Changes in the GAP Character Table Library

This list contains the changes in the GAP character table library since the official upgrade for GAP 3.4 in October 1996. We denote mathematical errors by ${ }^{* * *}$ and new information by NEW. We use \mathbf{C} to denote changes that are not obviously corrections; the number of these changes is kept small.

Release of GAP 4.1 in July 1999

Brauer Tables

Changes are assigned to the simple group involved, and shown in alphabetical order.

| $* * *$ | ${ }^{2} E_{6}(2)$ | $:$ The faithful characters of $2 .{ }^{2} E_{6}(2)$ and $2 .{ }^{2} E_{6}(2) .2$ mod 19 were corrected (contributed |
| :--- | :--- | :--- | :--- |
| by Jürgen Müller). | | |

Ordinary Tables

The following changes affect several ordinary tables.
C Whitespace at the end of InfoText strings was removed.
NEW Various class fusions were added.
NEW Components tomidentifier and tomfusion were added in order to provide a (preliminary) interface to the library of tables of marks.
C In the library tables of alternating and symmetric groups, the classtext components (partitions parametrizing the conjugacy classes; in some cases, this had been hidden inside the CAS component of the table) were replaced by values of the attribute ClassParameters.

NEW The tables of $L_{2}(q)$ were added for those values of q for which the table of marks of $L_{2}(q)$ is now contained in the GAP library.
NEW In the library tables of symmetric groups, the partitions parametrizing the irreducible characters are stored on the tables, as value of the attribute CharacterParameters.
C The Identifier values of a few tables have been changed. For example, the table of L4(3).2~2 was previously known only as $\mathrm{psl}(4,3) . \mathrm{v} 4$. The old names are still valid.
*** The character tables with identifiers iu332, D2MJ4, and P4L82 were removed. The former two tables were incomplete, the latter one was wrong.
NEW The ordinary tables of all maximal subgroups (and their class fusions) are now available for the groups $G_{2}(3), J_{3} .2,2 . M_{12}, M_{12} .2, M_{22} .2$, and $O_{8}^{+}(3)$.

The following changes are assigned to specific simple groups, and shown in alphabetical order.
*** $\quad A_{6} \quad:$ The table automorphisms of $4 . A_{6} .2_{3}$ were corrected.
NEW $F i_{22}$: The table of the maximal subgroup $2^{7}: S_{6}(2)$ of $F i_{22} .2$ was added (contributed by E. Mpono).
NEW $F i_{22}$: The table of the maximal subgroup $2^{6}: U_{4}(2) .2$ of the maximal subgroup $2^{6}: S_{6}(2)$ of $F i_{22}$ was added (contributed by E. Mpono).
NEW HS : The tables (and fusions) of several normalizers of chains of p-subgroups were added.
C $J_{4} \quad:$ The classes and the characters of the maximal subgroup of type $2^{10}: L_{5}(2)$ were reordered, and the identifier was changed from 152 m 10 (from the CAS library) to 2^10:L5(2).
NEW $M c L$: The table of the seventh maximal subgroup of $M c L .2$ was added.
C $O_{8}^{+}(2)$: The classes and the characters of the maximal subgroup of type $2^{6}: A_{8}$ were reordered, and the identifier was changed from mo81p (from the CAS library) to 2^6:A8.
C $O_{8}^{+}(3)$: The fusions from $O_{7}(3)$ and $3^{6}: L_{4}(3)$ were changed to the ones listed in the Atlas of Finite Groups.
NEW $O_{10}^{+}(2)$: The table of the maximal subgroup $2^{8}: O_{8}^{+}(2)$ was added.
NEW $S_{10}(2)$: The table of the subgroup $2^{8}: S_{8}(2)$ was added.
NEW $U_{4}(3)$: The tables of $2 \cdot U_{4}(3) \cdot\left(2^{2}\right)_{122}$ and $6_{2} \cdot U_{4}(3) \cdot 2_{3}^{\prime}$ were added.

Release of GAP 4.2 in March 2000

Brauer Tables

Changes are assigned to the simple group involved, and shown in alphabetical order.
NEW A_{14} : Table of $S_{14} \bmod 2$ is now known (contributed by Dave Benson, added by Jürgen Müller).
*** $\quad A_{16} \quad$: Corrected principal block of the table of $S_{16} \bmod 2$.
NEW $O N$: The tables of $3 . O N \bmod 11$ and 31 are now known.
C $O N$: The tables of $3 . O N$ and $3 . O N .2 \bmod 19$ were changed in order to respect the choice of classes in Robert Wilson's "Atlas of Group Representations". (This affects only the irreducibles of $3 . O N$ of degrees 45090 and 77670.)

Ordinary Tables

The following changes affect several ordinary tables.
NEW Various class fusions were added.
C The galomorphisms components which had been contained in only a few tables were removed.
*** The tomfusion values of $L_{2}(25)$ and $2^{5}: S_{6}$ were corrected.
*** Element orders and power maps in the table with identifier $s 61 \mathrm{p}$ were corrected.
*** The table with identifier 2 . cenc1 was removed because it was inconsistent.
C Two instances of the table of $\left(A_{6} \times A_{6}\right): 2^{2}$ were unified.

C The tables with identifiers J2.2M4, 2^(2+4): (3x3):2^2, and 2^(2+4): (S3xS3) were unified; the identifiers J2.2M5 and $2^{\wedge}(2+4):(S 3 x S 3)$ can be used to access the table.
NEW The ordinary tables of all maximal subgroups (and their class fusions) are now available for the groups $S_{6}, J_{2} .2$, McL.2, Suz.2, 3.Suz, 3.Suz.2, Sz(32).

The following changes are assigned to specific simple groups, and shown in alphabetical order.

```
NEW \(\quad A_{6} \quad\) : The table of \(12 . A_{6} \cdot 2_{3}\) is now available.
    *** \(F i_{22}\) : The name of the table of the 7 -th maximal subgroup of \(F i_{22}\) was corrected from
                        ( \(\left.2 \mathrm{x} 2^{\wedge}(1+8): \mathrm{U} 4(2)\right): 2\) to \(\left(2 \mathrm{x} 2^{\wedge}(1+8)\right): \mathrm{U} 4(2): 2\); similarly, \(\left(2 \mathrm{x} 2^{\wedge}(1+8): \mathrm{U} 4(2): 2\right): 2\)
                        was corrected to \(\left(2 \times 2^{\wedge}(1+8)\right):(U 4(2): 2 \times 2)\).
NEW \(F i_{22}\) : The tables of the maximal subgroups \(2^{10}: M_{22}: 2\) of \(F i_{22} .2\) and \(2^{11} . M_{22}\) of \(2 . F i_{22}\) are
                now available via the names Fi22.2M4 and 2.Fi22M5, respectively.
C \(U_{3}(5)\) : The table with identifier U3(5). S3 was removed; it is replaced by the table with identifier U3(5) . 3.2 whose cosets of the outer automorphism group are ordered as in the Atlas of Finite Groups. The identifier U3(5).S3 is now admissible for the table with identifier U3(5).3.2.
*** \(U_{4}(3)\) : The table with identifier \(u 4 q 3 c\) was removed; characters and power maps of this table were erroneous. Apparently the table was thought to be that of \(3_{2} \cdot U_{4}(3) \cdot 2_{3}^{\prime}\), which can be accessed with the name 3_2.U4(3).2_3'.
NEW \(U_{4}(3)\) : The tables of \(3_{2} \cdot U_{4}(3) \cdot\left(2^{2}\right)_{133}\) and \(U_{4}(3) \cdot\left(2^{2}\right)_{133}\) are now available.
```


Release of CTblLib 1.0 in January 2002

Brauer Tables

Changes are assigned to the simple group involved, and shown in alphabetical order.

NEW	A_{14}	: The tables of $A_{14} \bmod 3,5,7$ and of $S_{14} \bmod 11,13$ are now known (contributed by Jürgen Müller, using MOC and the GAP package specht).
NEW	A_{17}	The table of A_{17} mod 3 is now known (contributed by Jürgen Müller).
NEW	F_{3+}	: All Brauer tables of the maximal subgroup $3^{7} . O_{7}(3)$, and the 2 -modular table of the maximal subgroup $\left(3 \times O_{8}^{+}(3): 3\right): 2$ are available (contributed by Gerhard Hiß).
NEW	$L_{4}(4)$: The tables of $L_{4}(4) \bmod 3,5,7,17$ are now known (contributed by Gerhard Hiß).
NEW	Ly	: The tables of $L y \bmod 37$ and 67 are now known (contributed by Jürgen Müller, Max Neunhöffer, Frank Röhr, Robert Wilson).
NEW	$O_{8}^{+}(3)$: The table of $O_{8}^{+}(3) \cdot S_{3} \bmod 2$ is available.
NEW		The table of $O_{8}^{+}(3) . S_{3} \bmod 2$ is available.
NEW	$S_{10}(2)$	The tables of $S_{10}(2) \bmod 7,11,17,31$ are now known (contributed by Gerhard Hiß).

