Home | Main Page | Modules | Namespace List | Class Hierarchy | Alphabetical List | Data Structures | File List | Namespace Members | Data Fields | Globals | Related Pages |
#include <elxAdaptiveStochasticLBFGS.h>
A gradient descent optimizer with an adaptive gain.
This class is a wrap around the AdaptiveStochasticVarianceReducedGradientOptimizer class. It takes care of setting parameters and printing progress information. For more information about the optimization method, please read the documentation of the AdaptiveStochasticVarianceReducedGradientOptimizer class.
This optimizer is very suitable to be used in combination with the Random image sampler, or with the RandomCoordinate image sampler, with the setting (NewSamplesEveryIteration "true"). Much effort has been spent on providing reasonable default values for all parameters, to simplify usage. In most registration problems, good results should be obtained without specifying any of the parameters described below (except the first of course, which defines the optimizer to use).
This optimization method is described in the following references:
[1] Y.Qiao, Z.Sun, B.P.F. Lelieveldt, M.Staring A stochastic quasi-newton method for non-rigid image registration Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 297-304, 2015. http://dx.doi.org/10.1007/978-3-319-24571-3_36
The parameters used in this class are:
Optimizer: Select this optimizer as follows:
(Optimizer "AdaptiveStochasticLBFGS")
MaximumNumberOfIterations: The maximum number of iterations in each resolution.
example: (MaximumNumberOfIterations 100 100 50)
Default/recommended value: 500. When you are in a hurry, you may go down to 250 for example. When you have plenty of time, and want to be absolutely sure of the best results, a setting of 2000 is reasonable. In general, 500 gives satisfactory results.
MaximumNumberOfSamplingAttempts: The maximum number of sampling attempts. Sometimes not enough corresponding samples can be drawn, upon which an exception is thrown. With this parameter it is possible to try to draw another set of samples.
example: (MaximumNumberOfSamplingAttempts 10 15 10)
Default value: 0, i.e. just fail immediately, for backward compatibility.
AutomaticParameterEstimation: When this parameter is set to "true", many other parameters are calculated automatically: SP_a, SP_alpha, SigmoidMax, SigmoidMin, and SigmoidScale. In the elastix.log file the actually chosen values for these parameters can be found.
example: (AutomaticParameterEstimation "true")
Default/recommended value: "true". The parameter can be specified for each resolution, or for all resolutions at once.
UseAdaptiveStepSizes: When this parameter is set to "true", the adaptive step size mechanism described in the documentation of itk::AdaptiveStochasticVarianceReducedGradientOptimizer is used. The parameter can be specified for each resolution, or for all resolutions at once.
example: (UseAdaptiveStepSizes "true")
Default/recommend value: "true", because it makes the registration more robust. In case of using a RandomCoordinate sampler, with (UseRandomSampleRegion "true"), the adaptive step size mechanism is turned off, no matter the user setting.
MaximumStepLength: Also called . This parameter can be considered as the maximum voxel displacement between two iterations. The larger this parameter, the more aggressive the optimization. The parameter can be specified for each resolution, or for all resolutions at once.
example: (MaximumStepLength 1.0)
Default: mean voxel spacing of fixed and moving image. This seems to work well in general. This parameter only has influence when AutomaticParameterEstimation is used.
Definition at line 103 of file elxAdaptiveStochasticLBFGS.h.
