Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[Ber00] Bereczky, Á., Maximal overgroups of Singer elements in classical groups, J. Algebra, 234 (1) (2000), 187–206.

[BG] Breuer, T. and Guralnick, R. M., Finite groups can be generated by a pi-subgroup and a pi'-subgroup, arXiv:2103.17216.

[BGK08] Breuer, T., Guralnick, R. M. and Kantor, W. M., Probabilistic generation of finite simple groups, II, J. Algebra, 320 (2) (2008), 443–494.

[BGL+10] Breuer, T., Guralnick, R. M., Lucchini, A., Maróti, A. and Nagy, G. P., Hamiltonian cycles in the generating graphs of finite groups, Bull. London Math. Soc., 42 (4) (2010), 621–633.

[BGS11] Burness, T. C., Guralnick, R. M. and Saxl, J., On base sizes for symmetric groups, Bull. Lond. Math. Soc., 43 (2) (2011), 386–391.

[BMO17] Breuer, T., Malle, G. and O'Brien, E. A., Reliability and reproducibility of Atlas information, in Finite simple groups: thirty years of the atlas and beyond, Amer. Math. Soc., Contemp. Math., 694, Providence, RI (2017), 21–31.

[BN95] Breuer, T. and Norton, S. P., Improvements to the Atlas, The Clarendon Press Oxford University Press, London Mathematical Society Monographs. New Series, 11, New York (1995), 297–327
(Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications).

[BP98] Breuer, T. and Pfeiffer, G., Finding possible permutation characters, J. Symbolic Comput., 26 (3) (1998), 343–354.

[Brea] Breuer, T., Ambiguous Class Fusions in the GAP Character Table Library, https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf.

[Breb] Breuer, T., GAP computations concerning probabilistic generation of finite simple groups, arXiv:0710.3267.

[Brec] Breuer, T., Using Table Automorphisms for Constructing Character Tables in GAP, https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf.

[Bre91] Breuer, T., Potenzabbildungen, Untergruppenfusionen, Tafel-Automorphismen, Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany (1991).

[Bre11] Breuer, T., Computing character tables of groups of type M.G.A, LMS J. Comput. Math., 14 (2011), 173–178.

[Bre22] Breuer, T., The GAP Character Table Library, Version 1.3.3 (2022)
(GAP package), https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib.

[BW75] Brenner, J. L. and Wiegold, J., Two-generator groups. I, Michigan Math. J., 22 (1975), 53–64.

[CCN+85] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups, Oxford University Press, Eynsham (1985), xxxiv+252 pages
(Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray).

[CP96] Cannon, J. J. and Playoust, C., An introduction to algebraic programming in Magma, School of Mathematics and Statistics, University of Sydney, Sydney, Australia (1996), http://www.math.usyd.edu.au:8000/u/magma.

[Dad66] Dade, E. C., Blocks with cyclic defect groups, Ann. of Math. (2), 84 (1966), 20–48.

[DNT13] Dolfi, S., Navarro, G. and Tiep, P. H., Finite groups whose same degree characters are Galois conjugate, Israel J. Math., 198 (1) (2013), 283–331.

[Fei82] Feit, W., The representation theory of finite groups, North-Holland Publishing Co., North-Holland Mathematical Library, 25 (1982)
(xiv+502 pp., ISBN 0-444-86155-6).

[Gag86] Gagola, Jr., S. M., Formal character tables, Michigan Math. J., 33 (1) (1986), 3–10.

[GAP21] GAP – Groups, Algorithms, and Programming, Version 4.11.1, The GAP Group (2021), https://www.gap-system.org.

[GJMS89] Griess Jr., R. L., Meierfrankenfeld, U. and Segev, Y., A uniqueness proof for the Monster, Ann. of Math. (2), 130 (3) (1989), 567–602.

[GK00] Guralnick, R. M. and Kantor, W. M., Probabilistic generation of finite simple groups, J. Algebra, 234 (2) (2000), 743–792
(Special issue in honor of Helmut Wielandt).

[GM01] Ganief, S. and Moori, J., On the spread of the sporadic simple groups, Comm. Algebra, 29 (8) (2001), 3239–3255.

[GPPS99] Guralnick, R., Penttila, T., Praeger, C. E. and Saxl, J., Linear groups with orders having certain large prime divisors, Proc. London Math. Soc., 78 (1) (1999), 167–214.

[HL89] Hiss, G. and Lux, K., Brauer trees of sporadic groups, The Clarendon Press, Oxford University Press, Oxford Science Publications, New York (1989), x+526 pages.

[HL94] Hiss, G. and Lux, K., The 5-modular characters of the sporadic simple Fischer groups Fi_{22} and Fi_{23}, Comm. Algebra, 22 (9) (1994), 3563–3590
(With an appendix by Thomas Breuer).

[Hol08] Holt, D., cohomolo, computing cohomology groups and Schur multipliers, Version 1.6 (2008)
(GAP package), http://www.maths.warwick.ac.uk/~dfh/cohomolo.

[HP89] Holt, D. F. and Plesken, W., Perfect groups, The Clarendon Press Oxford University Press, Oxford Mathematical Monographs, New York (1989), xii+364 pages
(With an appendix by W. Hanrath, Oxford Science Publications).

[Hul05] Hulpke, A., Constructing transitive permutation groups, J. Symbolic Comput., 39 (1) (2005), 1–30.

