Changes in the GAP Character Table Library

This list contains the changes in the GAP character table library since the official upgrade for GAP 3.4 in October 1996. We denote mathematical errors by *** and new information by **NEW**. We use **C** to denote changes that are not obviously corrections; the number of these changes is kept small.

Release of GAP 4.1 in July 1999

Brauer Tables

Changes are assigned to the simple group involved, and shown in alphabetical order.

***	${}^{2}E_{6}(2)$: The faithful characters of $2.{}^{2}E_{6}(2)$ and $2.{}^{2}E_{6}(2).2 \mod 19$ were corrected (contributed by Jürgen Müller).
NEW	A_{13}	: Indicators of A_{13} and S_{13} mod 2 are now known.
NEW	A_{14}	: The tables of $A_{14} \mod 2$, 11, 13 and tables of $S_{14} \mod 3$, 5, 7 are now known.
NEW	A_{15}	: All Brauer tables of S_{15} are now known (contributed by Jürgen Müller).
NEW	A_{16}	: All Brauer tables of S_{16} are now known (contributed by Jürgen Müller).
NEW	A_{17}	: All Brauer tables except the 3-modular one of S_{17} are now known (contributed by Jürgen Müller).
NEW	Co_2	: The degree 156 538 character of $Co_2 \mod 2$ is now proved.
NEW	Co_3	: One more indicator of $Co_3 \mod 2$ is now known.
***	Fi_{22}	: The faithful characters of $6.Fi_{22}$ and $6.Fi_{22}.2 \mod 5$ were corrected.
***	$L_{3}(4)$: The faithful characters of $12_2 L_3(4) \mod 7$ were corrected.
NEW	$O_8^+(3)$: The degree 50 596 characters of $O_8^+(3) \mod 2$ are now proved. Consequently, also the
		degree 101 192 of $O_8^+(3).2_1 \mod 2$, the degrees 50 596 and 101 192 of $O_8^+(3).2_2 \mod 2$, the degrees 50 596 and 151 288 of $O_8^+(3).3 \mod 2$, and the degree 202 384 of $O_8^+(3).4 \mod 2$ are now proved.
С	ON	: The tables of ON and $ON.2 \mod 19$ were changed in order to respect the choice of classes in Robert Wilson's "Atlas of Group Representations".
NEW	ON	: The tables of $ON \mod 11$ and $\mod 31$ are now known (contributed by Markus Ottensmann), as well as two new indicator values for $ON \mod 2$.
С	Ru	: The tables of Ru and $2.Ru \mod 5$ and $\mod 7$ were changed in order to respect the choice of classes in Robert Wilson's "Atlas of Group Representations".
NEW	Ru	: The tables of Ru and $2.Ru \mod 13$ and 29 are now known (contributed by Frank Röhr), as well as all indicator values of $Ru \mod 2$.
***	$S_{6}(3)$: The characters of $S_6(3)$ and $2.S_6(3) \mod 7$ were corrected; these changes do not affect the tables of $S_6(3).2$ and $2.S_6(3).2 \mod 7$ (contributed by Jürgen Müller).
***	Suz	: The faithful characters of $6.Suz$ and $6.Suz.2 \mod 7$ were corrected (contributed by Jürgen Müller).
NEW	Th	: The table of $Th \mod 19$ is now known.

Ordinary Tables

The following changes affect several ordinary tables.

- **C** Whitespace at the end of **InfoText** strings was removed.
- **NEW** Various class fusions were added.
- **NEW** Components tomidentifier and tomfusion were added in order to provide a (preliminary) interface to the library of tables of marks.
 - **C** In the library tables of alternating and symmetric groups, the **classtext** components (partitions parametrizing the conjugacy classes; in some cases, this had been hidden inside the **CAS** component of the table) were replaced by values of the attribute **ClassParameters**.

- **NEW** The tables of $L_2(q)$ were added for those values of q for which the table of marks of $L_2(q)$ is now contained in the GAP library.
- **NEW** In the library tables of symmetric groups, the partitions parametrizing the irreducible characters are stored on the tables, as value of the attribute CharacterParameters.
 - C The Identifier values of a few tables have been changed. For example, the table of L4(3).2² was previously known only as psl(4,3).v4. The old names are still valid.
 - *** The character tables with identifiers iu332, D2MJ4, and P4L82 were removed. The former two tables were incomplete, the latter one was wrong.
- **NEW** The ordinary tables of all maximal subgroups (and their class fusions) are now available for the groups $G_2(3)$, $J_3.2$, $2.M_{12}$, $M_{12}.2$, $M_{22}.2$, and $O_8^+(3)$.

The following changes are assigned to specific simple groups, and shown in alphabetical order.

A_6	: The table automorphisms of $4.A_6.2_3$ were corrected.
$\dot{Fi_{22}}$: The table of the maximal subgroup $2^7: S_6(2)$ of $Fi_{22}.2$ was added (contributed by E. Mpono).
Fi_{22}	: The table of the maximal subgroup $2^6: U_4(2).2$ of the maximal subgroup $2^6: S_6(2)$ of Fi_{22} was added (contributed by E. Mpono).
HS	: The tables (and fusions) of several normalizers of chains of <i>p</i> -subgroups were added.
J_4	: The classes and the characters of the maximal subgroup of type 2^{10} : $L_5(2)$ were reordered, and the identifier was changed from 152m10 (from the CAS library) to 2^10:L5(2).
McL	: The table of the seventh maximal subgroup of $McL.2$ was added.
$O_8^+(2)$: The classes and the characters of the maximal subgroup of type $2^6: A_8$ were reordered, and the identifier was changed from mo81p (from the CAS library) to 2^6:A8.
$O_8^+(3)$: The fusions from $O_7(3)$ and $3^6: L_4(3)$ were changed to the ones listed in the Atlas of Finite Groups.
$O_{10}^+(2)$: The table of the maximal subgroup $2^8: O_8^+(2)$ was added.
$S_{10}(2)$: The table of the subgroup $2^8: S_8(2)$ was added.
$U_4(3)$: The tables of $2.U_4(3).(2^2)_{122}$ and $6_2.U_4(3).2'_3$ were added.
	Fi_{22} HS_{J_4} $McL_{O_8^+(2)}$ $O_8^+(3)$ $O_{10}^+(2)_{S_{10}(2)}$

Release of GAP 4.2 in March 2000

Brauer Tables

Changes are assigned to the simple group involved, and shown in alphabetical order.

- **NEW** A_{14} : Table of $S_{14} \mod 2$ is now known (contributed by Dave Benson, added by Jürgen Müller).
- ******* A_{16} : Corrected principal block of the table of $S_{16} \mod 2$.
- **NEW** ON : The tables of $3.ON \mod 11$ and 31 are now known.
 - C ON : The tables of 3.ON and $3.ON.2 \mod 19$ were changed in order to respect the choice of classes in Robert Wilson's "Atlas of Group Representations". (This affects only the irreducibles of 3.ON of degrees 45090 and 77670.)

Ordinary Tables

The following changes affect several ordinary tables.

- **NEW** Various class fusions were added.
 - **C** The galomorphisms components which had been contained in only a few tables were removed.
 - *** The tomfusion values of $L_2(25)$ and $2^5 : S_6$ were corrected.
 - *** Element orders and power maps in the table with identifier s61p were corrected.
 - *** The table with identifier 2.cenc1 was removed because it was inconsistent.
 - **C** Two instances of the table of $(A_6 \times A_6) : 2^2$ were unified.

- C The tables with identifiers J2.2M4, $2^(2+4):(3x3):2^2$, and $2^(2+4):(S3xS3)$ were unified; the identifiers J2.2M5 and $2^(2+4):(S3xS3)$ can be used to access the table.
- **NEW** The ordinary tables of all maximal subgroups (and their class fusions) are now available for the groups S_6 , $J_2.2$, McL.2, Suz.2, 3.Suz.2, 3.Suz.2, Sz(32).

The following changes are assigned to specific simple groups, and shown in alphabetical order.

NEW	A_6	: The table of $12.A_6.2_3$ is now available.
***	Fi_{22}	: The name of the table of the 7-th maximal subgroup of Fi_{22} was corrected from
		$(2x2^{(1+8)}:U4(2)):2$ to $(2x2^{(1+8)}:U4(2):2;$ similarly, $(2x2^{(1+8)}:U4(2):2):2$ was corrected to $(2x2^{(1+8)}:U4(2):2x2)$.
NEW	Fi_{22}	: The tables of the maximal subgroups 2^{10} : M_{22} : 2 of Fi_{22} . 2 and 2^{11} . M_{22} of 2. Fi_{22} are
		now available via the names Fi22.2M4 and 2.Fi22M5, respectively.
\mathbf{C}	$U_{3}(5)$: The table with identifier U3(5).S3 was removed; it is replaced by the table with identifier
		U3(5).3.2 whose cosets of the outer automorphism group are ordered as in the Atlas of
		Finite Groups. The identifier U3(5).S3 is now admissible for the table with identifier
		U3(5).3.2.
***	$U_{4}(3)$: The table with identifier u4q3c was removed; characters and power maps of this table
		were erroneous. Apparently the table was thought to be that of $3_2.U_4(3).2'_3$, which can

be accessed with the name $3_2.04(3).2_3^2$.