Data Structures | |
struct | MultiThreaderParameterType |
struct | SettingsType |
Public Member Functions | |
void | AdvanceOneStep (void) override |
void | AfterEachIteration (void) override |
void | AfterEachResolution (void) override |
void | AfterRegistration (void) override |
void | BeforeEachResolution (void) override |
void | BeforeRegistration (void) override |
elxClassNameMacro ("AdaptiveStochasticLBFGS") | |
virtual bool | GetAutomaticLBFGSStepsizeEstimation () const |
virtual bool | GetAutomaticParameterEstimation () const |
virtual const char * | GetClassName () const |
virtual const SizeValueType & | GetMaximumNumberOfSamplingAttempts () |
virtual double | GetMaximumStepLength () const |
virtual void | LBFGSUpdate (void) |
void | MetricErrorResponse (itk::ExceptionObject &err) override |
void | ResumeOptimization (void) override |
virtual void | SetAutomaticLBFGSStepsizeEstimation (bool _arg) |
virtual void | SetAutomaticParameterEstimation (bool _arg) |
virtual void | SetMaximumNumberOfSamplingAttempts (SizeValueType _arg) |
virtual void | SetMaximumStepLength (double _arg) |
void | SetNumberOfWorkUnits (ThreadIdType numberOfThreads) |
void | StartOptimization (void) override |
void | StopOptimization (void) override |
Public Member Functions inherited from itk::AdaptiveStochasticLBFGSOptimizer | |
virtual const char * | GetClassName () const |
virtual double | GetSigmoidMax () const |
virtual double | GetSigmoidMin () const |
virtual double | GetSigmoidScale () const |
virtual bool | GetUseAdaptiveStepSizes () const |
virtual bool | GetUseSearchDirForAdaptiveStepSize () const |
virtual void | SetSigmoidMax (double _arg) |
virtual void | SetSigmoidMin (double _arg) |
virtual void | SetSigmoidScale (double _arg) |
virtual void | SetUseAdaptiveStepSizes (bool _arg) |
virtual void | SetUseSearchDirForAdaptiveStepSize (bool _arg) |
Public Member Functions inherited from itk::StandardStochasticGradientOptimizer | |
void | AdvanceOneStep (void) override |
virtual const char * | GetClassName () const |
virtual double | GetCurrentTime () const |
virtual double | GetInitialTime () const |
virtual double | GetParam_a () const |
virtual double | GetParam_A () const |
virtual double | GetParam_alpha () const |
virtual double | GetParam_beta () const |
virtual void | ResetCurrentTimeToInitialTime (void) |
virtual void | SetInitialTime (double _arg) |
virtual void | SetParam_a (double _arg) |
virtual void | SetParam_A (double _arg) |
virtual void | SetParam_alpha (double _arg) |
virtual void | SetParam_beta (double _arg) |
void | StartOptimization (void) override |
Public Member Functions inherited from itk::StochasticGradientDescentOptimizer | |
virtual void | AdvanceOneStep (void) |
virtual const char * | GetClassName () const |
virtual unsigned int | GetCurrentInnerIteration () const |
virtual unsigned int | GetCurrentIteration () const |
virtual const DerivativeType & | GetGradient () |
virtual unsigned int | GetLBFGSMemory () const |
virtual const double & | GetLearningRate () |
virtual const unsigned long & | GetNumberOfInnerIterations () |
virtual const unsigned long & | GetNumberOfIterations () |
virtual const DerivativeType & | GetPreviousGradient () |
virtual const ParametersType & | GetPreviousPosition () |
virtual const DerivativeType & | GetSearchDir () |
virtual const StopConditionType & | GetStopCondition () |
virtual const double & | GetValue () |
virtual void | MetricErrorResponse (ExceptionObject &err) |
virtual void | ResumeOptimization (void) |
virtual void | SetLearningRate (double _arg) |
virtual void | SetNumberOfIterations (unsigned long _arg) |
void | SetNumberOfWorkUnits (ThreadIdType numberOfThreads) |
virtual void | SetPreviousGradient (DerivativeType _arg) |
virtual void | SetPreviousPosition (ParametersType _arg) |
virtual void | SetUseEigen (bool _arg) |
virtual void | SetUseMultiThread (bool _arg) |
virtual void | SetUseOpenMP (bool _arg) |
void | StartOptimization (void) override |
virtual void | StopOptimization (void) |
Public Member Functions inherited from itk::ScaledSingleValuedNonLinearOptimizer | |
virtual const char * | GetClassName () const |
const ParametersType & | GetCurrentPosition (void) const override |
virtual bool | GetMaximize () const |
virtual const ScaledCostFunctionType * | GetScaledCostFunction () |
virtual const ParametersType & | GetScaledCurrentPosition () |
bool | GetUseScales (void) const |
virtual void | InitializeScales (void) |
virtual void | MaximizeOff () |
virtual void | MaximizeOn () |
void | SetCostFunction (CostFunctionType *costFunction) override |
virtual void | SetMaximize (bool _arg) |
virtual void | SetUseScales (bool arg) |
Public Member Functions inherited from elastix::OptimizerBase< TElastix > | |
void | AfterRegistrationBase (void) override |
void | BeforeEachResolutionBase () override |
virtual ITKBaseType * | GetAsITKBaseType (void) |
virtual const ITKBaseType * | GetAsITKBaseType (void) const |