[Hup67] Huppert, B., Endliche Gruppen. I, Springer-Verlag, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Berlin (1967), xii+793 pages.

[HW04] Holmes, P. E. and Wilson, R. A., PSL_2(59) is a subgroup of the Monster, J. London Math. Soc., 69 (1) (2004), 141–152.

[HW08] Holmes, P. E. and Wilson, R. A., On subgroups of the Monster containing A_5's, J. Algebra, 319 (7) (2008), 2653–2667.

[Isa76] Isaacs, I. M., Character theory of finite groups, Academic Press [Harcourt Brace Jovanovich Publishers], New York (1976), xii+303 pages
(Pure and Applied Mathematics, No. 69).

[JLPW95] Jansen, C., Lux, K., Parker, R. and Wilson, R., An atlas of Brauer characters, The Clarendon Press Oxford University Press, London Mathematical Society Monographs. New Series, 11, New York (1995), xviii+327 pages
(Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications).

[KL90] Kleidman, P. and Liebeck, M., The subgroup structure of the finite classical groups, Cambridge University Press, London Mathematical Society Lecture Note Series, 129, Cambridge (1990), x+303 pages.

[Kle87] Kleidman, P. B., The maximal subgroups of the finite 8-dimensional orthogonal groups PΩ^+_8(q) and of their automorphism groups, J. Algebra, 110 (1) (1987), 173–242.

[LP10] Lux, K. and Pahlings, H., Representations of groups, Cambridge University Press, Cambridge Studies in Advanced Mathematics, 124, Cambridge (2010), x+460 pages
(A computational approach).

[LW91] Linton, S. A. and Wilson, R. A., The maximal subgroups of the Fischer groups Fi_{24} and Fi'_{24}, Proc. London Math. Soc. (3), 63 (1) (1991), 113–164.

[MSW94] Malle, G., Saxl, J. and Weigel, T., Generation of classical groups, Geom. Dedicata, 49 (1) (1994), 85–116.

[Nav98] Navarro, G., Characters and blocks of finite groups, Cambridge University Press, London Mathematical Society Lecture Note Series, 250, Cambridge (1998), x+287 pages.

[NMP18] Naughton, L., Merkwitz, T. and Pfeiffer, G., TomLib, The GAP Library of Tables of Marks, Version 1.2.7 (2018)
(GAP package), http://schmidt.nuigalway.ie/tomlib.

[Nor] Norton, S. P., Improvements to the ATLAS–II, http://brauer.maths.qmul.ac.uk/Atlas/info/fullatlasmods.html.

[NPP84] Neubüser, J., Pahlings, H. and Plesken, W. (Atkinson, M. D., Ed.), CAS; design and use of a system for the handling of characters of finite groups, in Computational group theory (Durham, 1982), Academic Press, London (1984), 195–247.

[NR14] Navarro, G. and Rizo, N., Nilpotent and perfect groups with the same set of character degrees, J. Algebra Appl., 13 (8) (2014), 1450061, 3.

[NW02] Norton, S. P. and Wilson, R. A., Anatomy of the Monster. II, Proc. London Math. Soc. (3), 84 (3) (2002), 581–598.

[NW13] Norton, S. P. and Wilson, R. A., A correction to the 41-structure of the Monster, a construction of a new maximal subgroup L_2(41) and a new Moonshine phenomenon, J. Lond. Math. Soc. (2), 87 (3) (2013), 943–962.

[Ost86] Ostermann, T., Charaktertafeln von Sylownormalisatoren sporadischer einfacher Gruppen, Universität Essen, Universität Essen Fachbereich Mathematik, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], 14, Essen (1986), x+187 pages.

[Vdo00] Vdovin, E. P., Large nilpotent subgroups of finite simple groups, Algebra Log., 39 (5) (2000), 526–546, 630.

[Wil] Wilson, R. A., ATLAS: Monster group M, http://brauer.maths.qmul.ac.uk/Atlas/spor/M.

[Wil93a] Wilson, R. A., More on maximal subgroups of the Baby Monster, Arch. Math. (Basel), 61 (6) (1993), 497–507.

[Wil93b] Wilson, R. A., Some new subgroups of the Baby Monster, Bull. London Math. Soc., 25 (1) (1993), 23–28.

[Wil98] Wilson, R. A., The McKay conjecture is true for the sporadic simple groups, J. Algebra, 207 (1) (1998), 294–305.

[Wil99] Wilson, R. A., The maximal subgroups of the Baby Monster. I, J. Algebra, 211 (1) (1999), 1–14.

[Wil10] Wilson, R. A., New computations in the Monster, in Moonshine: the first quarter century and beyond, Cambridge Univ. Press, London Math. Soc. Lecture Note Ser., 372, Cambridge (2010), 393–403.

[WPN+19] Wilson, R. A., Parker, R. A., Nickerson, S., Bray, J. N. and Breuer, T., AtlasRep, A GAP Interface to the Atlas of Group Representations, Version 2.1 (2019)
(GAP package), https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep.

[WWT+] Wilson, R. A., Walsh, P., Tripp, J., Suleiman, I., Parker, R. A., Norton, S. P., Nickerson, S., Linton, S., Bray, J. and Abbott, R., ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/v3.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 Bib Ind

generated by GAPDoc2HTML