NEW $U_4(3)$: The tables of $3_2.U_4(3).(2^2)_{133}$ and $U_4(3).(2^2)_{133}$ are now available.

Release of CTblLib 1.0 in January 2002

Brauer Tables

Changes are assigned to the simple group involved, and shown in alphabetical order.

NEW	A_{14}	: The tables of $A_{14} \mod 3, 5, 7$ and of $S_{14} \mod 11, 13$ are now known (contributed by Jürgen Müller, using MOC and the GAP package specht).
NEW	A_{17}	: The table of $A_{17} \mod 3$ is now known (contributed by Jürgen Müller).
NEW	F_{3+}	: All Brauer tables of the maximal subgroup $3^7 \cdot O_7(3)$, and the 2-modular table of the
		maximal subgroup $(3 \times O_8^+(3):3):2$ are available (contributed by Gerhard Hiß).
NEW	$L_{4}(4)$: The tables of $L_4(4) \mod 3, 5, 7, 17$ are now known (contributed by Gerhard Hiß).
NEW	Ly	: The tables of $Ly \mod 37$ and 67 are now known (contributed by Jürgen Müller, Max
		Neunhöffer, Frank Röhr, Robert Wilson).
NEW	$O_8^+(3)$: The table of $O_8^+(3).S_3 \mod 2$ is available.
NEW		The table of $O_8^+(3).S_3 \mod 2$ is available.
NEW	$S_{10}(2)$: The tables of $S_{10}(2) \mod 7, 11, 17, 31$ are now known (contributed by Gerhard Hiß).

Ordinary Tables

The following changes affect several ordinary tables.

- **NEW** The ordinary tables of the Schur covers of the symmetric groups S_{14} , S_{15} , S_{16} , S_{17} , and S_{18} are now available (contributed by Gunter Malle).
- **NEW** The ordinary tables of all maximal subgroups (and their class fusions) are now available for the group 2.HS (contributed by Ulrike Muthmann, Markus Ottensmann, and Frank Röhr).
- **NEW** The ordinary tables of all maximal subgroups (and their class fusions) are now available for the groups 2.Suz and 6.Suz (contributed by Thomas Breuer and Frank Himstedt).
- **NEW** The ordinary tables of all maximal subgroups (and their class fusions) are now available for the group $S_6(3)$.

NEW	$E_{6}(2)$: The table of the Chevalley group $E_6(2)$ is now available (contributed by B. Fischer).
NEW	F_{3+}	: The table of the maximal subgroup $2^{1+12} \cdot 3_1 \cdot U_4(3) \cdot 2_2'$ of F_{3+} is now available via the
		names 2^(1+12).3_1.U4(3).2_2', F3+M9, and F3+C2B.
		The table of the maximal subgroup 3^3 . $[3^{10}]$. $GL3(3)$ of F_{3+} is now available via the name
		3 ³ .[3 ¹⁰].GL3(3).
NEW	$F_{3+}.2$: The table of the maximal subgroup $3^7 O_7(3) : 2$ of $F_{3+} 2$ is now available (contributed
		by Faryad Ali).
***	HS	: The earlier (since CAS times) stored fusion of $2 \times A_6.2^2$ into HS did not lift to 2.HS
		and therefore was replaced by a compatible map.
NEW	$L_{3}(4)$: The table of $2^2 L_3(4) L_2$ is now available.
NEW	$L_{4}(9)$: The table of $L_4(9)$ is now available.
NEW	M	: The table of the maximal subgroup $2^{1+24}.Co_1$ is now available (contributed by Simon
		Norton).
NEW	$S_{4}(7)$: The tables of $S_4(7)$ and $S_4(7).2$ are now available.
NEW	$S_{6}(2)$: The table of the maximal subgroup $2^6: S_8$ of $2^6: S_6(2)$ (which is maximal in Fi_{22}) is now
		available (contributed by Faryad Ali).
NEW	$S_{6}(4)$: The table of $S_6(4)$ is now available.
NEW	$S_{6}(5)$: The table of $S_6(5)$ is now available.
NEW	$S_{12}(2)$: The table of $S_{12}(2)$ is now available (contributed by Christoph Köhler).
***	Suz	: The earlier (since CAS times) stored fusion of $(3^2: 4 \times A_6).2$ into Suz did not lift to
		3.Suz and therefore was replaced by a compatible map.
NEW	$U_{4}(3)$: The table of $3_1.U_4(3).2_2'$ was added.
NEW	$U_{4}(4)$: The table of $U_4(4)$ is now available.
NEW	$U_{6}(2)$: The table of the Schur cover $(2^2 \times 3).U_6(2)$ is now available.

Release of CTblLib 1.1 in February 2004

Brauer Tables

The following changes affect several Brauer tables.

NEW The *p*-modular tables of $G.S_3$ are available for all prime divisors *p* of |G|, for *G* one of $L_3(7)$, $3.L_3(7), U_3(5), 3.U_3(5), U_3(8), 3.U_3(8), U_3(11)$, and $3.U_3(11)$.

The following changes are assigned to the simple group involved, and shown in alphabetical order.

NEW	Co_2	: The indicators of the 36938 and 83948 in $Co_2 \mod 2$ are + (contributed by Jon
		Thackray).
NEW	Co_3	: The indicator of the 88000 in $Co_3 \mod 2$ is + (contributed by Jon Thackray).
NEW	J_4	: The tables of $J_4M1 \mod 3$ and 11 are available (contributed by Christoph Jansen).
NEW	$O_8^+(3)$: The tables of $O_8^+(3)$. $S_4 \mod 2$, 5, and 7 are available (contributed by Christoph Jansen).
NEW	ON	: The tables of $ON.2$ and $3.ON.2 \mod 11$ and 31 are available (contributed by Jürgen
		Müller).
NEW	ON	: The indicator of the 25916 in $ON \mod 2$ is + (contributed by Jon Thackray).
NEW	Suz	: The indicators of 10504 in $Suz \mbox{ mod } 2$ and $Suz.2 \mbox{ mod } 2$ are $+$ (contributed by Jon
		Thackray).

Ordinary Tables

The following changes affect several ordinary tables.

*** The table automorphisms were corrected for the tables with the identifiers A17, 2.A4xS3, 4.M22M6, 3.2⁽²⁺⁴⁾:(3x3):2, 3⁽¹⁺⁶⁾:2⁽³⁺⁴⁾:3²:2, 5:4x2.A5, D8xV4, 3.3⁵.U4(2), 3⁵.U4(2), group3, s61p, 2.(A4xA4), 3³:A4, 3⁷.07(3), ThN2, and 2².2E6(2).2; one reason for these errors were missing power maps.

- C The formerly admissible names c1, c2, c3 for the groups Co_1 , Co_2 , Co_3 have been removed, because these names are now admissible names of cyclic groups. The names c1m1, c1m4, c1m5, c1m24, c1n3, c2m1, c2m2, c2m3, c2m4, c2m5, c2m6, c2m7, c2m8, c2m9, c2m10, c2m11, c2m22, (now called M22C2A), c2m24 (now called M24C2B), c3m1, c3m2, c3m3, c3m4, c3m5, c3m6, c3m7, c3m8, c3m9, c3m10, c3m11, c3m12, c3m13, c3m14, c3n2, c3n3, c3n5, mcn2, mcn3, mcn5, om83, o8m2, o8m2.2, o10m2, o10m2c, o12m2, rvn2, s2m11, s2m12, s2m21, s2m23, and s2m24 (now called M24C2A) were removed because they would refer to maximal subgroups of other groups or of groups with nonadmissible names. The names u4q3.s3 and f22u3 were removed, the table is now available with the name S3xU4(3).
- **C** The ordering of maximal subgroups was changed for $A_5.2$, $A_6.2_1$, $J_3.2$, $M_{12}.2$, and McL.2, in order to be compatible with the ATLAS of Group Representations.
- *** The following class fusions were corrected. $2^7: S_6(2)$ onto $S_6(2)$ and into $Fi_{22}.2; 3.3^{1+4}: 4S_5$ into $3.McL.2; D_8 \times V_4$ into $HS; 3.2^{2+4}: (3 \times 3): 2$ into $3.McL, 3.2^4: A_7$, and $3.McLM10; 4.M_{22}M6$ into $4.M_{22}; G_2(3)M6$ into $G_2(3); A_5.2$ into $M_{12}.2; A_{11}Syl2$ into A_{11} .
- **NEW** Missing power maps were added for the tables suzs2, Fi22N3, RuN2, SuzN2, ThN2, for $L_2(q)$, for various values of q, and for 7:3, 23:11, 11:10, due to the availability of power maps in the underlying generic character tables.
- **NEW** The tables of all maximal subgroups are available for A_5 , A_6 , A_7 , A_7 .2, $G_2(4)$, $L_2(11)$, $L_2(11)$.2, $U_3(3)$.2, $U_5(2)$.
- **NEW** Several ordinary tables were added for which the tables of marks of the underlying groups are available in the GAP Library of Tables of Marks; this includes direct products and tables of small groups that can be computed easily with standard methods. The other way round, each ordinary table in the library for which the table of marks is contained in the GAP Library of Tables of Marks stores a class fusion into the table of marks.
- **NEW** Several ordinary tables of Sylow normalizers in sporadic simple groups are available, including the normalizers of cyclic Sylow subgroups.
- **NEW** The ordinary tables of $G.S_3$ are available for G one of $2^2.L_3(4)$, $L_3(7)$, $3.L_3(7)$, $2^2.O_8^+(2)$, $3.U_3(5)$, $U_3(8)$, $3.U_3(8)$, $U_3(11)$, $3.U_3(11)$.
- **NEW** The ordinary tables of $L_4(5)$, $O_7(5)$, $O_7(5)$, 2, $O_9(3)$, $S_4(8)$, $S_8(3)$, $U_4(5)$ are available.
- **NEW** Generic character tables are available for the double covers of alternating and symmetric groups (contributed by Felix Noeske).

