Module Regexp.GlushkovType.NFAPair

module NFAPair: Nfa.NFA 

type state 
type letter 
module StateSet: Set.S 
module Alphabet: Set.S 
module StateToTransitionMap: Map.S 
module TransitionMap: Map.S 
type nfa = {
   mutable nfa_states : StateSet.t;
   mutable nfa_alphabet : Alphabet.t;
   mutable nfa_start_state : StateSet.elt option;
   mutable nfa_final_states : StateSet.t;
   mutable nfa_transitions : StateSet.t TransitionMap.t StateToTransitionMap.t;
}
val nfa_empty : nfa
val fresh_nfa_empty : unit -> nfa
val get_nfa_alphabet : nfa -> Alphabet.t
val add_letter : nfa -> Alphabet.elt -> unit
val add_all_letters : nfa -> Alphabet.t -> unit
val get_nfa_states : nfa -> StateSet.t
val get_nfa_start_state : nfa -> StateSet.elt option
val get_nfa_final_states : nfa -> StateSet.t
val add_state : nfa -> StateSet.elt -> unit
val set_start_state : nfa -> StateSet.elt -> unit
val set_final_states : nfa -> StateSet.t -> unit
val add_final_state : nfa -> StateSet.elt -> unit
val get_nfa_transitions : nfa -> StateSet.t TransitionMap.t StateToTransitionMap.t
val get_TransitionMap : nfa -> StateToTransitionMap.key -> StateSet.t TransitionMap.t
val get_destStateSet : 'a TransitionMap.t -> TransitionMap.key -> 'a
val get_destStateSet_s : nfa -> StateToTransitionMap.key -> TransitionMap.key -> StateSet.t
val add_transitions_aux : nfa ->
StateToTransitionMap.key -> Alphabet.elt * StateSet.elt -> unit
val add_transitions : nfa -> StateSet.elt -> (Alphabet.elt * StateSet.elt) list -> unit
val print_automata : nfa -> (Alphabet.elt -> unit) -> (StateSet.elt -> unit) -> unit
val empty : nfa -> bool