Ordinary Tables

The following changes affect several ordinary tables.
NEW The ordinary tables of the Schur covers of the symmetric groups $S_{14}, S_{15}, S_{16}, S_{17}$, and S_{18} are now available (contributed by Gunter Malle).
NEW The ordinary tables of all maximal subgroups (and their class fusions) are now available for the group 2.HS (contributed by Ulrike Muthmann, Markus Ottensmann, and Frank Röhr).
NEW The ordinary tables of all maximal subgroups (and their class fusions) are now available for the groups 2.Suz and 6.Suz (contributed by Thomas Breuer and Frank Himstedt).
NEW The ordinary tables of all maximal subgroups (and their class fusions) are now available for the group $S_{6}(3)$.

The following changes are assigned to specific simple groups, and shown in alphabetical order.

NEW	$E_{6}(2)$	Chevalley group $E_{6}(2)$ is now available (contributed by B. Fischer).
NEW	F_{3+}	: The table of the maximal subgroup $2^{1+12} \cdot 3_{1} \cdot U_{4}(3) \cdot 2_{2}^{\prime}$ of F_{3+} is now available via the names 2^(1+12).3_1.U4(3).2_2', F3+M9, and F3+C2B.
		The table of the maximal subgroup $3^{3} \cdot\left[3^{10}\right] . G L 3(3)$ of F_{3+} is now available via the name 3^3. [3^10]. GL3(3).
NEW	$F_{3+} .2$: The table of the maximal subgroup $3^{7} . O_{7}(3): 2$ of $F_{3+} .2$ is now available (contributed by Faryad Ali).
***	$H S$: The earlier (since CAS times) stored fusion of $2 \times A_{6} .2^{2}$ into $H S$ did not lift to $2 . H S$ and therefore was replaced by a compatible map.
NEW	$L_{3}(4)$: The table of $2^{2} . L_{3}(4) .2_{2}$ is now available.
NEW	$L_{4}(9)$: The table of $L_{4}(9)$ is now available.
NEW	M	: The table of the maximal subgroup $2^{1+24} . C o_{1}$ is now available (contributed by Simon Norton).
NEW	$S_{4}(7)$: The tables of $S_{4}(7)$ and $S_{4}(7) .2$ are now available.
NEW	$S_{6}(2)$: The table of the maximal subgroup $2^{6}: S_{8}$ of $2^{6}: S_{6}(2)$ (which is maximal in $F i_{22}$) is now available (contributed by Faryad Ali).
NEW	$S_{6}(4)$: The table of $S_{6}(4)$ is now available.
NEW	$S_{6}(5)$: The table of $S_{6}(5)$ is now available.
NEW	$S_{12}(2)$: The table of $S_{12}(2)$ is now available (contributed by Christoph Köhler).
***	Suz	: The earlier (since CAS times) stored fusion of $\left(3^{2}: 4 \times A_{6}\right) .2$ into $S u z$ did not lift to 3.Suz and therefore was replaced by a compatible map.
NEW	$U_{4}(3)$: The table of $3_{1} \cdot U_{4}(3) \cdot 2_{2}^{\prime}$ was added.
NEW	$U_{4}(4)$: The table of $U_{4}(4)$ is now available.
NEW	$U_{6}(2)$: The table of the Schur cover $\left(2^{2} \times 3\right) \cdot U_{6}(2)$ is now available.

Release of CTblLib 1.1 in February 2004

Brauer Tables

The following changes affect several Brauer tables.
NEW The p-modular tables of $G . S_{3}$ are available for all prime divisors p of $|G|$, for G one of $L_{3}(7)$, $3 . L_{3}(7), U_{3}(5), 3 . U_{3}(5), U_{3}(8), 3 . U_{3}(8), U_{3}(11)$, and $3 . U_{3}(11)$.
The following changes are assigned to the simple group involved, and shown in alphabetical order.

NEW	C_{0}	: The indicators of the 36938 and 83948 in $C o_{2} \bmod 2$ are + (contributed by Jon Thackray).
NEW	$C o s_{3}$: The indicator of the 88000 in $C o_{3} \bmod 2$ is + (contributed by Jon Thackray).
NEW	J_{4}	: The tables of $J_{4} M 1 \bmod 3 \operatorname{and} 11$ are available (contributed by Christoph Jansen).
NEW	$O_{8}^{+}(3)$: The tables of $O_{8}^{+}(3) \cdot S_{4} \bmod 2,5$, and 7 are available (contributed by Christoph Jansen).
NEW	$O N$: The tables of $O N .2 \operatorname{and} 3 . O N .2 \bmod 11$ and 31 are available (contributed by Jürgen
Müller).		

Ordinary Tables

The following changes affect several ordinary tables.
*** The table automorphisms were corrected for the tables with the identifiers A17, 2.A4xS3, 4.M22M6, $3.2^{\wedge}(2+4):(3 \times 3): 2, \quad 3^{\wedge}(1+6): 2^{\wedge}(3+4): 3^{\wedge} 2: 2, \quad 5: 4 \times 2 . A 5, \quad D 8 x V 4, \quad 3.3^{\wedge} 5 . U 4(2), \quad 3 \wedge 5 . U 4(2)$, group3, s61p, 2. (A4xA4), $3^{\wedge} 3: A 4,3^{\wedge} 7.07(3), \operatorname{ThN} 2$, and $2^{\wedge} 2.2 \mathrm{E} 6(2) .2$; one reason for these errors were missing power maps.

C The formerly admissible names $\mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3$ for the groups $C o_{1}, \mathrm{Co}_{2}, \mathrm{Co}_{3}$ have been removed, because these names are now admissible names of cyclic groups. The names c1m1, c1m4, c1m5, c1m24, c1n3, $\mathrm{c} 2 \mathrm{~m} 1, \mathrm{c} 2 \mathrm{~m} 2$, c 2 m 3 , $\mathrm{c} 2 \mathrm{~m} 4, \mathrm{c} 2 \mathrm{~m} 5, \mathrm{c} 2 \mathrm{~m} 6, \mathrm{c} 2 \mathrm{~m} 7, \mathrm{c} 2 \mathrm{~m} 8, \mathrm{c} 2 \mathrm{~m} 9, \mathrm{c} 2 \mathrm{~m} 10, \mathrm{c} 2 \mathrm{~m} 11, \mathrm{c} 2 \mathrm{~m} 22$, (now called M22C2A), c2m24 (now called M24C2B), c3m1, c3m2, c3m3, c3m4, c3m5, c3m6, c3m7, c3m8, c3m9, c3m10, c3m11, $c 3 m 12, ~ c 3 m 13, ~ c 3 m 14, ~ c 3 n 2, ~ c 3 n 3, ~ c 3 n 5, ~ m c n 2, ~ m c n 3, ~ m c n 5$, om83, o8m2, o8m2.2, o10m2, o10m2c, o12m2, rvn2, s2m11, s2m12, s2m21, s2m23, and s2m24 (now called M24C2A) were removed because they would refer to maximal subgroups of other groups or of groups with nonadmissible names. The names u4q3.s3 and f22u3 were removed, the table is now available with the name $\operatorname{S3xU4}$ (3).
C The ordering of maximal subgroups was changed for $A_{5} .2, A_{6} .2_{1}, J_{3} .2, M_{12} .2$, and $M c L .2$, in order to be compatible with the ATLAS of Group Representations.
*** The following class fusions were corrected. $2^{7}: S_{6}(2)$ onto $S_{6}(2)$ and into $F i_{22} .2 ; 3.3^{1+4}: 4 S_{5}$ into $3 . M c L .2 ; D_{8} \times V_{4}$ into $H S ; 3.2^{2+4}:(3 \times 3): 2$ into $3 . M c L, 3.2^{4}: A_{7}$, and 3.McLM10; 4.M22 $M 6$ into 4. $M_{22} ; G_{2}(3) M 6$ into $G_{2}(3) ; A_{5} .2$ into $M_{12} .2 ; A_{11} S y l 2$ into A_{11}.