ns of A_6 , $A_6.2_1$, $2.A_6$ into the tables of marks were changed in order to make
of fusions commutative.
s of the maximal subgroups of the types $3^{1+8} \cdot 2^{1+6} \cdot U_4(2) \cdot 2$ and $(2^2 \times F_4(2)) \cdot 2$,
able of the Sylow 7 normalizer are available, as well as the table of the maximal of the type $(S_3 \times 2.Fi_{22}).2$ in 2.B.
e of the Sylow 5 normalizer is available.
e of the Sylow $2, 3, and 7$ normalizers are available.
es of the maximal subgroups $3^2.3^4.3^8.(A_5 \times 2A_4).2, \ 2^{3+12}.(L_3(2) \times A_6)$, and
$\times A_8$) and their class fusions are now available (contributed by Alexander
s of the Sylow 5 and 7 normalizer are available.
of the maximal subgroup $4.HS.2$ of $HN.2$ is available.
fusion of HS into Co_3 was replaced by one that is compatible with the Brauer
uilable.
fusion of $2.J_2.2$ into $2.Suz$ was replaced by one that is compatible with the
bles available.
fusion of $2.HS.2$ into HN was corrected.
e with identifier $(3^{1+2}x2)$. SD16 is not that of the Sylow 3 normalizer in
ame J4N3 is no longer admissible for this table (reported by G. Navarro and

NEW		The table of the Sylow 3 normalizer in J_4 is available, via the names $(2x3^{(1+2)}+:8):2$ and J4N3.
\mathbf{C}	$L_2(11)$: The class fusion of $L_2(11)$ into J_1 was replaced by one that is compatible with the Brauer tables available.
С	$L_2(16)$: The class fusions of $L_2(16).2$ into J_3 and of $L_2(16).4$ into $J_3.2$ were replaced by maps that are compatible with the Brauer tables available.
\mathbf{C}	$L_2(19)$: The class fusion of $L_2(19)$ into J_3 was replaced by one that is compatible with the Brauer tables available.
\mathbf{C}	$L_2(27)$: The class fusion of $L_2(27).3$ into $S_6(3)$ was replaced by one that is compatible with the Brauer tables available.
С	$L_{3}(3)$: The class fusions of $L_3(3).2$ into $G_2(3)$ and $S_6(3)$ were replaced by maps that are compatible with the Brauer tables available.
С	$L_3(4)$: The class fusions of $4_2 L_3(4) . 2_1$ into ON and of $4_2 . L_3(4) . 2_3$ into $4 . U_4(3) . 2_3$ were replaced by maps that are compatible with the Brauer tables available.
NEW NEW	$L_3(11)$	 The tables of 2².L₃(4).2₃ and 2².L₃(4).3 are available. The table of L₃(11) is available (contributed by Frank Lübeck, computed with a program written by Boris Hemkemeier and Ulf Jürgens).
С	$L_4(3)$: The class fusion of $L_4(3).2_2$ into $O_7(3)$ was replaced by one that is compatible with the Brauer tables available.
NEW	$L_8(2)$: The table of $L_8(2)$ is available (contributed by Frank Lübeck, computed with a program written by Boris Hemkemeier and Ulf Jürgens).
NEW	M	: The tables of the Sylow 11 and 13 normalizer in M are available, via the names $\tt MN11$ and $\tt MN13.$
NEW		The tables with the names 4.2 ² , (2 ² x3).2, 1/2(8xS3), M12C4, 7 ^{1+2.6} , 2x3.A6, 5 ^{1+2.2A4} , (4xA6).2 ² , 13 ^{1+2.2A4} , 7 ^{1+4.2A7} are available (contributed by Simon Norton).
\mathbf{C}	M_{23}	: The class fusion of M_{23} into Co_3 was replaced by one that is compatible with the Brauer tables available.
С	M_{24}	: The class fusion of $2^4 : A_8$ into M_{24} was replaced by one that is compatible with the Brauer tables available.
\mathbf{C}	McL	: The class fusion of $McL.2$ into Co_3 was replaced by one that is compatible with the Brauer tables available.
***		The 2nd power map of the table of the maximal subgroup of type $3.3^{1+4}:4S_5$ of $3.McL.2$ was corrected.
С	$O_8^-(2)$: The class fusion of $O_8^-(2).2$ into $S_8(2)$ was replaced by one that is compatible with the Brauer tables available.
NEW		: The tables of $2^2 \cdot O_8^+(2) \cdot 2$ and $2^2 \cdot O_8^+(2) \cdot 3$ are available, as well as the table of the maximal subgroup of the type $2^{1+6}_+ \cdot A_8$ of $2 \cdot O_8^+(2)$.
NEW NEW	$O_8^+(3)$: The table of $O_8^+(3).D_8$ is available. The tables of the maximal subgroup $2^2.(U_3(3).2 \times S_4)$ of $O_8^+(3).S_4$ and of the maximal subgroups $3^{3+6}:(L_3(3) \times D_8)$ and $3^6.L_4(3).D_8$ of $O_8^+(3).D_8$ are available.
NEW	$O_8^-(3)$: The table of $O_8^-(3).2_1$ is available.
NeW C	$O_9(3) \\ S_4(4)$	 The table of the maximal subgroup of type 2⁸.A₉ is available. The class fusion of S₄(4).2 into S₈(2) was replaced by one that is compatible with the Brauer tables available.
\mathbf{C}	$S_{6}(3)$: The class fusion of $3^6: L_3(3)$ into $S_6(3)$ was replaced by one that is compatible with the Brauer tables available.
\mathbf{C}	$U_{3}(5)$: The class fusion of $3.U_3(5)$ into $3.McL$ was replaced by one that is compatible with the Brauer tables available.
NEW	$U_4(3)$: The table of $2^2 . U_4(3) . (2^2)_{122}$ is available.

Release of CTblLib 1.2 in May 2012

Brauer Tables

The following changes are assigned to the simple group involved, and shown in alphabetical order.