virtual const char * | GetClassName () const |
virtual void | SetCurrentPositionPublic (const ParametersType ¶m) |
virtual void | SetSinusScales (double amplitude, double frequency, unsigned long numberOfParameters) |
Public Member Functions inherited from elastix::BaseComponentSE< TElastix > | |
ConfigurationType * | GetConfiguration (void) const |
ElastixType * | GetElastix (void) const |
RegistrationPointer | GetRegistration (void) const |
ITK_DISALLOW_COPY_AND_ASSIGN (BaseComponentSE) | |
void | SetConfiguration (ConfigurationType *_arg) |
void | SetElastix (ElastixType *_arg) |
Public Member Functions inherited from elastix::BaseComponent | |
virtual void | AfterEachIteration (void) |
virtual void | AfterEachIterationBase (void) |
virtual void | AfterEachResolution (void) |
virtual void | AfterEachResolutionBase (void) |
virtual void | AfterRegistration (void) |
virtual void | AfterRegistrationBase (void) |
virtual int | BeforeAll (void) |
virtual int | BeforeAllBase (void) |
virtual void | BeforeEachResolution (void) |
virtual void | BeforeEachResolutionBase (void) |
virtual void | BeforeRegistration (void) |
virtual void | BeforeRegistrationBase (void) |
virtual const char * | elxGetClassName (void) const |
const char * | GetComponentLabel (void) const |
ITK_DISALLOW_COPY_AND_ASSIGN (BaseComponent) | |
itkTypeMacroNoParent (BaseComponent) | |
void | SetComponentLabel (const char *label, unsigned int idx) |
Static Public Member Functions | |
static Pointer | New () |
Static Public Member Functions inherited from itk::AdaptiveStochasticLBFGSOptimizer | |
static Pointer | New () |
Static Public Member Functions inherited from itk::StandardStochasticGradientOptimizer | |
static Pointer | New () |
Static Public Member Functions inherited from itk::StochasticGradientDescentOptimizer | |
static Pointer | New () |
Static Public Member Functions inherited from itk::ScaledSingleValuedNonLinearOptimizer | |
static Pointer | New () |
Static Public Member Functions inherited from elastix::BaseComponent | |
static std::string | ConvertSecondsToDHMS (const double totalSeconds, const unsigned int precision) |
static void | InitializeElastixExecutable () |
static bool | IsElastixLibrary () |
Private Member Functions | |
AdaptiveStochasticLBFGS (const Self &) | |
void | operator= (const Self &) |
void | ThreadedAdvanceOneStep (ThreadIdType threadId, ParametersType &newPosition) |
Static Private Member Functions | |
static itk::ITK_THREAD_RETURN_TYPE | AdvanceOneStepThreaderCallback (void *arg) |
|
protected |
Definition at line 286 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 244 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 238 of file elxAdaptiveStochasticLBFGS.h.
typedef Superclass2::ConfigurationPointer elastix::AdaptiveStochasticLBFGS< TElastix >::ConfigurationPointer |
Definition at line 138 of file elxAdaptiveStochasticLBFGS.h.
typedef Superclass2::ConfigurationType elastix::AdaptiveStochasticLBFGS< TElastix >::ConfigurationType |
Definition at line 137 of file elxAdaptiveStochasticLBFGS.h.
typedef itk::SmartPointer<const Self> elastix::AdaptiveStochasticLBFGS< TElastix >::ConstPointer |
Definition at line 114 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 282 of file elxAdaptiveStochasticLBFGS.h.
typedef Superclass1::CostFunctionPointer elastix::AdaptiveStochasticLBFGS< TElastix >::CostFunctionPointer |
Definition at line 131 of file elxAdaptiveStochasticLBFGS.h.
typedef Superclass1::CostFunctionType elastix::AdaptiveStochasticLBFGS< TElastix >::CostFunctionType |
Typedef's inherited from Superclass1.
Definition at line 130 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 294 of file elxAdaptiveStochasticLBFGS.h.
typedef Superclass2::ElastixPointer elastix::AdaptiveStochasticLBFGS< TElastix >::ElastixPointer |
Definition at line 136 of file elxAdaptiveStochasticLBFGS.h.
typedef Superclass2::ElastixType elastix::AdaptiveStochasticLBFGS< TElastix >::ElastixType |
Typedef's inherited from Superclass2.
Definition at line 135 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 232 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 233 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 231 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Protected typedefs
Definition at line 228 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 268 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Image grid sampler.
Definition at line 267 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 264 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 262 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 255 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 253 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 251 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 249 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 260 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Image random sampler.