NEW Missing power maps were added for the tables suzs2, Fi22N3, RuN2, SuzN2, ThN2, for $L_{2}(q)$, for various values of q, and for $7: 3,23: 11,11: 10$, due to the availability of power maps in the underlying generic character tables.
NEW The tables of all maximal subgroups are available for $A_{5}, A_{6}, A_{7}, A_{7} \cdot 2, G_{2}(4), L_{2}(11), L_{2}(11) .2$, $U_{3}(3) .2, U_{5}(2)$.
NEW Several ordinary tables were added for which the tables of marks of the underlying groups are available in the GAP Library of Tables of Marks; this includes direct products and tables of small groups that can be computed easily with standard methods. The other way round, each ordinary table in the library for which the table of marks is contained in the GAP Library of Tables of Marks stores a class fusion into the table of marks.
NEW Several ordinary tables of Sylow normalizers in sporadic simple groups are available, including the normalizers of cyclic Sylow subgroups.
NEW The ordinary tables of $G . S_{3}$ are available for G one of $2^{2} . L_{3}(4), L_{3}(7), 3 . L_{3}(7), 2^{2} . O_{8}^{+}(2), 3 . U_{3}(5)$, $U_{3}(8), 3 . U_{3}(8), U_{3}(11), 3 . U_{3}(11)$.
NEW The ordinary tables of $L_{4}(5), O_{7}(5), O_{7}(5) .2, O_{9}(3), S_{4}(8), S_{8}(3), U_{4}(5)$ are available.
NEW Generic character tables are available for the double covers of alternating and symmetric groups (contributed by Felix Noeske).

The following changes are assigned to specific simple groups, and shown in alphabetical order.

C	A_{6}	: The fusions of $A_{6}, A_{6} .2_{1}, 2 . A_{6}$ into the tables of marks were changed in order to make diagrams of fusions commutative.
NEW	B	The tables of the maximal subgroups of the types $3^{1+8} .2^{1+6} . U_{4}(2) .2$ and $\left(2^{2} \times F_{4}(2)\right): 2$, and the table of the Sylow 7 normalizer are available, as well as the table of the maximal subgroup of the type $\left(S_{3} \times 2 . F i_{22}\right) .2$ in 2.B.
NEW	Co_{1}	The table of the Sylow 5 normalizer is available.
NEW	Co_{2}	The table of the Sylow 2, 3, and 7 normalizers are available.
NEW	$F i_{24}^{\prime}$	The tables of the maximal subgroups $3^{2} .3^{4} .3^{8} .\left(A_{5} \times 2 A_{4}\right) .2,2^{3+12} .\left(L_{3}(2) \times A_{6}\right)$, and $2^{6+8} .\left(S_{3} \times A_{8}\right)$ and their class fusions are now available (contributed by Alexander Hulpke).
NEW		The tables of the Sylow 5 and 7 normalizer are available.
NEW	$H N$: The table of the maximal subgroup 4.HS.2 of HN. 2 is available.
C	$H S$: The class fusion of HS into Co_{3} was replaced by one that is compatible with the Brauer tables available.
C	J_{2}	: The class fusion of $2 . J_{2} .2$ into $2 . S u z$ was replaced by one that is compatible with the Brauer tables available.
***		The class fusion of 2.HS.2 into HN was corrected.
***	J_{4}	: The table with identifier $\left(3^{\wedge}(1+2) \times 2\right) . S D 16$ is not that of the Sylow 3 normalizer in J_{4}; the name J4N3 is no longer admissible for this table (reported by G. Navarro and A. Moreto).

NEW		The table of the Sylow 3 normalizer in J_{4} is available, via the names $\left(2 \times 3^{\wedge}(1+2){ }^{+}: 8\right): 2$ and J4N3.
C	L_{2}	: The class fusion of $L_{2}(11)$ into J_{1} was replaced by one that is compatible with the Brauer tables available.
C	$L_{2}(16)$: The class fusions of $L_{2}(16) .2$ into J_{3} and of $L_{2}(16) .4$ into $J_{3} .2$ were replaced by maps that are compatible with the Brauer tables available.
C	L_{2}	: The class fusion of $L_{2}(19)$ into J_{3} was replaced by one that is compatible with the Brauer tables available.
C	$L_{2}(27)$: The class fusion of $L_{2}(27) .3$ into $S_{6}(3)$ was replaced by one that is compatible with the Brauer tables available.
C	$L_{3}(3)$: The class fusions of $L_{3}(3) .2$ into $G_{2}(3)$ and $S_{6}(3)$ were replaced by maps that are compatible with the Brauer tables available.
C	$L_{3}(4)$: The class fusions of $4_{2} \cdot L_{3}(4) \cdot 2_{1}$ into $O N$ and of $4_{2} \cdot L_{3}(4) \cdot 2_{3}$ into $4 \cdot U_{4}(3) \cdot 2_{3}$ were replaced by maps that are compatible with the Brauer tables available.
NEW		The tables of $2^{2} . L_{3}(4) .2_{3}$ and $2^{2} . L_{3}(4) .3$ are available.
NEW	$L_{3}(11)$: The table of $L_{3}(11)$ is available (contributed by Frank Lübeck, computed with a program written by Boris Hemkemeier and Ulf Jürgens).
C	L_{4}	: The class fusion of $L_{4}(3) \cdot 2_{2}$ into $O_{7}(3)$ was replaced by one that is compatible with the Brauer tables available.
NEW	$L_{8}(2)$: The table of $L_{8}(2)$ is available (contributed by Frank Lübeck, computed with a program written by Boris Hemkemeier and Ulf Jürgens).
NEW	M	: The tables of the Sylow 11 and 13 normalizer in M are available, via the names MN11 and MN13.
NEW		The tables with the names $4.2^{\wedge} 2$, ($2^{\wedge} 2 \mathrm{x} 3$). 2 , $1 / 2$ (8 xS 3), M12C4, $7^{\wedge} 1+2.6,2 \times 3 . \mathrm{A} 6$, $5^{\wedge} 1+2.2 \mathrm{~A} 4,(4 \mathrm{xA} 6) .2^{\wedge} 2,13^{\wedge} 1+2.2 \mathrm{~A} 4,7^{\wedge} 1+4.2 \mathrm{~A} 7$ are available (contributed by simon Norton).
C	M_{23}	: The class fusion of M_{23} into Co_{3} was replaced by one that is compatible with the Brauer tables available.
C	M_{24}	: The class fusion of $2^{4}: A_{8}$ into M_{24} was replaced by one that is compatible with the Brauer tables available.
C	$M c L$: The class fusion of McL.2 into Co_{3} was replaced by one that is compatible with the Brauer tables available.
***		The 2 nd power map of the table of the maximal subgroup of type $3.3^{1+4}: 4 S_{5}$ of $3 . M c L .2$ was corrected.
C	$O_{8}^{-}(2)$: The class fusion of $O_{8}^{-}(2) .2$ into $S_{8}(2)$ was replaced by one that is compatible with the Brauer tables available.
NEW	$O_{8}^{+}(2)$: The tables of $2^{2} . O_{8}^{+}(2) .2$ and $2^{2} . O_{8}^{+}(2) .3$ are available, as well as the table of the maximal subgroup of the type $2_{+}^{1+6} . A_{8}$ of $2 . O_{8}^{+}(2)$.
NEW	$O_{8}^{+}(3)$	The table of $O_{8}^{+}(3) . D_{8}$ is available.
NEW		The tables of the maximal subgroup $2^{2} .\left(U_{3}(3) .2 \times S_{4}\right)$ of $O_{8}^{+}(3) . S_{4}$ and of the maximal subgroups $3^{3+6}:\left(L_{3}(3) \times D_{8}\right)$ and $3^{6} . L_{4}(3) . D_{8}$ of $O_{8}^{+}(3) . D_{8}$ are available.
NEW	$O_{8}^{-}(3)$: The table of $O_{8}^{-}(3) .2_{1}$ is available.
NeW	$O_{9}(3)$: The table of the maximal subgroup of type $2^{8} . A_{9}$ is available.
C	$S_{4}(4)$: The class fusion of $S_{4}(4) .2$ into $S_{8}(2)$ was replaced by one that is compatible with the Brauer tables available.
C	$S_{6}(3)$: The class fusion of $3^{6}: L_{3}(3)$ into $S_{6}(3)$ was replaced by one that is compatible with the Brauer tables available.
C	$U_{3}(5)$: The class fusion of $3 . U_{3}(5)$ into $3 . M c L$ was replaced by one that is compatible with the Brauer tables available.
NEW	$U_{4}(3)$	The table of $2^{2} . U_{4}(3) \cdot\left(2^{2}\right)_{122}$ is available.

