

The Dynare Preprocessor

Sébastien Villemot Houtan Bastani

1 February 2017

cba Copyright © 2007–2019 Dynare Team
Licence: Creative Commons Attribution-ShareAlike 4.0

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 1 / 54

http://creativecommons.org/licenses/by-sa/4.0/

Overview

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 2 / 54

Outline

1 Invoking the preprocessor

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Transform pass

6 Computing pass

7 Writing outputs

8 Proposed Changes

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 3 / 54

Outline

1 Invoking the preprocessor

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Transform pass

6 Computing pass

7 Writing outputs

8 Proposed Changes

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 4 / 54

Calling Dynare

Dynare is called from the host language platform with the syntax
dynare «filename».mod
This call can be followed by certain options:

▶ Some of these options impact host language platform functionality, e.g.
nograph prevents graphs from being displayed in MATLAB

▶ Some cause differences in the output created by default, e.g.
notmpterms prevents temporary terms from being written to the
static/dynamic files

▶ While others impact the functionality of the macroprocessor or the
preprocessor, e.g. nostrict shuts off certain checks that the
preprocessor does by defalut

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 5 / 54

Outline

1 Invoking the preprocessor

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Transform pass

6 Computing pass

7 Writing outputs

8 Proposed Changes

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 6 / 54

Parsing overview

Parsing is the action of transforming an input text (a mod file in our
case) into a data structure suitable for computation
The parser consists of three components:

▶ the lexical analyzer, which recognizes the “words” of the mod file
(analog to the vocabulary of a language)

▶ the syntax analyzer, which recognizes the “sentences” of the mod file
(analog to the grammar of a language)

▶ the parsing driver, which coordinates the whole process and constructs
the data structure using the results of the lexical and syntax analyses

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 7 / 54

Lexical analysis

The lexical analyzer recognizes the “words” (or lexemes) of the
language
Defined in DynareFlex.ll, it is transformed into C++ source code
by the program flex

This file details the list of known lexemes (described by regular
expressions) and the associated token for each of them
For punctuation (semicolon, parentheses, . . .), operators (+, -, . . .)
or fixed keywords (e.g. model, varexo, . . .), the token is simply an
integer uniquely identifying the lexeme
For variable names or numbers, the token also contains the associated
string for further processing
When invoked, the lexical analyzer reads the next characters of the
input, tries to recognize a lexeme, and either produces an error or
returns the associated token

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 8 / 54

Lexical analysis
An example

Suppose the mod file contains the following:
model;
x = log(3.5);
end;

Before lexical analysis, it is only a sequence of characters
The lexical analysis produces the following stream of tokens:
MODEL
SEMICOLON
NAME "x"
EQUAL
LOG
LEFT_PARENTHESIS
FLOAT_NUMBER "3.5"
RIGHT_PARENTHESIS
SEMICOLON
END
SEMICOLON

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 9 / 54

Syntax analysis
In Dynare

The mod file grammar is described in DynareBison.yy, which is
transformed into C++ source code by the program bison
The grammar tells a story which looks like:

▶ A mod file is a list of statements
▶ A statement can be a var statement, a varexo statement, a model

block, an initval block, . . .
▶ A var statement begins with the token VAR, then a list of NAMEs, then

a semicolon
▶ A model block begins with the token MODEL, then a semicolon, then a

list of equations separated by semicolons, then an END token
▶ An equation can be either an expression, or an expression followed by

an EQUAL token and another expression
▶ An expression can be a NAME, or a FLOAT_NUMBER, or an expression

followed by a PLUS and another expression, . . .

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 10 / 54

Syntax analysis
Using the list of tokens produced by lexical analysis, the syntax analyzer
determines which “sentences” are valid in the language, according to a
grammar composed of rules.

A grammar for lists of additive and multiplicative expressions
%start expression_list;

expression_list := expression SEMICOLON
| expression_list expression SEMICOLON;

expression := expression PLUS expression
| expression TIMES expression
| LEFT_PAREN expression RIGHT_PAREN
| INT_NUMBER;

(1+3)*2; 4+5; will pass the syntax analysis without error
1++2; will fail the syntax analysis, even though it has passed the
lexical analysis

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 11 / 54

Semantic actions

So far we have only described how to accept valid mod files and to
reject others
But validating is not enough: one needs to do something with the
parsed mod file
Every grammar rule can have a semantic action associated with it:
C/C++ code enclosed by curly braces
Every rule can return a semantic value (referenced by $$ in the
action)
In the action, it is possible to refer to semantic values returned by
components of the rule (using $1, $2, . . .)