NEW	A_6	: The Brauer tables of $A_6.2^2$, $3.A_6.2^2$ are available.
NEW	A_{15}	: The Brauer tables of A_{15} are available (contributed by Jürgen Müller).
NEW	A_{16}	: The Brauer tables of A_{16} are available (contributed by Jürgen Müller).
NEW	A_{17}	: The Brauer tables of A_{17} are available (contributed by Jürgen Müller).
NEW	A_{19}	: The 2-modular Brauer tables of A_{19} , S_{19} are available (contributed by Lukas Maas and Jürgen Müller).
NEW	${}^{2}E_{6}(2)$: The tables of $2^{2} \cdot {}^{2}E_{6}(2) \mod 11, 13, 17, 19$ are available.
NEW	Fi_{22}	: The 3-modular tables of Fi_{22} , Fi_{22} , 2, Fi_{22} , 2, Fi_{22} , 2, and the 2-modular tables of Fi_{22} , Fi_{22} , 2, 3 . Fi_{22} , 3 . Fi_{22} , 3 . Fi_{22} , 2 are available (contributed by Felix Noeske).
NEW	Fi_{23}	: The 2-modular table of Fi_{23} is available (contributed by Gerhard Hiss, Max Neunhöffer, and Felix Noeske). The 17-modular table of Fi_{23} is available (contributed by Jürgen Müller).
***	F_{3+}	: The wrong 3- and 11-modular tables of F_{3+} from the earlier version are no longer available.
NEW	HN	: The 2-modular table of HN , $HN.2$ are available (contributed by Jon Thackray). The 3- modular table of HN , $HN.2$ are available (contributed by Gerhard Hiss, Jürgen Müller, Felix Noeske, and Jon Thackray). The 5-modular table of HN , $HN.2$ are available (contributed by Klaus Lux, Felix Noeske, Alex Ryba).
NEW	$L_2(25)$: The Brauer tables of $L_2(25).2^2$ are available.
NEW	$L_2(49)$: The 2-, 3-, and 5-modular Brauer tables of $L_2(49).2^2$ are available.
***	$L_2(81)$: The degree 80 character in the 41-modular table of $L_2(81).2_3$ was wrong.
NEW		The 2-modular table of $L_2(81).(2 \times 4)$ and the 2-, 5-, and 41-modular tables of $L_2(81).2^2$ are available.
NEW	$L_3(4)$: The Brauer tables of $L_3(4).2^2$, $L_3(4).3.2_2$, $L_3(4).3.2_3$, $L_3(4).D_{12}$, $2.L_3(4).2^2$ (eight groups), $3.L_3(4).2^2$, $3.L_3(4).3.2_2$, $2^2.L_3(4)$, $2^2.L_3(4).2_1$, $2^2.L_3(4).2_2$, $2^2.L_3(4).2_3$, $2^2.L_3(4).3, 2^2.L_3(4).2^2, 2^2.L_3(4).3.2_2, 2^2.L_3(4).3.2_3, 2^2.L_3(4).D_{12}, (2^2 \times 3).L_3(4), (2^2 \times 3).L_3(4).2_2$, $(2^2 \times 3).L_3(4).2_3$, $(2^2 \times 3).L_3(4).3$ are available.
NEW	$L_{3}(9)$: The Brauer tables of $L_3(9).2^2$ are available.
NEW	$L_4(4)$: The 2-modular tables of $L_4(4)$ (contributed by Frank Lübeck), $L_4(4).2_1$, $L_4(4).2_2$, $L_4(4).2_3$, $L_4(4).2^2$ are available.
NEW	$O_8^+(2)$: The Brauer tables of $O_8^+(2).S_3$, $2^2.O_8^+(2)$, $2^2.O_8^+(2).2$, $2^2.O_8^+(2).3$, $2^2.O_8^+(2).S_3$ are available.
\mathbf{C}	$O_8^+(3)$: Adjusted the 5- and 7-modular table to the changes of the ordinary table.
NEW	0.00	The 2-, 5-, 7-, 13-modular tables of $O_8^+(3).2_{111}^2$, $O_8^+(3).2_{122}^2$, $O_8^+(3).S_3$, $O_8^+(3).A_4$, $O_8^+(3).D_8$ are available, as well as the 13-modular table of $O_8^+(3).S_4$.
***	$S_{6}(3)$: The 13-modular tables of $S_6(3)$, $S_6(3)$, $2.S_6(3)$, $2.S_6$
NEW	Sz(8)	: The Brauer tables of $2^2 \cdot Sz(8)$ are available.
NEW	$U_4(3)$: The Brauer tables of $U_4(3).2_{122}^2$, $U_4(3).2_{133}^2$, $U_4(3).D_8$, $2.U_4(3).2_{122}^2$ (six groups), $2.U_4(3).2_{133}^2$ (six groups), $3_1.U_4(3).2_2'$, $3_2.U_4(3).2_3'$, $3_2.U_4(3).2_{133}^2$, $6_2.U_4(3).2_3'$ are available.
NEW	$U_{6}(2)$: The Brauer tables of $U_6(2).S_3$, $3.U_6(2).S_3$, $2^2.U_6(2)$, $2^2.U_6(2).2$, $2^2.U_6(2).3$, $2^2.U_6(2).S_3$, $(2^2 \times 3).U_6(2)$, $(2^2 \times 3).U_6(2).2$, $(2^2 \times 3).U_6(2).3$ are available.

Ordinary Tables

The following bugfixes are not related to the character tables of simple groups.

*** $13^{1+2.2A4}$: The second power map in the character table with this name was not correct.

***	2.Sym4	: This name would be that of a maximal subgroup; the table was renamed to 2.Symm(4).
***	2xSym4	: This name would be that of a maximal subgroup; the table was renamed to 2xSymm(4).
***	d60	: The table with this name belongs to the dihedral group of order 120, it was renamed to D120.
***	P12/G1/L2/V1/ext2	: The character table with this name was not correct, some of its class multi- plication coefficients were not integral. (This problem occurs already in the microfiches that are contained in the book "Perfect Groups".)
***	P41/G1/L1/V4/ext2	: The character table with this name was not correct, this table was not the char- acter table of a finite group. (This problem occurs already in the microfiches that are contained in the book "Perfect Groups".)
***	s61	: This name would be that of a symmetric group; the table was is now available as $A_8.2N2$.
***	Sym4	: This name would be that of a maximal subgroup; the table was renamed to Symm(4).

The following changes affect several ordinary tables.

- **NEW** An ordinary character table is available for each table in the library of tables of marks.
 - C The class fusion to the table of marks was changed for A_6 , A_6 , 2_1 , 2, A_6 , $G_2(3)$, He, $L_2(11)$, 2, $L_2(25)$, $L_2(121)$, $L_3(4)$, 3, $L_3(4)$, 2^2 , $L_3(4)$, $L_3(7)$, M_{12} , McL.2, $O_8^+(2)$, $S_4(4)$, $S_4(4)$, 2, $S_4(5)$, $U_3(3)$, $U_3(3)$, 2, $U_3(5)$, $U_3(8)$, $U_4(2)$, $U_4(2)$, $U_4(3)$, $U_4(3)$, 2_1 , $U_4(3)$, 2_{133}^2 .

\mathbf{C}	A_5	: Changed the fusion from $A_5 \times A_5$ to A_5 .
***	A_6	: Corrected the table of $12.A_6.2_3$.
\mathbf{C}		Replaced the fusion from $2.M_{12}M4$ to $A_6.2^2$ by one to $M_{12}M4$.
\mathbf{C}		Changed the fusion from P1/G1/L1/V1/ext2 to $2^4 : A_6$.
NEW		The character table of the Sylow 2-normalizer in $6.A_6$ is available.
\mathbf{C}	A_7	: Changed the fusions from A_6 to A_7 and from $A_6.2_1$ to $A_7.2$.
\mathbf{C}	A_8	: Changed the fusion from $A_6.2_1$ to A_8 .
\mathbf{C}	A_{11}	: Changed the fusion from A11Syl2.
NEW	A_{18}	: The ordinary table of A_{18} is availabe.
NEW	A_{19}	: The ordinary tables of A_{19} , S_{19} are available.
NEW	B	: The character table of the Sylow 7-normalizer in $2.B$ is available.
***	Co_1	: Changed the ordering of the maxes $7^2 : (3 \times 2A_4)$ and $5^2 : 2A_5$.
NEW		The character tables of defect 3- and 5-group normalizers in Co_1 and $2.Co_1$ are available.