Release of CTblLib 1.2 in May 2012

Brauer Tables

The following changes are assigned to the simple group involved, and shown in alphabetical order.

NEW	A_{6}	The Brauer tables of $A_{6} .2^{2}, 3 . A_{6} .2^{2}$ are available.
NEW	A_{15}	: The Brauer tables of A_{15} are available (contributed by Jürgen Müller).
NEW	A_{16}	The Brauer tables of A_{16} are available (contributed by Jürgen Müller).
NEW	A_{17}	: The Brauer tables of A_{17} are available (contributed by Jürgen Müller).
NEW	A_{19}	: The 2-modular Brauer tables of A_{19}, S_{19} are available (contributed by Lukas Maas and Jürgen Müller).
NEW	${ }^{2} E_{6}(2)$: The tables of $2^{2} .{ }^{2} E_{6}(2) \bmod 11,13,17,19$ are available.
NEW	$F i_{22}$: The 3-modular tables of $F i_{22}, F i_{22} .2,2 . F i_{22}, 2 . F i_{22} .2$ and the 2-modular tables of $F i_{22}$, $F i_{22} .2,3 . F i_{22}, 3 . F i_{22} .2$ are available (contributed by Felix Noeske).
NEW	$F i_{23}$: The 2-modular table of Fi_{23} is available (contributed by Gerhard Hiss, Max Neunhöffer, and Felix Noeske). The 17 -modular table of $F i_{23}$ is available (contributed by Jürgen Müller).
***	F_{3+}	: The wrong 3 - and 11-modular tables of F_{3+} from the earlier version are no longer available.
NEW	$H N$: The 2-modular table of $H N, H N .2$ are available (contributed by Jon Thackray). The 3modular table of $H N, H N .2$ are available (contributed by Gerhard Hiss, Jürgen Müller, Felix Noeske, and Jon Thackray). The 5-modular table of HN,HN. 2 are available (contributed by Klaus Lux, Felix Noeske, Alex Ryba).
NEW	$L_{2}(25)$: The Brauer tables of $L_{2}(25) .2^{2}$ are available.
NEW	$L_{2}(49)$: The 2-, 3-, and 5-modular Brauer tables of $L_{2}(49) .2^{2}$ are available.
***	$L_{2}(81)$: The degree 80 character in the 41-modular table of $L_{2}(81) .2_{3}$ was wrong.
NEW		The 2-modular table of $L_{2}(81) \cdot(2 \times 4)$ and the 2-, 5 -, and 41-modular tables of $L_{2}(81) .2^{2}$ are available.
NEW	$L_{3}(4)$: The Brauer tables of $L_{3}(4) \cdot 2^{2}, L_{3}(4) \cdot 3 \cdot 2_{2}, L_{3}(4) \cdot 3 \cdot 2_{3}, L_{3}(4) \cdot D_{12}, 2 . L_{3}(4) .2^{2}$ (eight groups), 3. $L_{3}(4) .2^{2}, \quad 3 . L_{3}(4) \cdot 3.2_{2}, \quad 2^{2} . L_{3}(4), \quad 2^{2} \cdot L_{3}(4) \cdot 2_{1}, \quad 2^{2} \cdot L_{3}(4) \cdot 2_{2}, \quad 2^{2} \cdot L_{3}(4) \cdot 2_{3}$, $2^{2} . L_{3}(4) \cdot 3,2^{2} \cdot L_{3}(4) \cdot 2^{2}, 2^{2} \cdot L_{3}(4) \cdot 3 \cdot 2_{2}, 2^{2} \cdot L_{3}(4) \cdot 3 \cdot 2_{3}, 2^{2} \cdot L_{3}(4) \cdot D_{12},\left(2^{2} \times 3\right) \cdot L_{3}(4),\left(2^{2} \times\right.$ 3). $L_{3}(4) \cdot 2_{2},\left(2^{2} \times 3\right) \cdot L_{3}(4) \cdot 2_{3},\left(2^{2} \times 3\right) \cdot L_{3}(4) \cdot 3$ are available.
NEW	$L_{3}(9)$: The Brauer tables of $L_{3}(9) .2^{2}$ are available.
NEW	$L_{4}(4)$: The 2-modular tables of $L_{4}(4)$ (contributed by Frank Lübeck), $L_{4}(4) \cdot 2_{1}, L_{4}(4) \cdot 2_{2}$, $L_{4}(4) .2_{3}, L_{4}(4) .2^{2}$ are available.
NEW	$O_{8}^{+}(2)$: The Brauer tables of $O_{8}^{+}(2) \cdot S_{3}, 2^{2} . O_{8}^{+}(2), 2^{2} . O_{8}^{+}(2) \cdot 2,2^{2} . O_{8}^{+}(2) .3,2^{2} . O_{8}^{+}(2) . S_{3}$ are available.
C	$O_{8}^{+}(3)$	Adjusted the 5 - and 7-modular table to the changes of the ordinary table.
NEW		The $2-, 5-, 7-, 13$-modular tables of $O_{8}^{+}(3) \cdot 2_{111}^{2}, O_{8}^{+}(3) \cdot 2_{122}^{2}, O_{8}^{+}(3) \cdot S_{3}, O_{8}^{+}(3) \cdot A_{4}$, $O_{8}^{+}(3) . D_{8}$ are available, as well as the 13-modular table of $O_{8}^{+}(3) . S_{4}$.
***	$S_{6}(3)$	The 13-modular tables of $S_{6}(3), S_{6}(3) .2,2 . S_{6}(3), 2 . S_{6}(3) .2$ are available.
NEW	$S z(8)$: The Brauer tables of $2^{2} . S z(8)$ are available.
NEW	$U_{4}(3)$	The Brauer tables of $U_{4}(3) \cdot 2_{122}^{2}, \quad U_{4}(3) \cdot 2_{133}^{2}, \quad U_{4}(3) \cdot D_{8}, \quad 2 \cdot U_{4}(3) \cdot 2_{122}^{2}$ (six groups), $2 \cdot U_{4}(3) \cdot 2_{133}^{2}$ (six groups), $3_{1} \cdot U_{4}(3) \cdot 2_{2}^{\prime}, \quad 3_{2} \cdot U_{4}(3) \cdot 2_{3}^{\prime}, \quad 3_{2} \cdot U_{4}(3) \cdot 2_{133}^{2}, \quad 6_{2} \cdot U_{4}(3) \cdot 2_{3}^{\prime}$ are available.
NEW	$U_{6}(2)$: The Brauer tables of $U_{6}(2) \cdot S_{3}, 3 \cdot U_{6}(2) \cdot S_{3}, 2^{2} . U_{6}(2), 2^{2} \cdot U_{6}(2) \cdot 2,2^{2} . U_{6}(2) .3,2^{2} . U_{6}(2) \cdot S_{3}$, $\left(2^{2} \times 3\right) \cdot U_{6}(2),\left(2^{2} \times 3\right) \cdot U_{6}(2) \cdot 2,\left(2^{2} \times 3\right) \cdot U_{6}(2) \cdot 3$ are available.

Ordinary Tables

The following bugfixes are not related to the character tables of simple groups.

***	2.Sym4	This name would be that of a maximal subgroup; the table was renamed to 2. Symm (4).
***	2xSym4	: This name would be that of a maximal subgroup; the table was renamed to 2xSymm (4).
***	d60	: The table with this name belongs to the dihedral group of order 120, it was renamed to D120.
***	P12/G1/L2/V1/ext2	: The character table with this name was not correct, some of its class multiplication coefficients were not integral. (This problem occurs already in the microfiches that are contained in the book "Perfect Groups".)
***	P41/G1/L1/V4/ext2	The character table with this name was not correct, this table was not the character table of a finite group. (This problem occurs already in the microfiches that are contained in the book "Perfect Groups".)
***	s61	: This name would be that of a symmetric group; the table was is now available as $A_{8} .2 N 2$.
***	Sym4	: This name would be that of a maximal subgroup; the table was renamed to Symm (4).

