser., 372, Cambridge (2010), 393–403.
[WPN+19] Wilson, R. A., Parker, R. A., Nickerson, S., Bray, J. N. and Breuer, T.,
AtlasRep, A GAP Interface
to the Atlas of Group Representations,
Version 2.1
(2019)
(GAP package),
https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep.
[WWT+] Wilson, R. A., Walsh, P., Tripp, J., Suleiman, I., Parker, R. A., Norton, S. P., Nickerson, S., Linton, S., Bray, J. and Abbott, R., ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/v3.
generated by GAPDoc2HTML