Definition at line 259 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 271 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 270 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 248 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Samplers:
Definition at line 247 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 256 of file elxAdaptiveStochasticLBFGS.h.
typedef Superclass2::ITKBaseType elastix::AdaptiveStochasticLBFGS< TElastix >::ITKBaseType |
Definition at line 141 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 234 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 236 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 239 of file elxAdaptiveStochasticLBFGS.h.
typedef LineOptimizerType::Pointer elastix::AdaptiveStochasticLBFGS< TElastix >::LineOptimizerPointer |
Definition at line 155 of file elxAdaptiveStochasticLBFGS.h.
typedef itk::MoreThuenteLineSearchOptimizer elastix::AdaptiveStochasticLBFGS< TElastix >::LineOptimizerType |
Definition at line 154 of file elxAdaptiveStochasticLBFGS.h.
typedef LineSearchOptimizerType::Pointer elastix::AdaptiveStochasticLBFGS< TElastix >::LineSearchOptimizerPointer |
Definition at line 153 of file elxAdaptiveStochasticLBFGS.h.
typedef itk::LineSearchOptimizer elastix::AdaptiveStochasticLBFGS< TElastix >::LineSearchOptimizerType |
Definition at line 151 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 229 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 288 of file elxAdaptiveStochasticLBFGS.h.
typedef Superclass1::ParametersType elastix::AdaptiveStochasticLBFGS< TElastix >::ParametersType |
Typedef for the ParametersType.
Definition at line 149 of file elxAdaptiveStochasticLBFGS.h.
typedef itk::SmartPointer<Self> elastix::AdaptiveStochasticLBFGS< TElastix >::Pointer |
Definition at line 113 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 276 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 275 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Other protected typedefs
Definition at line 274 of file elxAdaptiveStochasticLBFGS.h.
typedef Superclass2::RegistrationPointer elastix::AdaptiveStochasticLBFGS< TElastix >::RegistrationPointer |
Definition at line 140 of file elxAdaptiveStochasticLBFGS.h.
typedef Superclass2::RegistrationType elastix::AdaptiveStochasticLBFGS< TElastix >::RegistrationType |
Definition at line 139 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
For L-BFGS usage.
Definition at line 291 of file elxAdaptiveStochasticLBFGS.h.
typedef AdaptiveStochasticLBFGS elastix::AdaptiveStochasticLBFGS< TElastix >::Self |
Standard ITK.
Definition at line 110 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 241 of file elxAdaptiveStochasticLBFGS.h.
typedef itk::SizeValueType elastix::AdaptiveStochasticLBFGS< TElastix >::SizeValueType |
Definition at line 142 of file elxAdaptiveStochasticLBFGS.h.
typedef Superclass1::StopConditionType elastix::AdaptiveStochasticLBFGS< TElastix >::StopConditionType |
Definition at line 132 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 292 of file elxAdaptiveStochasticLBFGS.h.
typedef AdaptiveStochasticLBFGSOptimizer elastix::AdaptiveStochasticLBFGS< TElastix >::Superclass1 |
Definition at line 111 of file elxAdaptiveStochasticLBFGS.h.
typedef OptimizerBase<TElastix> elastix::AdaptiveStochasticLBFGS< TElastix >::Superclass2 |
Definition at line 112 of file elxAdaptiveStochasticLBFGS.h.
typedef unsigned int elastix::AdaptiveStochasticLBFGS< TElastix >::ThreadIdType |
Type to count and reference number of threads
Definition at line 217 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Typedefs for support of sparse Jacobians and AdvancedTransforms.
Definition at line 279 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 235 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 293 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
|
inlineoverrideprotected |
Definition at line 297 of file elxAdaptiveStochasticLBFGS.h.
|
private |
|
protectedvirtual |
Helper function that adds a random perturbation delta to the input parameters, with delta ~ sigma * N(0,I). Used by SampleGradients.
|
overridevirtual |
AdvanceOneStep.
Reimplemented from itk::StochasticGradientDescentOptimizer.
|
staticprivate |
The callback function.
|
overridevirtual |
Reimplemented from elastix::BaseComponent.
|
overridevirtual |
Reimplemented from elastix::BaseComponent.
|
overridevirtual |
Reimplemented from elastix::BaseComponent.
|
protectedvirtual |
|
protectedvirtual |
Select different method to estimate some reasonable values for the parameters SP_a, SP_alpha (=1), SigmoidMin, SigmoidMax (=1), and SigmoidScale.
|
protectedvirtual |
Original estimation method to get the reasonable values for the parameters SP_a, SP_alpha (=1), SigmoidMin, SigmoidMax (=1), and SigmoidScale.
|
protectedvirtual |
Estimates some reasonable values for the parameters using displacement distribution SP_a, SP_alpha (=1)
|
overridevirtual |
Reimplemented from elastix::BaseComponent.
|
overridevirtual |
Methods invoked by elastix, in which parameters can be set and progress information can be printed.