The following changes affect several ordinary tables.
NEW An ordinary character table is available for each table in the library of tables of marks.
C The class fusion to the table of marks was changed for $A_{6}, A_{6} .2_{1}, 2 . A_{6}, G_{2}(3), H e, L_{2}(11) .2, L_{2}(25)$, $L_{2}(121), L_{3}(4), 3 . L_{3}(4), 2^{2} . L_{3}(4), L_{3}(7), M_{12}, M c L .2, O_{8}^{+}(2), S_{4}(4), S_{4}(4) .2, S_{4}(5), U_{3}(3), U_{3}(3) .2$, $U_{3}(5), U_{3}(8), U_{4}(2), U_{4}(2) .2, U_{4}(3), U_{4}(3) .2_{1}, U_{4}(3) .2_{133}^{2}$.
NEW The tables of all maximal subgroups are available for $2 . A_{5}, 2 . A_{6}, 3 . A_{6}, 6 . A_{6}, 2 . A_{7}, 3 . A_{7}, 6 . A_{7}$, $A_{8}, A_{8} .2,2 . A_{8}, A_{9}, A_{9} .2,2 . A_{9}, A_{10}, A_{10} .2,2 . A_{10}, 2 . A_{11}, A_{11}, A_{11} .2, A_{12}, A_{12} .2,2 . A_{12}, A_{13}$, $A_{13} .2, B, F_{3+} .2, F i_{22} .2, G_{2}(3) .2,3 . G_{2}(3), 2 . G_{2}(4), G_{2}(5), H e .2, H N .2, H S .2,2 . L_{2}(11), L_{2}(13)$, 2. $L_{2}(13), L_{2}(17), 2 . L_{2}(17), L_{2}(19), 2 . L_{2}(19), L_{2}(23), 2 . L_{2}(23), L_{2}(25), 2 . L_{2}(25), L_{2}(27), 2 . L_{2}(27)$, $L_{2}(29), 2 . L_{2}(29), L_{2}(31), 2 . L_{2}(31), L_{2}(109), L_{2}(113), L_{2}(121), L_{2}(125), L_{3}(2), 2 . L_{3}(2), L_{3}(3)$, $L_{3}(4), L_{3}(4) . D_{12}, 2 . L_{3}(4), 3 . L_{3}(4), 2^{2} . L_{3}(4), 2^{2} . L_{3}(4) .2_{2}, 2^{2} . L_{3}(4) .3, L_{3}(5), L_{3}(7), 3 . L_{3}(7), L_{3}(8)$, $L_{3}(9), L_{3}(11), L_{4}(3), L_{5}(2), L_{6}(2), L_{7}(2), 2 . M_{22} .2, O_{7}(3), 2 . O_{7}(3), 3 . O_{7}(3), 6 . O_{7}(3), O_{8}^{-}(2), O_{8}^{+}(2)$, $2 . O_{8}^{+}(2), 2^{2} . O_{8}^{+}(2), O N .2,2 . R u, S_{4}(4), S_{4}(4) .2, S_{4}(5), 2 . S_{6}(2), S_{8}(2), S z(8), S z(8) .3,2 . S z(8)$, $2^{2} . S z(8), U_{3}(3), U_{3}(4), U_{3}(4) .2, U_{3}(5), U_{3}(5) .2, U_{3}(5) .3, U_{3}(5) . S_{3}, 3 . U_{3}(5), U_{3}(7), U_{3}(8), U_{3}(9)$, $U_{3}(11), U_{4}(2), U_{4}(2) .2,2 . U_{4}(2), 2 . U_{4}(2) .2, U_{4}(3), U_{4}(3) .2_{1}, U_{4}(3) .2_{3}, U_{4}(3) .\left(2^{2}\right)_{133}, U_{6}(2), 2 . U_{6}(2)$, $3 . U_{6}(2), 6 . U_{6}(2),{ }^{2} F_{4}(2)^{\prime} .2$.
NEW Tables of isoclinic variants of the groups $6 . A_{7} .2,2 . A_{11} .2,2 . A_{12} .2,2 . A_{13} .2,2 . F i_{22} \cdot 2,6 . F i_{22} .2$, 2.HS.2, 2. J $J_{2} .2,2 . L_{3}(2) .2,2 . L_{3}(4) .2_{3}, 4_{1} . L_{3}(4) .2_{1}, 4_{1} . L_{3}(4) .2_{2}, 4_{2} . L_{3}(4) .2_{1}, 4_{2} . L_{3}(4) .2_{3}, 6 . L_{3}(4) .2_{1}$, $6 . L_{3}(4) .2_{2}, 2 . M_{22} .2,4 . M_{22} .2,6 . M_{22} .2,12 . M_{22} .2,2 . S u z .2,6 . S u z .2,2 . U_{4}(3) .2_{1}, 2 . U_{4}(3) .2_{2}, 2 . U_{4}(3) .2_{3}$ are available.

The following changes are assigned to specific simple groups, and shown in alphabetical order.

C	A_{5}	Changed the fusion from $A_{5} \times A_{5}$ to A_{5}.
*	A_{6}	Corrected the table of $12 . A_{6} \cdot 2_{3}$.
C		Replaced the fusion from $2 . M_{12} M 4$ to $A_{6} .2^{2}$ by one to $M_{12} M 4$.
C		Changed the fusion from P1/G1/L1/V1/ext2 to 2^{4} : A_{6}.
NEW		The character table of the Sylow 2-normalizer in 6. A_{6} is available.
C	A_{7}	Changed the fusions from A_{6} to A_{7} and from $A_{6} .2{ }_{1}$ to $A_{7} .2$.
C	A_{8}	Changed the fusion from $A_{6} .22_{1}$ to A_{8}.
C	A_{11}	Changed the fusion from A11Syl2.
NEW	A_{18}	The ordinary table of A_{18} is availabe.
NEW	A_{19}	The ordinary tables of A_{19}, S_{19} are availabe.
NEW	B	The character table of the Sylow 7-normalizer in $2 . B$ is available.
***	Co ${ }_{1}$: Changed the ordering of the maxes $7^{2}:\left(3 \times 2 A_{4}\right)$ and $5^{2}: 2 A_{5}$.
NEW		The character tables of defect 3- and 5-group normalizers in $C o_{1}$ and 2.Co ${ }_{1}$ are available.