$ \begin{split} \mathbf{NEW} & \overset{2}{F_{0}}(2) & : \mbox{The ordinary tables of 3}^{2}F_{0}(2) (contributed by Frank Linbeck), 3}^{2}F_{0}(2), 2, (2^{2} × 3)^{2}F_{0}(2), 2 (2^{2} × 3), 2 (2^{2} × 3)^{2}F_{0}(2), 2 (2^{2} × 3), 2 (2^{2} $	\mathbf{C}	${}^{3}D_{4}(2)$: Changed the fusion from $S_3 \times L_2(8)$.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$: The ordinary tables of $3.^2E_6(2)$ (contributed by Frank Lübeck), $3.^2E_6(2).2, 6.^2E_6(2)$,
NEWThe character table of the Sylow 3-normalizer in 3.Fig.2 is available.****F3+: Changed the fusions from Fig.3 to F3+, and from 3'.Or(3): 2 to F3+.2.NEWThe character tables of the Sylow 5- and 7-normalizers in 3.F3+.2, and the table of the Sylow 5- normalizer in 3.F3+ are available.NEWHe: The character tables of defect 3-group normalizers in He.2 are available.NEWHe: The character tables of the Sylow 2-, 3-, and 5-normalizers in HN, and the character tables of the Sylow 2-, 3-, and 5-normalizers in HN, and the character tables of the Sylow 2-, 3-, and 5-normalizers in HN, and the character tables of the Sylow 2- and 3-normalizers in 2.HS.2, and the character tables of the Sylow 2- and 3-normalizers in 2.HS.2, and the character tables of the Sylow 2- and 3-normalizers in 2.HS are available.NEWThe character tables of the Sylow 2- and 3-normalizers in 2.HS.2, and the character tables of the Sylow 2- and 3-normalizers in 2.HS are available.NEWThe character tables of the Sylow 2- and 3-normalizers in 2.HS are available.NEWThe character tables of the Sylow 2- and 3-normalizers in 2.HS are available.NEWThe character tables of defect 3-group normalizers in 2.HS are available.NEWJa: The character tables of defect 3-group normalizers in J.4 are available.NEWJa: The character tables of defect 3-group normalizers in J.4 are available.NEWJa: The character tables of defect 3-group normalizers in J.4 are available.NEWJa: The character tables of defect 3-group normalizers in J.4 are available.NEWJa: The character tables of defect 3-group normalizers in J.4 are available.	NEW	${}^{2}F_{4}(2)'$: The character tables of the Sylow 2-normalizers in ${}^{2}F_{4}(2)'$ and ${}^{2}F_{4}(2)'.2$ are available.
*** F_{3+} : Changed the ordering of the maxes $A_0 \times L_2(8)$: 3 and $\overline{7}$: 6 × A_7 . C Changed the fusions from F_{23} to F_{3+} and from $\overline{3}^7.O_7(3)$: 2 to $F_{3+}.2$. The character tables of the Sylow 5- and 7-normalizer in $3.F_{3+}.2$, and the table of the Sylow 5-normalizer in $3.F_{3+}$ are available. NEW He : The character tables of defect 3-group normalizers in $He.2$ are available. NEW Hr : The character tables of normalizer in $HN.2$ are available. NEW HN : The character tables of defect 3-group normalizers in HN , and the character tables of the Sylow 2-, 3-, and 5-normalizer in $HN.2$ are available. NEW HN : The character tables of the Sylow 2-, ad-anormalizers in $2.HS.2$, and the character tables of the Sylow 2- and 3-normalizers in $2.HS$ are available. NEW The character tables of the Sylow 2- and 3-normalizers in $2.HS.2$, and the character tables of the Sylow 2- and 3-normalizers in $2.HS$ are available. NEW The character tables of the Sylow 2- and 3-normalizers in $2.HS$ are available. C J_2 : Changed the fusion from $2.A_4 \times D_{10}$ to $2J_2$, and the fusion from $3A_6.2^2$ to $J_2.2$. NEW The character tables of the Sylow 2- and 3-normalizers in $2HS$ are available. NEW J_4 : The character tables of defect 3-group normalizers in $2J_2$, and the character table of the Sylow 3-normalizer in $L_2/2.2$ are available. NEW J_4 : The character tables of defect 3-group normalizers in J_4 are available. NEW $J_2(4)$: The ordinary table of $J_2(4)/2.2$ are available. NEW $J_2(4)$: The ordinary table of $J_2(4)/2.2$ are available. NEW $J_2(4)$: The ordinary table of $J_2(4)/2.2$ and $J_2(4)/2.2$ ($J_2/2.2$ are available. NEW $J_2(4)$: The ordinary table of $J_2(4)/2.2$ is available. NEW $J_2(4)$: The ordinary table of $J_2(4)/2.2$ is available. NEW $J_2(4)$: The ordinary table of $J_2(4)/2.2$ is available. NEW $J_2(4)$: The ordinary table of $J_2(4)/2.2$ is available. NEW $J_2(4)$: The ordinary tables of $J_2(3/1.2X/1/(axt2, P13/0/1/1$		Fi_{22}	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		-	
NEWThe character tables of the Sylow 5- and 7-normalizers in $3.F_{3+}$, 2, and the table of the Sylow 5-normalizer in $3.F_{3+}$ are available.NEWHeThe character tables of defect 3-group normalizers in He.2 are available.NEWHNThe character tables of the Sylow 2-, 3-, and 5-normalizers in HN, and the character tables of the Sylow 2-, and 5-normalizers in HN and HN.2 are available.NEWHNThe character tables of defect 3-group normalizers in 2.HS are available.NEWThe character tables of defect 2-group normalizers in 2.HS are available.CHSCharacter tables of defect 2-group normalizers in 2.HS are available.NEWThe character tables of the Sylow 2- and 3-normalizers in 2.HS are available.NEWThe character tables of the Sylow 2- and 3-normalizers in 2.HS are available.NEWThe character tables of the Sylow 2- and 3-normalizers in 2.J2, and the character table of the Sylow 5-normalizer in 2.J2 are available.NEWThe character tables of the Sylow 2- and 3-normalizers in 2.J2, and the character table of the Sylow 5-normalizer in 2.J2 are available.NEWJ4The character tables of defect 3-group normalizers in J. are available.NEWJ4The character tables of defect 3-group normalizers in J. are available.NEWJ4The character tables of defect 3-group normalizers in 2.HS are available.NEWJ4The character tables of defect 3-group normalizers in 2.HS are available.NEWJ4The character tables of defect 3-group normalizers in 2.HS are available.NEWJ4The character tables of defect 3-group normalizers in J2 are available. <th></th> <th>F_{3+}</th> <th></th>		F_{3+}	
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	NEW	He	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		ne	
		HN	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	NEW		The character tables of defect 3-group normalizers in HN and $HN.2$ are available.
	\mathbf{C}	HS	
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		т	· ·
$\begin{array}{llllllllllllllllllllllllllllllllllll$		J_2	
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	NEW		
*** $L_2(8)$: The name ${}^2G_2(3)$ was erroneously associated with the character table of $L_2(8)$; the correct table is that of $L_2(8).3$. (This error has been communicated by Felix Noeske.) *** $L_2(11)$: Changed the ordering of the maxes S_4 and D_{24} in $L_2(11).2$. NEW $L_2(25)$: The ordinary table of $L_2(25).2_3$ is available. NEW $L_2(49)$: The ordinary table of $L_2(49).2^2$ is available. NEW $L_2(81)$: The ordinary table of $L_2(64).6$ is available. NEW $L_2(81)$: The ordinary table of $L_2(64).2^2$ and $L_2(81).(2 \times 4)$ are available. C $L_3(2)$: Changed the fusions from P13/G1/L2/V1/ext2, P13/G1/L6/V1/ext2 to $L_3(2)$. C $L_3(4)$: The table of $L_3(4).D_{12}$ was replaced by a table with different ordering of classes and characters; note that the table is an ATLAS table but it had erroneously not been replaced earlier. The previous table had the name ps1(3,4):d12, the new table has the name L3(4).D12, the permutations of columns and rows between the two tables are stored in the attribute CASInf of the new table. C C Changed the fusion from $(2^2 \times 3).U_6(2)M3$ to $3.L_3(4).2_2$, $(2^2 \times 3).L_3(4).2_3$, $(2^2 \times 3).L_3(4).3, (2 \times 4).L_3(4), (2 \times 12).L_3(4), 4^2.L_3(4), (2^2 \times 3).L_3(4).2^2$ (eight groups), $2^2.L_3(4).2_1, 2^2.L_3(4).2^2, 2^2.L_3(4).2, 3, (4).2^2, 2^2.L_3(4).2, 4^2.L_3(4).2^2, 4_2.L_3(4).2^2$ (eight groups), $2^2.L_3(4).2_1, 2^2.L_3(4).2^2, 2^2.L_3(4).2, 3, (4, 2.4), 4^2.4_3)$ is the ordinary table of $L_4(4).2^2$ is available. NEW $L_4(4)$: The ordinary table of $L_4(5).2^2$ is available. NEW $L_4(5)$: The ordinary table of defect 3-group normalizers in Ly are available. NEW $L_4(5)$: The character tables of defect 3-group normalizers in M are available. NEW L_1 : The character tables of defect 3-group normalizers in M are available. NEW L_1 : Replaced the fusions from $2.M_{12}M2$ and $2.HSM9$ by fusions to $M_{12}M2$ and $HSM9$, respectively. C M_{12} : Changed the class fusions from $2 \times M_{11}, 2.M_{12}M4, 2 \times 3^2.2.54, 2.M_{12}M7, A_6$		J_4	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	***	$L_{2}(8)$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$			correct table is that of $L_2(8).3$. (This error has been communicated by Felix Noeske.)
$\begin{array}{llllllllllllllllllllllllllllllllllll$. ,	
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$. ,	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		• •	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		- ~ /	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
NEWThe ordinary tables of $(2^2 \times 3).L_3(4).2_1$, $(2^2 \times 3).L_3(4).2_2$, $(2^2 \times 3).L_3(4).2_3$, $(2^2 \times 3).L_3(4).3$, $(2 \times 4).L_3(4)$, $(2 \times 12).L_3(4)$, $4^2.L_3(4)$, $(4^2 \times 3).L_3(4)$, $2.L_3(4).2^2$ (eight groups), $4_1.L_3(4).2^3$, $4_1.L_3(4).2^2$ (eight groups), $4_2.L_3(4).2^2$, $4_2.L_3(4).2^2$ (eight groups), $2^2.L_3(4).2_1, 2^2.L_3(4).2^2, 2^2.L_3(4).6, 3.L_3(4).3.2_2, 6.L_3(4).2^2$ (eight groups) are available.NEW $L_3(9)$: The ordinary table of $L_3(9).2^2$ is available.NEW $L_4(4)$: The ordinary table of $L_4(4).2^2$ is available.NEW $L_4(5)$: The ordinary tables of $2.L_4(5)$, $4.L_4(5)$ are available.NEW $L_4(5)$: The character tables of defect 3-group normalizers in Ly are available.NEW Ly : The character tables of the 7B centralizer, with the identifier $7^{1+4}.247$, was wrong.NEW Ly : The character tables of defect 3-group normalizers in M are available.NEW L_{11} : Replaced the fusions from $2.M_{12}M2$ and $2.HSM9$ by fusions to $M_{12}M2$ and $HSM9$, respectively.C M_{12} : Changed the class fusions from $2 \times M_{11}$, $2.M_{12}M4$, $2 \times 3^2.2.S_4$, $2.M_{12}M7$, $A_6.D_8$ to	C		
$\begin{array}{rcl} 3).L_{3}(4).3, & (2 \times 4).L_{3}(4), & (2 \times 12).L_{3}(4), & 4^{2}.L_{3}(4), & (4^{2} \times 3).L_{3}(4), & 2.L_{3}(4).2^{2} & (\text{eight groups}), \\ & groups), & 4_{1}.L_{3}(4).2_{3}^{2}, & 4_{1}.L_{3}(4).2^{2} & (\text{eight groups}), & 4_{2}.L_{3}(4).2_{2}^{2}, & 4_{2}.L_{3}(4).2^{2} & (\text{eight groups}), \\ & 2^{2}.L_{3}(4).2_{1}, & 2^{2}.L_{3}(4).2^{2}, & 2^{2}.L_{3}(4).6, & 3.L_{3}(4).3.2_{2}, & 6.L_{3}(4).2^{2} & (\text{eight groups}) & \text{are available.} \\ \end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{rcl} & \mbox{groups}), 4_1.L_3(4).2_3^*, 4_1.L_3(4).2^2 \mbox{ (eight groups}), 4_2.L_3(4).2_2^*, 4_2.L_3(4).2^2 \mbox{ (eight groups}), \\ 2^2.L_3(4).2_1, 2^2.L_3(4).2^2, 2^2.L_3(4).6, 3.L_3(4).3.2_2, 6.L_3(4).2^2 \mbox{ (eight groups}) \mbox{ are available.} \\ \hline {\bf NEW} \ L_3(9) & : \mbox{ The ordinary table of } L_3(9).2^2 \mbox{ is available.} \\ \hline {\bf NEW} \ L_4(4) & : \mbox{ The ordinary table of } L_4(4).2^2 \mbox{ is available.} \\ \hline {\bf NEW} \ L_4(5) & : \mbox{ The ordinary tables of } 2.L_4(5), 4.L_4(5) \mbox{ are available.} \\ \hline {\bf NEW} \ Ly & : \mbox{ The character tables of defect 3-group normalizers in } Ly \mbox{ are available.} \\ \hline {\bf NEW} \ Ly & : \mbox{ The character tables of the 7B centralizer, with the identifier 7^1+4.2A7, was wrong.} \\ \hline {\bf NEW} \ {\bf NEW} \ {\bf The character tables of defect 3-group normalizers in } M \mbox{ are available.} \\ \hline {\bf NEW} \ {\bf C} \ M_{11} & : \mbox{ Replaced the fusions from } 2.M_{12}M2 \mbox{ and } 2.HSM9 \mbox{ by fusions to } M_{12}M2 \mbox{ and } HSM9, \\ {\bf respectively.} \\ \hline {\bf C} \ M_{12} & : \mbox{ Changed the class fusions from } 2 \times M_{11}, \ 2.M_{12}M4, \ 2 \times 3^2.2.S_4, \ 2.M_{12}M7, \ A_6.D_8 \ {\bf to} \\ \hline {\bf MEW} \ {\bf Mex} \ {\bf MEW} \ {\bf MEW} \ {\bf MEW} \ {\bf Mex} \ {\bf Mex} \ {\bf MEW} \ {\bf Mex} \ {\bf MEW} \ {\bf Mex} \$			$(2 \times 3).L_3(4).2_1, (2 \times 3).L_3(4).2_2, (2 \times 3).L_3(4).2_3, (2 \times 3).L_3(4).2_2, (2 \times 3).L_3(4).2_3, (2 \times$
$\begin{array}{rcl} 2^2.L_3(4).2_1, 2^2.L_3(4).2^2, 2^2.L_3(4).6, 3.L_3(4).3.2_2, 6.L_3(4).2^2 \mbox{ (eight groups) are available.}\\ \end{tabular} {\bf NEW} & L_3(9) & : \end{tabular} {\rm The ordinary table of } L_3(9).2^2 \mbox{ is available.}\\ \end{tabular} {\bf NEW} & L_4(4) & : \end{tabular} {\rm The ordinary table of } L_4(4).2^2 \mbox{ is available.}\\ \end{tabular} {\bf NEW} & L_4(5) & : \end{tabular} {\rm The ordinary tables of } 2.L_4(5), 4.L_4(5) \mbox{ are available.}\\ \end{tabular} {\bf NEW} & Ly & : \end{tabular} {\rm The character tables of defect 3-group normalizers in } Ly \mbox{ are available.}\\ \end{tabular} {\bf NEW} & M & : \end{tabular} {\rm The character tables of the 7B centralizer, with the identifier 7^1+4.2A7, was wrong.}\\ \end{tabular} {\bf NEW} & \end{tabular} {\bf NEW} & \end{tabular} {\rm The character tables of the Sylow 5- and 7-normalizers in } M \mbox{ are available.}\\ \end{tabular} {\bf NEW} & \end{tabular} {\bf The character tables of defect 3-group normalizers in } M \mbox{ are available.}\\ \end{tabular} {\bf NEW} & \end{tabular} {\bf The character tables of defect 3-group normalizers in } M \mbox{ are available.}\\ \end{tabular} {\bf NEW} & \end{tabular} {\bf The character tables of defect 3-group normalizers in } M \mbox{ are available.}\\ \end{tabular} {\bf NEW} & \end{tabular} {\bf The character tables of defect 3-group normalizers in } M \mbox{ are available.}\\ \end{tabular} {\bf C} & M_{11} & : \end{tabular} {\bf Replaced the fusions from } 2.M_{12}M^2 \mbox{ and } 2.HSM9 \mbox{ by fusions to } M_{12}M^2 \mbox{ and } HSM9, \end{tabular} {\bf respectively.}\\ \end{tabular} {\bf C} & M_{12} & : \end{tabular} {\bf C} \end{tabular} {\bf Max} {\bf M$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			$2^{2} \cdot L_{3}(4) \cdot 2_{1}, 2^{2} \cdot L_{3}(4) \cdot 2^{2}, 2^{2} \cdot L_{3}(4) \cdot 6, 3 \cdot L_{3}(4) \cdot 3 \cdot 2_{2}, 6 \cdot L_{3}(4) \cdot 2^{2}$ (eight groups) are available.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	NEW	$L_{3}(9)$: The ordinary table of $L_3(9).2^2$ is available.
NEWLy: The character tables of defect 3-group normalizers in Ly are available.***M: The character table of the 7B centralizer, with the identifier 7^1+4.2A7, was wrong.NEWThe character tables of the Sylow 5- and 7-normalizers in M are available.NEWThe character tables of defect 3-group normalizers in M are available.NEWThe character tables of defect 3-group normalizers in M are available.NEWThe character tables of defect 3-group normalizers in M are available.NEWThe character tables of defect 3-group normalizers in M are available.NEWThe character tables of defect 3-group normalizers in M are available.CM_{11}: Replaced the fusions from $2.M_{12}M2$ and $2.HSM9$ by fusions to $M_{12}M2$ and $HSM9$, respectively.CM_{12}: Changed the class fusions from $2 \times M_{11}$, $2.M_{12}M4$, $2 \times 3^2.2.S_4$, $2.M_{12}M7$, $A_6.D_8$ to			
*** M : The character table of the 7B centralizer, with the identifier 7^1+4.2A7, was wrong.NEWThe character tables of the Sylow 5- and 7-normalizers in M are available.NEWThe character tables of defect 3-group normalizers in M are available.C M_{11} : Replaced the fusions from $2.M_{12}M2$ and $2.HSM9$ by fusions to $M_{12}M2$ and $HSM9$, respectively.C M_{12} : Changed the class fusions from $2 \times M_{11}$, $2.M_{12}M4$, $2 \times 3^2 \cdot 2.S_4$, $2.M_{12}M7$, $A_6 \cdot D_8$ to		_ 、 ,	
NEWThe character table of the TD contrainder, while the identified $T = 1.42.2M$, was wrong.NEWThe character tables of the Sylow 5- and 7-normalizers in M are available.NEWThe character tables of defect 3-group normalizers in M are available.C M_{11} : Replaced the fusions from $2.M_{12}M2$ and $2.HSM9$ by fusions to $M_{12}M2$ and $HSM9$, respectively.C M_{12} : Changed the class fusions from $2 \times M_{11}$, $2.M_{12}M4$, $2 \times 3^2 \cdot 2.S_4$, $2.M_{12}M7$, $A_6 \cdot D_8$ to		•	
NEWThe character tables of defect 3-group normalizers in M are available.C M_{11} : Replaced the fusions from $2.M_{12}M^2$ and $2.HSM^9$ by fusions to $M_{12}M^2$ and HSM^9 , respectively.C M_{12} : Changed the class fusions from $2 \times M_{11}$, $2.M_{12}M^4$, $2 \times 3^2 \cdot 2.S_4$, $2.M_{12}M^7$, $A_6 \cdot D_8$ to		11/1	
C M_{11} : Replaced the fusions from $2.M_{12}M^2$ and $2.HSM^9$ by fusions to $M_{12}M^2$ and HSM^9 , respectively.C M_{12} : Changed the class fusions from $2 \times M_{11}$, $2.M_{12}M^4$, $2 \times 3^2 \cdot 2.S_4$, $2.M_{12}M^7$, $A_6 \cdot D_8$ to			
respectively. C M_{12} : Changed the class fusions from $2 \times M_{11}$, $2.M_{12}M4$, $2 \times 3^2 \cdot 2.S_4$, $2.M_{12}M7$, $A_6 \cdot D_8$ to		M_{11}	
$2.M_{12}.$	\mathbf{C}	M_{12}	: Changed the class fusions from $2 \times M_{11}$, $2.M_{12}M4$, $2 \times 3^2 \cdot 2.S_4$, $2.M_{12}M7$, $A_6 \cdot D_8$ to
			$2.M_{12}.$

