In this section we outline two example computations with the functions of the previous chapter. The first example uses number fields defined by matrices and the second example considers number fields defined by a polynomial.
gap> m1 := [ [ 1, 0, 0, -7 ], [ 7, 1, 0, -7 ], [ 0, 7, 1, -7 ], [ 0, 0, 7, -6 ] ];; gap> m2 := [ [ 0, 0, -13, 14 ], [ -1, 0, -13, 1 ], [ 13, -1, -13, 1 ], [ 0, 13, -14, 1 ] ];; gap> F := FieldByMatricesNC( [m1, m2] ); <rational matrix field of unknown degree> gap> DegreeOverPrimeField(F); 4 gap> PrimitiveElement(F); [ [ -1, 1, 1, 0 ], [ -2, 0, 2, 1 ], [ -2, -1, 1, 2 ], [ -1, -1, 0, 1 ] ] gap> Basis(F); Basis( <rational matrix field of degree 4>, [ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 0, 1, 0, 0 ], [ -1, 1, 1, 0 ], [ -1, 0, 1, 1 ], [ -1, 0, 0, 1 ] ], [ [ 0, 0, 1, 0 ], [ -1, 0, 1, 1 ], [ -1, -1, 1, 1 ], [ 0, -1, 0, 1 ] ], [ [ 0, 0, 0, 1 ], [ -1, 0, 0, 1 ], [ 0, -1, 0, 1 ], [ 0, 0, -1, 1 ] ] ] ) gap> MaximalOrderBasis(F); Basis( <rational matrix field of degree 4>, [ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ -1, 1, 1, 0 ], [ -2, 0, 2, 1 ], [ -2, -1, 1, 2 ], [ -1, -1, 0, 1 ] ], [ [ -3, -2, 2, 3 ], [ -3, -5, 0, 5 ], [ 0, -5, -3, 3 ], [ 2, -2, -3, 0 ] ], [ [ -1, -1, 0, 1 ], [ 0, -2, -1, 1 ], [ 1, -1, -2, 0 ], [ 1, 0, -1, -1 ] ] ] ) gap> U := UnitGroup(F); <matrix group with 2 generators> gap> u := GeneratorsOfGroup( U );; gap> nat := IsomorphismPcpGroup(U);; gap> H := Image(nat); Pcp-group with orders [ 10, 0 ] gap> ImageElm( nat, u[1] ); g1 gap> ImageElm( nat, u[2] ); g2 gap> ImageElm( nat, u[1]*u[2] ); g1*g2 gap> u[1] = PreImagesRepresentative(nat, GeneratorsOfGroup(H)[1] ); true
gap> g := UnivariatePolynomial( Rationals, [ 16, 64, -28, -4, 1 ] ); x_1^4-4*x_1^3-28*x_1^2+64*x_1+16 gap> F := FieldByPolynomialNC(g); <algebraic extension over the Rationals of degree 4> gap> PrimitiveElement(F); a gap> MaximalOrderBasis(F); Basis( <algebraic extension over the Rationals of degree 4>, [ !1, 1/2*a, 1/4*a^2, 1/56*a^3+1/14*a^2+1/14*a-2/7 ] ) gap> U := UnitGroup(F); <group with 4 generators> gap> natU := IsomorphismPcpGroup(U);; gap> elms := List( [1..10], x-> Random(F) );; gap> PcpPresentationOfMultiplicativeSubgroup( F, elms ); Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] gap> isom := IsomorphismPcpGroup( F, elms );; gap> y := RandomGroupElement( elms );; gap> z := ImageElm( isom, y );; gap> y = PreImagesRepresentative( isom, z ); true gap> FactorsPolynomialAlgExt( F, g ); [ x_1+(-a), x_1+(a-2), x_1+(-1/7*a^3+3/7*a^2+31/7*a-40/7), x_1+(1/7*a^3-3/7*a^2-31/7*a+26/7) ]
[Up] [Previous] [Next] [Index]
Alnuth manual