C	${ }^{3} D_{4}(2)$: Changed the fusion from $S_{3} \times L_{2}(8)$.
NEW	${ }^{2} E_{6}(2)$: The ordinary tables of $3 .{ }^{2} E_{6}(2)$ (contributed by Frank Lübeck), 3. ${ }^{2} E_{6}(2) .2,6 .{ }^{2} E_{6}(2)$, $6 .{ }^{2} E_{6}(2) .2,\left(2^{2} \times 3\right) .{ }^{2} E_{6}(2),\left(2^{2} \times 3\right) .{ }^{2} E_{6}(2) .2$ are available.
NEW	${ }^{2} F_{4}(2){ }^{\prime}$	The character tables of the Sylow 2-normalizers in ${ }^{2} F_{4}(2)^{\prime}$ and ${ }^{2} F_{4}(2)^{\prime} .2$ are available.
C	Fi_{22}	Changed the fusions from 3.Fi $i_{22} M 5$ to $3 . F i_{22}$ and from 6.Fi $i_{22} M 5$ to 6.Fi i_{22}.
NEW		The character table of the Sylow 3-normalizer in 3.Fi 22 $^{\text {is available. }}$
***	F_{3+}	Changed the ordering of the maxes $A_{6} \times L_{2}(8): 3$ and $7: 6 \times A_{7}$.
C		Changed the fusions from Fi_{23} to F_{3+} and from $3^{7} . O_{7}(3): 2$ to $F_{3+} .2$.
NEW		The character tables of the Sylow 5 - and 7 -normalizers in $3 . F_{3+} .2$, and the table of the Sylow 5 -normalizer in $3 . F_{3+}$ are available.
NEW	He	: The character tables of defect 3-group normalizers in He. 2 are available.
NEW		The character tables of normalizers of radical p-subgroups are available.
NEW	$H N$: The character tables of the Sylow 2-, 3-, and 5-normalizers in $H N$, and the character table of the Sylow 3 -normalizer in $H N .2$ are available.
NEW		The character tables of defect 3-group normalizers in $H N$ and HN. 2 are available.
C	$H S$	Changed the class fusion from 5: $4 \times 2 . A_{5}$.
		The character tables of the Sylow 2- and 3-normalizers in 2.HS.2, and the character tables of the Sylow 2- and 5 -normalizers in $2 . H S$ are available.
NEW		The character tables of defect 2-group normalizers in $2 . H S$ are available.
C	J_{2}	Changed the fusion from $2 . A_{5} \times D_{10}$ to $2 . J_{2}$, and the fusion from 3. $A_{6} .2^{2}$ to $J_{2} .2$.
NEW		The character tables of the Sylow 2- and 3 -normalizers in $2 . J_{2}$, and the character table of the Sylow 5 -normalizer in $2 . J_{2} .2$ are available.
NEW		The character table of the primitive group $2^{12} . J_{2}$ is available.
NEW	J_{4}	: The character tables of defect 3-group normalizers in J_{4} are available.
***	$L_{2}(8)$: The name ${ }^{2} G_{2}(3)$ was erroneously associated with the character table of $L_{2}(8)$; the correct table is that of $L_{2}(8) .3$. (This error has been communicated by Felix Noeske.)
***	$L_{2}(11)$	Changed the ordering of the maxes S_{4} and D_{24} in $L_{2}(11) .2$.
NEW	$L_{2}(25)$: The ordinary table of 4. $L_{2}(25) \cdot 2_{3}$ is available.
NEW	$L_{2}(49)$: The ordinary table of $L_{2}(49) .2^{2}$ is available.
NEW	$L_{2}(64)$: The ordinary table of $L_{2}(64) .6$ is available.
NEW	$L_{2}(81)$: The ordinary tables of $L_{2}(81) .2^{2}$ and $L_{2}(81) .(2 \times 4)$ are available.
C	$L_{3}(2)$: Changed the fusions from P13/G1/L2/V1/ext2, P13/G1/L6/V1/ext2 to $L_{3}(2)$.
C	$L_{3}(4)$: The table of $L_{3}(4) . D_{12}$ was replaced by a table with different ordering of classes and characters; note that the table is an ATLAS table but it had erroneously not been replaced earlier. The previous table had the name psl $(3,4): d 12$, the new table has the name L3(4).D12, the permutations of columns and rows between the two tables are stored in the attribute CASInfo of the new table.
C		Changed the fusion from $\left(2^{2} \times 3\right) . U_{6}(2) M 3$ to $3 . L_{3}(4)$.
NEW		The ordinary tables of $\left(2^{2} \times 3\right) . L_{3}(4) \cdot 2_{1},\left(2^{2} \times 3\right) . L_{3}(4) \cdot 2_{2},\left(2^{2} \times 3\right) . L_{3}(4) \cdot 2_{3}, \quad\left(2^{2} \times\right.$ 3). $L_{3}(4) \cdot 3,(2 \times 4) \cdot L_{3}(4),(2 \times 12) \cdot L_{3}(4), 4^{2} \cdot L_{3}(4),\left(4^{2} \times 3\right) \cdot L_{3}(4), 2 \cdot L_{3}(4) \cdot 2^{2}$ (eight groups), $4_{1} \cdot L_{3}(4) \cdot 2_{3}^{*}, 4_{1} \cdot L_{3}(4) \cdot 2^{2}$ (eight groups), $4_{2} \cdot L_{3}(4) \cdot 2_{2}^{*}, 4_{2} \cdot L_{3}(4) .2^{2}$ (eight groups), $2^{2} . L_{3}(4) .2_{1}, 2^{2} . L_{3}(4) \cdot 2^{2}, 2^{2} . L_{3}(4) .6,3 . L_{3}(4) .3 \cdot 2_{2}, 6 . L_{3}(4) \cdot 2^{2}$ (eight groups) are available.
NEW	$L_{3}(9)$	The ordinary table of $L_{3}(9) .2^{2}$ is available.
NEW	$L_{4}(4)$: The ordinary table of $L_{4}(4) \cdot 2^{2}$ is available.
NEW	$L_{4}(5)$: The ordinary tables of $2 . L_{4}(5), 4 . L_{4}(5)$ are available.
NEW	Ly	: The character tables of defect 3-group normalizers in $L y$ are available.
***	M	: The character table of the 7B centralizer, with the identifier $7 \wedge 1+4.2 \mathrm{~A}$, was wrong.
NEW		The character tables of the Sylow 5- and 7-normalizers in M are available.
NEW		The character tables of defect 3-group normalizers in M are available.
C	M_{11}	: Replaced the fusions from $2 . M_{12}$ M2 and 2.HSM9 by fusions to M_{12} M2 and HSM9, respectively.
C	M_{12}	: Changed the class fusions from $2 \times M_{11}, 2 . M_{12} M 4,2 \times 3^{2} .2 . S_{4}, 2 . M_{12} M 7, A_{6} . D_{8}$ to 2. M_{12}.

The character table of the Sylow 2-normalizer in $2 . M_{12}$ is available.

C	M_{22}	: Changed the class fusion from $2 \times 3 . A_{7}$ to $6 . M_{22}$, and the class fusions from $2 .\left(2 \times 3 . A_{7}\right)$, $3 \times 4 . M_{22} M 5,3 \times 4 . M_{22} M 6,3 \times 2 .\left(2 \times L_{2}(11)\right)$ to $12 . M_{22}$.
C		Replaced the fusion from 3.McLM3 by one to McLM3.
NEW		The character tables of defect 3-group normalizers in $12 . M_{22}$ and the Sylow 2-normalizer in $4 . M_{22}$ are available.
NEW		The character table of a primitive group $2^{10} . M_{22}$ is available.
NEW	M_{24}	The character tables of normalizers of radical p-subgroups are available.
C	$M c L$: Changed the fusions from $3.3^{1+4}: 2 S_{5}, 3 \times 2 . A_{8}, 3 . U_{3}(5)$ to $3 . M c L$, and the fusion from $U_{4}(3)$ to $M c L$.
C		Replaced the fusion from 3.McLM10 to $2^{4}: A 7$ by one to McLM10.
C		Changed the fusion from $3.3^{4} .3^{2} . Q_{8}$ to $3.3^{1+4}: 2 S_{5}$.
NEW		The character tables of the Sylow 3- and 5 -normalizers in $3 . M c L .2$, and the character table of the Sylow 3-normalizer in $M c L .2$ are available.
NEW	$O_{8}^{-}(3)$: The ordinary tables of $2 . O_{8}^{-}(3)$ (contributed by Max Neunhöffer), $O_{8}^{-}(3) \cdot 2_{2}, O_{8}^{-}(3) .2_{3}$, $\mathrm{O}_{8}^{-}(3) .2^{2}$ are available.
C	$O_{8}^{+}(3)$	Sorted rows and columns of the table of $O_{8}^{+}(3) . S_{4}$ (in the old version, the trivial character was not the first one, and this is not supported by the construction function).
NEW		The ordinary tables of $O_{8}^{+}(3) .2_{122}^{2}, 2 . O_{8}^{+}(3)$ (contributed by Max Neunhöffer), $2^{2} . O_{8}^{+}(3)$, $2^{2} . O_{8}^{+}(3) .3$ are available.
NEW	$O_{8}^{+}(7)$	The ordinary tables of $O_{8}^{+}(7), 2 . O_{8}^{+}(7)$ are available (contributed by Eamonn O'Brien).
NEW	$O_{9}(3)$	The ordinary table of $2 . O_{9}(3)$ is available (contributed by Max Neunhöffer).
NEW	$O_{10}^{-}(3)$: The ordinary tables of $O_{10}^{-}(3)$ and $2 . O_{10}^{-}(3)$ are available (contributed by Eamonn O’Brien).
NEW	$O N$: The character tables of the Sylow 3- and 7-normalizers in 3.ON.2, and the character table of the Sylow 2-normalizer in $O N .2$ are available.
NEW		The character tables of defect 2-group normalizers in $O N$ and 3.ON are available.
C	$R u$: Changed the class fusion from $2.2^{3+8}: L_{3}(2)$ to $2 . R u$. The character table of the Sylow 2-normalizer in $2 . R u$ is available.
C	$S_{4}(4)$	Changed the fusion from a5wc2 to $S_{4}(4)$.
NEW	$S_{4}(9)$	The ordinary tables of $S_{4}(9)$, $S_{4}(9) .2_{1}, S_{4}(9) .2_{2}, S_{4}(9) .22_{3}, S_{4}(9) .2^{2}$ are available.
C	$S_{6}(2)$	Changed the fusions from 2. $\left[2^{6}\right]:\left(S_{3} \times S_{3}\right), 2^{6}: L_{3}(2)$.
NEW	$S_{6}(4)$	The ordinary table of $S_{6}(4) .2$ is available.
C	Suz	Changed the class fusion from $\left(A_{6}: 2_{2} \times A_{5}\right) .2$ to $S u z .2$, the class fusions from $2 . S u z M 4$, $\left(2 \times L_{3}(3)\right) .2,\left(A_{6} \times 2 . A_{5}\right) .2$ to $2 . S u z$, the class fusions from $3 \times U_{5}(2), 3 \times 2_{-}^{1+6} . U_{4}(2)$, $\left(3 . A_{6} \times A_{5}\right): 2$ to $3 . S u z$, and the class fusion from $\left(3 . A_{6} .2_{2} \times A_{5}\right): 2$ to $3 . S u z .2$.
C		Changed the class fusions from $3 \times 2 . S u z M 4,3 \times 2 . J_{2} .2,3 \times\left(2 \times L_{3}(3)\right) .2,\left(3 . A_{6} \times 2 . A_{5}\right) .2$ to 6.Suz.
C		Changed maxes of $S u z$ and its central extensions, there is no need for $S u z M 15$ etc., take $L_{3}(3) .2$ and suitable central extensions twice.
NEW	$S z(8)$	The character table of the primitive group $2^{12} . S z(8)$ is available.
C	$U_{3}(5)$	Replaced the fusion from $2 . H S M 3$ by one to HSM3.
C		Changed the fusion from $3 \times 2 S_{5}$ to $U_{3}(5) .3$.
C	$U_{3}(8)$	Changed the fusion from $3 \times L_{2}(8)$ to $U_{3}(8)$.
C	$U_{4}(2)$	Changed the fusions from $A_{6} .2_{1}$ and 2.SuzM4 to $U_{4}(2)$.
C	$U_{4}(3)$	Replaced the fusions from $3^{2} . U_{4}(3) .2_{3}^{\prime}$ and $2 . U_{4}(3) .2_{3}^{\prime}$ to $U_{4}(3) .2_{3}$ by fusions to $U_{4}(3) \cdot 2_{3}^{\prime}$, changed the fusions from $U_{4}(2)$ to $U_{4}(3)$ and from $U_{4}(2) .2$ to $U_{4}(3) .2_{1}$, changed the fusions from $L_{3}(4) .2^{2}$ and $3^{2} \cdot U_{4}(3) \cdot 2_{133}^{2}$ to $U_{4}(3) \cdot 2_{133}^{2}$.
NEW		The ordinary tables of $2 \cdot U_{4}(3) \cdot\left(2^{2}\right)_{122} \quad$ (six groups), 2. $U_{4}(3) \cdot\left(2^{2}\right)_{133} \quad$ (six groups) $2 \cdot U_{4}(3) \cdot D_{8}, 6_{1} \cdot U_{4}(3) \cdot 2_{2}^{\prime}, 3_{1} \cdot U_{4}(3) \cdot 2_{122}^{2}, 3^{2} \cdot U_{4}(3),\left(3^{2} \times 2\right) \cdot U_{4}(3),\left(3^{2} \times 4\right) \cdot U_{4}(3),\left(3^{2} \times\right.$ 2). $U_{4}(3) \cdot D_{8}$ are available.
NEW	$U_{4}(4)$	The ordinary table of $U_{4}(4) .4$ is available.