С	M_{22}	The character table of the Sylow 2-normalizer in $2.M_{12}$ is available. : Changed the class fusion from $2 \times 3.A_7$ to $6.M_{22}$, and the class fusions from $2.(2 \times 3.A_7)$, $3 \times 4.M_{22}M5$, $3 \times 4.M_{22}M6$, $3 \times 2.(2 \times L_2(11))$ to $12.M_{22}$.
C NEW		Replaced the fusion from $3.McLM3$ by one to $McLM3$. The character tables of defect 3-group normalizers in $12.M_{22}$ and the Sylow 2-normalizer in $4.M_{22}$ are available.
NEW NEW C	M_{24} McL	 The character table of a primitive group 2¹⁰.M₂₂ is available. The character tables of normalizers of radical <i>p</i>-subgroups are available. Changed the fusions from 3.3¹⁺⁴ : 2S₅, 3 × 2.A₈, 3.U₃(5) to 3.McL, and the fusion from U₄(3) to McL.
C C NEW		Replaced the fusion from $3.McLM10$ to $2^4 : A7$ by one to $McLM10$. Changed the fusion from $3.3^4.3^2.Q_8$ to $3.3^{1+4} : 2S_5$. The character tables of the Sylow 3- and 5-normalizers in $3.McL.2$, and the character
NEW	$O_{8}^{-}(3)$	table of the Sylow 3-normalizer in $McL.2$ are available. : The ordinary tables of $2.O_8^-(3)$ (contributed by Max Neunhöffer), $O_8^-(3).2_2$, $O_8^-(3).2_3$, $O_8^-(3).2^2$ are available.
	$O_8^+(3)$: Sorted rows and columns of the table of $O_8^+(3).S_4$ (in the old version, the trivial character was not the first one, and this is not supported by the construction function).
NEW		The ordinary tables of $O_8^+(3).2_{122}^2$, $2.O_8^+(3)$ (contributed by Max Neunhöffer), $2^2.O_8^+(3)$, $2^2.O_8^+(3).3$ are available.
NEW NEW	$O_8^+(7) \\ O_9(3)$: The ordinary tables of $O_8^+(7)$, $2.O_8^+(7)$ are available (contributed by Eamonn O'Brien). : The ordinary table of $2.O_9(3)$ is available (contributed by Max Neunhöffer).
NEW	$O_{10}^{-}(3)$: The ordinary tables of $O_{10}^-(3)$ and $2.O_{10}^-(3)$ are available (contributed by Eamonn O'Brien).
NEW	ON	: The character tables of the Sylow 3- and 7-normalizers in $3.ON.2$, and the character table of the Sylow 2-normalizer in $ON.2$ are available.
$\overset{\mathbf{NEW}}{\sim}$		The character tables of defect 2-group normalizers in ON and $3.ON$ are available.
C	Ru	: Changed the class fusion from $2 \cdot 2^{3+8} : L_3(2)$ to $2 \cdot Ru$. The character table of the Sylow 2-normalizer in $2 \cdot Ru$ is available.
C NEW	$S_4(4) \\ S_4(9)$: Changed the fusion from a5wc2 to $S_4(4)$. : The ordinary tables of $S_4(9)$, $S_4(9).2_1$, $S_4(9).2_2$, $S_4(9).2_3$, $S_4(9).2^2$ are available.
C	$S_{6}(2)$: Changed the fusions from $2 \cdot [2^6] : (S_3 \times S_3), 2^6 : L_3(2).$
NEW	$S_{6}(4)$: The ordinary table of $S_6(4).2$ is available.
С	Suz	: Changed the class fusion from $(A_6: 2_2 \times A_5).2$ to $Suz.2$, the class fusions from $2.SuzM4$, $(2 \times L_3(3)).2$, $(A_6 \times 2.A_5).2$ to $2.Suz$, the class fusions from $3 \times U_5(2)$, $3 \times 2^{1+6}_{-}.U_4(2)$, $(3.A_6 \times A_5): 2$ to $3.Suz$, and the class fusion from $(3.A_6.2_2 \times A_5): 2$ to $3.Suz.2$.
\mathbf{C}		Changed the class fusions from $3 \times 2.SuzM4$, $3 \times 2.J_2.2$, $3 \times (2 \times L_3(3)).2$, $(3.A_6 \times 2.A_5).2$ to $6.Suz$.
С		Changed maxes of Suz and its central extensions, there is no need for $SuzM15$ etc., take $L_3(3).2$ and suitable central extensions twice.
NEW	Sz(8)	: The character table of the primitive group $2^{12}.Sz(8)$ is available.
C	$U_{3}(5)$: Replaced the fusion from $2.HSM3$ by one to $HSM3$.
C C	$U_{3}(8)$	Changed the fusion from $3 \times 2S_5$ to $U_3(5).3$. : Changed the fusion from $3 \times L_2(8)$ to $U_3(8)$.
C	$U_4(2)$: Changed the fusions from $A_6.2_1$ and $2.SuzM4$ to $U_4(2)$.
С	$U_4(3)$: Replaced the fusions from $3^2 U_4(3) 2'_3$ and $2 U_4(3) 2'_3$ to $U_4(3) 2_3$ by fusions to $U_4(3) 2'_3$, changed the fusions from $U_4(2)$ to $U_4(3)$ and from $U_4(2) 2$ to $U_4(3) 2_1$, changed the fusions from $L_2(4) 2^2$ and $2^2 U_2(3) 2^2$ to $U_4(2) 2^2$
NEW		fusions from $L_3(4).2^2$ and $3^2.U_4(3).2^2_{133}$ to $U_4(3).2^2_{133}$. The ordinary tables of $2.U_4(3).(2^2)_{122}$ (six groups), $2.U_4(3).(2^2)_{133}$ (six groups), $2.U_4(3).D_8$, $6_1.U_4(3).2'_2$, $3_1.U_4(3).2^2_{122}$, $3^2.U_4(3)$, $(3^2 \times 2).U_4(3)$, $(3^2 \times 4).U_4(3)$, $(3^2 \times 2).U_4(3)$. D_8 are available.
NEW	$U_4(4)$: The ordinary table of $U_4(4).4$ is available.