Reimplemented from elastix::BaseComponent.
|
protectedvirtual |
Check if the transform is an advanced transform. Called by Initialize.
|
protectedvirtual |
Compute H0
Override this method if not satisfied with the default choice.
|
protectedvirtual |
Compute -Hg
COMPUTE -H*G USING THE FORMULA GIVEN IN: Nocedal, J. 1980, "Updating quasi-Newton matrices with limited storage", Mathematics of Computation, Vol.24, No.151, pp. 773-782.
elastix::AdaptiveStochasticLBFGS< TElastix >::elxClassNameMacro | ( | "AdaptiveStochasticLBFGS< TElastix >" | ) |
Name of this class. Use this name in the parameter file to select this specific optimizer. example: (Optimizer "AdaptiveStochasticLBFGS")
|
virtual |
|
virtual |
|
virtual |
Run-time type information (and related methods).
Reimplemented from itk::AdaptiveStochasticLBFGSOptimizer.
|
virtual |
Get the MaximumNumberOfSamplingAttempts.
|
virtual |
|
protectedvirtual |
Helper function, which calls GetScaledValueAndDerivative and does some exception handling. Used by SampleGradients.
|
protected |
|
protected |
|
virtual |
LBFGS Update step.
|
override |
Stop optimization and pass on exception.
|
static |
Method for creation through the object factory.
|
private |
|
protectedvirtual |
Print the contents of the settings vector to elxout.
|
overridevirtual |
If automatic gain estimation is desired, then estimate SP_a, SP_alpha SigmoidScale, SigmoidMax, SigmoidMin. After that call Superclass' implementation.
Reimplemented from itk::StochasticGradientDescentOptimizer.
|
protectedvirtual |
Measure some derivatives, exact and approximated. Returns the squared magnitude of the gradient and approximation error. Needed for the automatic parameter estimation. Gradients are measured at position mu_n, which are generated according to: mu_n - mu_0 ~ N(0, perturbationSigma^2 I ); gg = g^T g, etc.
|
virtual |
Set/Get whether automatic LBFGS step size estimation is desired.
|
virtual |
Set/Get whether automatic parameter estimation is desired. If true, make sure to set the maximum step length.
The following parameters are automatically determined: SP_a, SP_alpha (=1), SigmoidMin, SigmoidMax (=1), SigmoidScale. A usually suitable value for SP_A is 20, which is the default setting, if not specified by the user.
|
virtual |
Set the MaximumNumberOfSamplingAttempts.
|
virtual |
Set/Get maximum step length.
|
inline |
Set the number of threads.
Definition at line 220 of file elxAdaptiveStochasticLBFGS.h.
|
override |
Check if any scales are set, and set the UseScales flag on or off; after that call the superclass' implementation.
|
overridevirtual |
Stop optimization.
Reimplemented from itk::StochasticGradientDescentOptimizer.
|
protectedvirtual |
Store s = x_k - x_k-1 and y = g_k - g_k-1 in m_S and m_Y, and store 1/(ys) in m_Rho.
|
inlineprivate |
The threaded implementation of AdvanceOneStep().
|
protected |
The transform stored as AdvancedTransform
Definition at line 308 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Definition at line 420 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Definition at line 419 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Definition at line 427 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 393 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Definition at line 425 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 391 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 398 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Private variables for band size estimation of covariance matrix.
Definition at line 432 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Private variables for the sampling attempts.
Definition at line 424 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Definition at line 421 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 390 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Definition at line 433 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Some options for automatic parameter estimation.
Definition at line 303 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Definition at line 434 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 304 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 305 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Definition at line 435 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Definition at line 439 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Definition at line 429 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Setting: the minimum gradient magnitude.
The optimizer stops when: ||CurrentGradient|| < GradientMagnitudeTolerance * max(1, ||CurrentPosition||)
Definition at line 388 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Definition at line 426 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 392 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
RandomGenerator for AddRandomPerturbation.
Definition at line 311 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 395 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 396 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Variable to store the automatically determined settings for each resolution.
Definition at line 300 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 313 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Definition at line 442 of file elxAdaptiveStochasticLBFGS.h.
|
private |
The flag of using noise compensation.
Definition at line 438 of file elxAdaptiveStochasticLBFGS.h.
|
private |
Definition at line 440 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 399 of file elxAdaptiveStochasticLBFGS.h.
|
protected |
Definition at line 397 of file elxAdaptiveStochasticLBFGS.h.
Generated on 1667476801 for elastix by 1.9.4 |