NEW $\quad U_{4}(5) \quad:$ The ordinary tables of $U_{4}(5) .2_{1}, U_{4}(5) .2_{2}, U_{4}(5) .2_{3}, U_{4}(5) .2^{2}$ are available.
NEW $\quad U_{5}(3) \quad:$ The ordinary table of $U_{5}(3)$ is available.
NEW $\quad U_{5}(4) \quad:$ The ordinary tables of $U_{5}(4), U_{5}(4) .2$ are available.
C $U_{6}(2) \quad:$ Changed the fusions from $2 . U_{4}(3) .2_{2}$ to $2 . U_{6}(2)$, from $3_{1} \cdot U_{4}(3) \cdot 2_{2}$ and $\left(2^{2} \times 3\right) \cdot U_{6}(2)$ to $6 . U_{6}(2)$, and from $6_{1} . U_{4}(3) .2_{2}$ to $6 . U_{6}(2)$.
NEW The ordinary tables of $3 \cdot U_{6}(2) \cdot S_{3},\left(2^{2} \times 3\right) \cdot U_{6}(2) \cdot 2,\left(2^{2} \times 3\right) \cdot U_{6}(2) \cdot 3$ are available.
NEW $U_{6}(4) \quad:$ The ordinary table of $U_{6}(4)$ is available (contributed by Eamonn O'Brien).
NEW $U_{7}(2)$: The ordinary table of $U_{7}(2)$ is available (contributed by Frank Lübeck).

Release of CTblLib 1.3 in December 2019

Brauer Tables

The following changes are assigned to the simple group involved, and shown in alphabetical order.

NEW	$\begin{aligned} & A_{6} \\ & F_{4}(2) \end{aligned}$: The Brauer tables of $4 \cdot A_{6} \cdot 2_{3}$ are now available. : The 2 nd power map in the 13 -modular table of $2 .\left(2 \times F_{4}(2)\right) .2$ was wrong (as in the ordinary table).
NEW		The 2 - and 3 -modular tables of $F_{4}(2)$ and $2 . F_{4}(2)$ and of its 1 st and 5 th maximal subgroups are now available (computed by Frank Lübeck and Gerhard Hiss).
NEW	$F i_{23}$: The 3-modular Brauer table of $F i_{23}$ is available (computed by Lukas Görgen, Gerhard Hiss, and Klaus Lux).
***	J_{3}	: The 19-modular tables of $J_{3}, J_{3} .2,3 . J_{3}$, and $3 . J_{3} .2$ were changed, due to a generality problem.
NEW	$L_{3}(4)$	The Brauer tables of 3. $L_{3}(4) \cdot 3 \cdot 2_{3}$ are now avai
NEW	$O_{8}^{+}(3)$: The 3 -modular tables of $O_{8}^{+}(3), 2 . O_{8}^{+}(3), 2^{2} . O_{8}^{+}(3), O_{8}^{+}(3) .3$, and $2^{2} . O_{8}^{+}(3) .3$ are now available (computed by Frank Lübeck).
NEW	$O_{8}^{-}(3)$: The 3-modular table of $O_{8}^{-}(3), 2 . O_{8}^{-}(3), O_{8}^{-}(3) .2_{1}, O_{8}^{-}(3) .2_{2}, O_{8}^{-}(3) .2_{3}, O_{8}^{-}(3) .2^{2}$ are now available (computed by Frank Lübeck).
NEW	$O_{10}^{+}(2)$	The 2-modular table of $O_{10}^{+}(2)$ is now available (computed by Frank Lübeck).
NEW	$O_{10}^{-}(2)$	The 2-modular table of $O_{10}^{-}(2)$ is now available (computed by Frank Lübeck).
NEW	ON	: The 3-modular Brauer table of ON. 2 is available (computed by Klaus Lux and Alexander Ryba).
NEW	$S_{10}(2)$	The 2-modular table of $S_{10}(2)$ is now available (computed by Frank Lübeck).
NEW	Suz	: The 13-modular Brauer tables of $2 . S u z .2$ (and 6.Suz.2) are available (computed by Klaus Lux and Alexander Ryba).
NEW	$U_{3}(8)$: The Brauer tables of $9 . U_{3}(8) .3_{3}$ are now available, as well as the 7 -modular tables of $U_{3}(8) .3^{2}$ and $U_{3}(8) .\left(S_{3} \times 3\right)$.
***	$U_{4}(2)$: The 2-modular character table of $3 .\left(2 \times 2^{1+8}\right):\left(U_{4}(2): 2 \times 2\right)$ was not correct, due to an error in the GAP function that constructs the table from the ordinary one; now this function has been corrected. No other library tables were affected by this bug. (Thanks to Jürgen Müller for reporting the error.)
NEW	$U_{4}(3)$	The modular character tables of $12_{1} \cdot U_{4}(3) \cdot 2_{2}^{\prime}$ and $12.2 \cdot U_{4}(3) \cdot 2_{3}^{\prime}$ are now available.

The following changes affect several Brauer tables.
NEW Brauer tables are now automatically available for which all p-modular Brauer characters lift to characteristic zero; this applies for example to all groups $L_{2}(q)$ if p is odd.
NEW Brauer tables are now automatically available for which the ordinary tables store a construction recipe involving ConstructDirectProduct, ConstructIsoclinic, or ConstructMGA and for which the relevant Brauer tables of the ingredient tables are available.