NEW	$U_{4}(5)$: The ordinary tables of $U_4(5).2_1$, $U_4(5).2_2$, $U_4(5).2_3$, $U_4(5).2^2$ are available.
NEW	$U_{5}(3)$: The ordinary table of $U_5(3)$ is available.
NEW	$U_{5}(4)$: The ordinary tables of $U_5(4)$, $U_5(4)$.2 are available.
\mathbf{C}	$U_{6}(2)$: Changed the fusions from $2.U_4(3).2_2$ to $2.U_6(2)$, from $3_1.U_4(3).2_2$ and $(2^2 \times 3).U_6(2)$ to
		$6.U_6(2)$, and from $6_1.U_4(3).2_2$ to $6.U_6(2)$.
NEW		The ordinary tables of $3.U_6(2).S_3$, $(2^2 \times 3).U_6(2).2$, $(2^2 \times 3).U_6(2).3$ are available.
NEW	$U_{6}(4)$: The ordinary table of $U_6(4)$ is available (contributed by Eamonn O'Brien).
NEW	$U_{7}(2)$: The ordinary table of $U_7(2)$ is available (contributed by Frank Lübeck).

Release of CTblLib 1.3 in December 2019

Brauer Tables

The following changes are assigned to the simple group involved, and shown in alphabetical order.