Ordinary Tables

The following bugfixes are not related to the character tables of simple groups.

```
*** 2^2.(2^7.3^2).s3 : The table was renamed to 2^2.[2^7*3^2].S3, since the old name gives a wrong structure description.
: The table was renamed to \(5^{\wedge} 3:(4 x S 5)\), since the old name gives a wrong structure description.
*** \(\operatorname{NRS}\left(\mathrm{M} 24,2^{\wedge}(2+2+4) \mathrm{b}\right):\) The table was renamed to \(\operatorname{NRS}\left(\mathrm{M} 24,2^{\wedge}(4+4)\right)\), since the old name gives a wrong structure description.
```

The following changes affect several ordinary tables.
C The following class fusions were replaced by equivalent ones in order to achieve compatibility with fusions for factor groups or extensions, respectively. ($2^{\wedge} 2 \mathrm{x} 3$). U6(2). 2 to 6. Fi22.2, ($3^{\wedge} 2: 8 \mathrm{xA6}$). 2 to Suz.2, ($\left.3 \mathrm{x} 2^{\wedge}(1+6)_{-}-\mathrm{U} 4(2)\right) .2$ to $3 . \mathrm{Suz} .2$, (A5xD10). 2 to J2.2, $12 . \mathrm{M} 22 \mathrm{~N} 3$ to $12 . \mathrm{M} 22$, 12_2.L3(4).2_1 to 3.ON, 19:18 to J3.2, 2.HS.2N5 to 2.HS.2, 2.M12N2 to 2.M12, 2. [2^9]:5:4 to $2 \mathrm{~F} 4(2)$ '. 2 , 2 A 4 xA 5 to $2 . \mathrm{J} 2$, $2^{\wedge}(1+4)+: 3^{\wedge} 2.2$ to $\mathrm{G} 2(3), 2^{\wedge}(1+6)+:$ S5 to HS.2, $3 .(3 \mathrm{xM} 10): 2$ to $3 . \mathrm{J} 3.2$, $3.2^{\wedge}(1+4)+: 3^{\wedge} 2.2$ to $3 . \mathrm{G} 2(3), 3.3^{\wedge} 4.3^{\wedge} 2 . \mathrm{Q} 8$ to $3 . \mathrm{McL}, 3^{\wedge} 2 .\left(3 \mathrm{x} 3^{\wedge}(1+2)+\right):$ D8 to G2 (3).2, $3 \mathrm{x} 2 . \mathrm{J} 2.2 \mathrm{~N} 5$ to $6 . \mathrm{Suz}, 3 \mathrm{x} 4 . \mathrm{M} 22 \mathrm{~N} 2$ to $12 . \mathrm{M} 22,5^{\wedge} 2:(4 \mathrm{xS} 3)$ to J2.2, 6.A6M3 to $6 . \mathrm{A} 7$, 6.A6N2 to 6.A6, 6.A6N2 to 6.A7, $7: 6 \times \mathrm{L} 3(2)$ to $\mathrm{He} .2,7^{\wedge} 2: 2 . \mathrm{L} 2(7) .2$ to He.2, Fi22N3 to Fi22.

NEW The tables of all maximal subgroups are available for ${ }^{3} D_{4}(2),{ }^{3} D_{4}(2) .3,2 . A_{5} .2, A_{6} .2_{3}, 2 . C o_{1}, 2 . F i_{22}$, $3 . F i_{22}, G_{2}(4) .2,3 . J_{3}, L_{2}(8), L_{2}(8) .3, L_{3}(2) .2,2 . L_{3}(2) .2, L_{3}(3) .2,3 . M_{22} .2,3 . M c L .2,3 . O N$.
NEW Many tables of normalizers of radical p-subgroups of central extensions of simple groups are now available, as well as the class fusions into these overgroups.
NEW The CASInfo value was added for the following tables: 2.B, 2.Co o_{1} 2. $F_{4}(2), 2 . H S, 2 . J_{2}, 2 . M_{12}, 2 . R u$, 3. $F_{3+}, 3 . J_{3}, 3 . M c L, 3 . O N, 6 . S u z$, and $12 . M_{22}$. At the time when the CAS library got included in GAP's character table library, this information was apparently not saved. However, at least the book "Brauer Trees of Sporadic Groups" refers to the CAS numbering of certain characters, thus it is useful to make the values available. Thanks to Gerhard Hiss for the CAS format tables which had been used in the computations for the abovementioned book.

The following changes are assigned to specific simple groups, and shown in alphabetical order.

NEW	${ }^{3} D_{4}(3)$	The table of ${ }^{3} D_{4}(3)$ is now available.
NEW	${ }^{3} D_{4}(4)$	The table of ${ }^{3} D_{4}(4)$ is now available (contributed by Eamonn O'Brien).
NEW	Co_{1}	: The table of the largest solvable subgroup (of the structure $2^{4+12} .\left(S_{3} \times 3_{+}^{1+2}: D_{8}\right)$) is now available.
***	$E_{6}(2)$	Corrected the table (irrationalities and power maps).
NEW	F_{3+}	The tables of the largest solvable subgroups in F_{3+} and $F_{3+.}$ (of the structures 3_{+}^{1+10} : $2_{-}^{1+6}: 3_{+}^{1+2}: 2 S_{4}$ and $3_{+}^{1+10}:\left(2 \times 2_{-}^{1+6}: 3_{+}^{1+2}: 2 S_{4}\right)$, respectively $)$ are now available.
***	$F_{4}(2)$	Corrected the 2nd power map in the tables of $2 . F_{4}(2) .2$ (two isoclinic variants), $2 \times$ 2. $F_{4}(2) .2$, and $2 .\left(2 \times F_{4}(2)\right) .2$.
C	$G_{2}(3)$	The FusionToTom map was replaced, due to a generality problem.
C	$H S$: The FusionToTom map was replaced by one that is compatible with the ATLAS of Grou Representations.
NEW	$L_{3}(4)$	The table of the extension 3. $L_{3}(4) \cdot 3.22_{3}$ is now available.
C	$L_{3}(7)$: The FusionToTom map was replaced by one that is compatible with the ATLAS of Group Representations.
NEW	$O_{10}^{+}(3)$: The table of $O_{00}^{+}(3)$ is now available.
NEW	$O_{12}^{+}(2)$	The table of $O_{12}^{+}(2)$ is now available.
NEW	$O_{12}^{-1}(2)$: The table of $O_{12}^{-}(2)$ is now available.
NEW	$O_{12}^{+}(3)$: The tables of $O_{12}^{+}(3)$ and $2_{1} . O_{12}^{+}(3)$ are now available (contributed by Eamonn O'Brien)
NEW	$O_{12}^{-}(3)$	The table of $O_{12}^{-}(3)$ is now available (contributed by Eamonn O'Brien).
NEW	$U_{3}(8)$	The tables of $U_{3}(8) \cdot 3^{2}, U_{3}(8) \cdot\left(S_{3} \times 3\right)$, and $9 . U_{3}(8) \cdot 3_{3}$ are now available.

```
*** \(U_{4}(3)\) : The tables of the two bicyclic extensions \(12_{1} \cdot U_{4}(3) \cdot 2_{2}^{\prime}\) and \(12_{2} \cdot U_{4}(3) \cdot 2_{3}^{\prime}\) of \(U_{4}(3)\) are now available; they had been missing, in spite of the claim that all ATLAS tables are available.
*** \(\quad U_{4}(5) \quad:\) The class fusion from \(U_{4}(5)\) to \(U_{4}(5) .2^{2}\) was corrected.
```


Release of CTblLib 1.3.2 in March 2021

Brauer Tables

The following changes are assigned to the simple group involved, and shown in alphabetical order.
NEW $U_{3}(8)$: The 3 -modular Brauer table of $U_{3}(8) .\left(S_{3} \times 3\right)$ is now available.

Ordinary Tables

The following changes affect several ordinary tables.
NEW The tables of all maximal subgroups are available for $F_{4}(2)$.
The following changes are assigned to specific simple groups, and shown in alphabetical order.
NEW $L_{2}(49):$ The tables of $4 . L_{2}(49) .2_{3}$ and $4 . L_{2}(81) .4_{2}$ are now available.
NEW $L_{2}(81)$: The table of $4 . L_{2}(81) .2_{3}$ is now available.
NEW M : The table of $3^{1+12} .\left(2 \times U_{5}(2) .2\right)$ is now available, which is a subgroup of the maximal subgroup $3^{1+12} \cdot 2$.Suz. 2 of M that plays a role in the verification of the table of 3^{1+12} : 6.Suz.2.

Release of CTblLib 1.3.3 in January 2022

(No character tables were added or changed.)

Last update January 1st, 2022.