	0	
NEW ***	$\begin{array}{c} A_6\\ F_4(2) \end{array}$: The Brauer tables of 4.A₆.2₃ are now available. : The 2nd power map in the 13-modular table of 2.(2 × F₄(2)).2 was wrong (as in the ordinary table).
NEW		The 2- and 3-modular tables of $F_4(2)$ and $2 \cdot F_4(2)$ and of its 1st and 5th maximal subgroups are now available (computed by Frank Lübeck and Gerhard Hiss).
NEW	Fi_{23}	: The 3-modular Brauer table of Fi_{23} is available (computed by Lukas Görgen, Gerhard Hiss, and Klaus Lux).
***	J_3	: The 19-modular tables of J_3 , $J_3.2$, $3.J_3$, and $3.J_3.2$ were changed, due to a generality problem.
NEW	$L_{3}(4)$: The Brauer tables of $3.L_3(4).3.2_3$ are now available.
NEW	$O_8^+(3)$: The 3-modular tables of $O_8^+(3)$, $2.O_8^+(3)$, $2^2.O_8^+(3)$, $O_8^+(3).3$, and $2^2.O_8^+(3).3$ are now available (computed by Frank Lübeck).
NEW	$O_8^-(3)$: The 3-modular table of $O_8^-(3)$, $2.O_8^-(3)$, $O_8^-(3).2_1$, $O_8^-(3).2_2$, $O_8^-(3).2_3$, $O_8^-(3).2^2$ are now available (computed by Frank Lübeck).
NEW	$O_{10}^+(2)$: The 2-modular table of $O_{10}^+(2)$ is now available (computed by Frank Lübeck).
NEW	$O_{10}^{-}(2)$: The 2-modular table of $O_{10}^{-}(2)$ is now available (computed by Frank Lübeck).
NEW	ON	: The 3-modular Brauer table of $ON.2$ is available (computed by Klaus Lux and Alexander Ryba).
NEW	$S_{10}(2)$: The 2-modular table of $S_{10}(2)$ is now available (computed by Frank Lübeck).
NEW	Suz	: The 13-modular Brauer tables of $2.Suz.2$ (and $6.Suz.2$) are available (computed by Klaus Lux and Alexander Ryba).
NEW	$U_{3}(8)$: The Brauer tables of $9.U_3(8).3_3$ are now available, as well as the 7-modular tables of $U_3(8).3^2$ and $U_3(8).(S_3 \times 3)$.
***	$U_4(2)$: The 2-modular character table of $3.(2 \times 2^{1+8}) : (U_4(2) : 2 \times 2)$ was not correct, due to an error in the GAP function that constructs the table from the ordinary one; now this function has been corrected. No other library tables were affected by this bug. (Thanks to Jürgen Müller for reporting the error.)
NEW	$U_4(3)$: The modular character tables of $12_1 U_4(3) U_2'$ and $12_2 U_4(3) U_3'$ are now available.

The following changes affect several Brauer tables.

- **NEW** Brauer tables are now automatically available for which all *p*-modular Brauer characters lift to characteristic zero; this applies for example to all groups $L_2(q)$ if *p* is odd.
- **NEW** Brauer tables are now automatically available for which the ordinary tables store a construction recipe involving ConstructDirectProduct, ConstructIsoclinic, or ConstructMGA and for which the relevant Brauer tables of the ingredient tables are available.

Ordinary Tables

The following bugfixes are not related to the character tables of simple groups.

***	2^2.(2^7.3^2).s3	:	The table was renamed to 2^2. [2^7*3^2].S3, since the old name gives a
			wrong structure description.
***	5^3:(4xA5).2	:	The table was renamed to 5^3: (4xS5), since the old name gives a wrong
			structure description.
***	NRS(M24,2^(2+2+4)b)	:	The table was renamed to NRS(M24,2 ⁽⁴⁺⁴⁾), since the old name gives a
			wrong structure description.

The following changes affect several ordinary tables.

- C The following class fusions were replaced by equivalent ones in order to achieve compatibility with fusions for factor groups or extensions, respectively. (2²x3).U6(2).2 to 6.Fi22.2, (3²:8xA6).2 to Suz.2, (3x2⁽¹⁺⁶⁾-.U4(2)).2 to 3.Suz.2, (A5xD10).2 to J2.2, 12.M22N3 to 12.M22, 12.2.L3(4).2.1 to 3.ON, 19:18 to J3.2, 2.HS.2N5 to 2.HS.2, 2.M12N2 to 2.M12, 2. [2⁹]:5:4 to 2F4(2)'.2, 2A4xA5 to 2.J2, 2⁽¹⁺⁴⁾+:3².2 to G2(3), 2⁽¹⁺⁶⁾+:S5 to HS.2, 3.(3xM10):2 to 3.J3.2, 3.2⁽¹⁺⁴⁾+:3².2 to 3.G2(3), 3.3⁴.3².Q8 to 3.McL, 3².(3x3⁽¹⁺²⁾+):D8 to G2(3).2, 3x2.J2.2N5 to 6.Suz, 3x4.M22N2 to 12.M22, 5²:(4xS3) to J2.2, 6.A6M3 to 6.A7, 6.A6N2 to 6.A6, 6.A6N2 to 6.A7, 7:6xL3(2) to He.2, 7²:2.L2(7).2 to He.2, Fi22N3 to Fi22.
- **NEW** The tables of all maximal subgroups are available for ${}^{3}D_{4}(2)$, ${}^{3}D_{4}(2)$.3, 2. A_{5} .2, A_{6} .2₃, 2. Co_{1} , 2. Fi_{22} , 3. Fi_{22} , $G_{2}(4)$.2, 3. J_{3} , $L_{2}(8)$, $L_{2}(8)$.3, $L_{3}(2)$.2, 2. $L_{3}(2)$.2, $L_{3}(3)$.2, 3. M_{22} .2, 3.McL.2, 3.ON.
- **NEW** Many tables of normalizers of radical *p*-subgroups of central extensions of simple groups are now available, as well as the class fusions into these overgroups.
- **NEW** The CASInfo value was added for the following tables: 2.B, $2.Co_1$, $2.F_4(2)$, 2.HS, $2.J_2$, $2.M_{12}$, 2.Ru, $3.F_{3+}$, $3.J_3$, 3.McL, 3.ON, 6.Suz, and $12.M_{22}$. At the time when the CAS library got included in GAP's character table library, this information was apparently not saved. However, at least the book "Brauer Trees of Sporadic Groups" refers to the CAS numbering of certain characters, thus it is useful to make the values available. Thanks to Gerhard Hiss for the CAS format tables which had been used in the computations for the abovementioned book.

NEW	${}^{3}D_{4}(3)$: The table of ${}^{3}D_{4}(3)$ is now available.
NEW	$^{3}D_{4}(4)$: The table of ${}^{3}D_{4}(4)$ is now available (contributed by Eamonn O'Brien).
NEW	Co_1	: The table of the largest solvable subgroup (of the structure $2^{4+12} \cdot (S_3 \times 3^{1+2}_+ : D_8)$) is now available.
***	$E_{6}(2)$: Corrected the table (irrationalities and power maps).
NEW	F_{3+}	: The tables of the largest solvable subgroups in F_{3+} and $F_{3+}.2$ (of the structures 3^{1+10}_+ : $2^{1+6}:3^{1+2}_+:2S_4$ and $3^{1+10}_+:(2\times 2^{1+6}:3^{1+2}_+:2S_4)$, respectively) are now available.
***	$F_4(2)$: Corrected the 2nd power map in the tables of $2.F_4(2).2$ (two isoclinic variants), $2 \times 2.F_4(2).2$, and $2.(2 \times F_4(2)).2$.
\mathbf{C}	$G_{2}(3)$: The FusionToTom map was replaced, due to a generality problem.
\mathbf{C}	HS	: The FusionToTom map was replaced by one that is compatible with the ATLAS of Group Representations.
NEW	$L_{3}(4)$: The table of the extension $3.L_3(4).3.2_3$ is now available.
\mathbf{C}	$L_{3}(7)$: The FusionToTom map was replaced by one that is compatible with the ATLAS of Group Representations.
NEW	$O_{10}^+(3)$: The table of $O_{10}^+(3)$ is now available.
NEW	$O_{12}^+(2)$: The table of $O_{12}^+(2)$ is now available.
NEW	$O_{12}^{-}(2)$: The table of $O_{12}^{-1}(2)$ is now available.
NEW	$O_{12}^+(3)$: The tables of $O_{12}^+(3)$ and $2_1 O_{12}^+(3)$ are now available (contributed by Eamonn O'Brien).
NEW	$O_{12}^{-}(3)$: The table of $O_{12}^{-1}(3)$ is now available (contributed by Eamonn O'Brien).
NEW	$U_3^{12}(8)$: The tables of $U_3^{12}(8).3^2$, $U_3(8).(S_3 \times 3)$, and $9.U_3(8).3_3$ are now available.

- *** $U_4(3)$: The tables of the two bicyclic extensions $12_1 \cdot U_4(3) \cdot 2'_2$ and $12_2 \cdot U_4(3) \cdot 2'_3$ of $U_4(3)$ are now available; they had been missing, in spite of the claim that all ATLAS tables are available.
- *** $U_4(5)$: The class fusion from $U_4(5)$ to $U_4(5).2^2$ was corrected.

Release of CTblLib 1.3.2 in March 2021

Brauer Tables

The following changes are assigned to the simple group involved, and shown in alphabetical order.

NEW $U_3(8)$: The 3-modular Brauer table of $U_3(8).(S_3 \times 3)$ is now available.

Ordinary Tables

The following changes affect several ordinary tables.

NEW The tables of all maximal subgroups are available for $F_4(2)$.

The following changes are assigned to specific simple groups, and shown in alphabetical order.

Release of CTblLib 1.3.3 in January 2022

(No character tables were added or changed.)

Last update January 1st, 2022.