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 12 / 54

Semantic actions
An example

A simple calculator which prints its results
%start expression_list
%type <int> expression

expression_list := expression SEMICOLON
{ cout << $1 << endl; }

| expression_list expression SEMICOLON
{ cout << $2 << endl; };

expression := expression PLUS expression
{ $$ = $1 + $3; }

| expression TIMES expression
{ $$ = $1 * $3; }

| LEFT_PAREN expression RIGHT_PAREN
{ $$ = $2; }

| INT_NUMBER
{ $$ = $1; };

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 13 / 54

Parsing driver

The class ParsingDriver has the following roles:
It opens the mod file and launches the lexical and syntaxic analyzers
on it
It implements most of the semantic actions of the grammar
By doing so, it creates an object of type ModFile, which is the data
structure representing the mod file
Or, if there is a parsing error (unknown keyword, undeclared symbol,
syntax error), it displays the line and column numbers where the error
occurred and exits

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 14 / 54

Outline

1 Invoking the preprocessor

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Transform pass

6 Computing pass

7 Writing outputs

8 Proposed Changes

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 15 / 54

The ModFile class

This class is the internal data structure used to store all the
information contained in a mod file
One instance of the class represents one mod file
The class contains the following elements (as class members):

▶ a symbol table, numerical constants table, external functions table
▶ trees of expressions: dynamic model, static model, original model,

ramsey dynamic model, steady state model, trend dynamic model, . . .
▶ the list of the statements (parameter initializations, shocks block,

check, steady, simul, . . .)
▶ model-specification and user-preference variables: block, bytecode,

use_dll, no_static, . . .
▶ an evaluation context (containing initval and parameter values)

An instance of ModFile is the output of the parsing process (return
value of ParsingDriver::parse())

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 16 / 54

The symbol table (1/3)

A symbol is simply the name of a variable (endogenous, exogenous,
local, auxiliary, etc), parameter, external function, . . . basically
everything that is not recognized as a Dynare keyword
SymbolTable is a simple class used to maintain the list of the symbols
used in the mod file
For each symbol, it stores:

▶ its name, tex_name, and long_name (strings, some of which can be
empty)

▶ its type (an enumerator defined in CodeInterpreter.hh)
▶ a unique integer identifier (also has a unique identifier by type)

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 17 / 54

The symbol table (2/3)
Existing types of symbols:

Endogenous variables
Exogenous variables
Exogenous deterministic variables
Parameters
Local variables inside model: declared with a pound sign (#)
construction
Local variables outside model: no declaration needed (e.g. lhs
symbols in equations from steady_state_model block, expression
outside of model block, . . .)
External functions
Trend variables
Log Trend variables
Unused Endogenous variables (created when nostrict option is
passed)

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 18 / 54

The symbol table (3/3)

Symbol table filled in:
▶ using the var, varexo, varexo_det, parameter,

external_function, trend_var, and log_trend_var declarations
▶ using pound sign (#) constructions in the model block
▶ on the fly during parsing: local variables outside models or unknown

functions when an undeclared symbol is encountered
▶ during the creation of auxiliary variables in the transform pass

Roles of the symbol table:
▶ permits parcimonious and more efficient representation of expressions

(no need to duplicate or compare strings, only handle a pair of integers)
▶ ensures that a given symbol is used with only one type

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 19 / 54

Expression trees (1/3)
The data structure used to store expressions is essentially a tree
Graphically, the tree representation of (1 + z) ∗ log(y) is:

No need to store parentheses
Each circle represents a node
A non external function node has at most one parent and at most
three children (an external function node has as many children as
arguments)

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 20 / 54

Expression trees (2/3)

A tree node is represented by an instance of the abstract class
ExprNode
This class has 5 sub-classes, corresponding to the 5 types of
non-external-function nodes:

▶ NumConstNode for constant nodes: contains the identifier of the
numerical constants it represents

▶ VariableNode for variable/parameters nodes: contains the identifier of
the variable or parameter it represents

▶ UnaryOpNode for unary operators (e.g. unary minus, log, sin): contains
an enumerator representing the operator, and a pointer to its child

▶ BinaryOpNode for binary operators (e.g. +, ∗, pow): contains an
enumerator representing the operator, and pointers to its two children

▶ TrinaryOpNode for trinary operators (e.g. normcdf , normpdf):
contains an enumerator representing the operator and pointers to its
three children

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 21 / 54

Expression trees (3/3)

The abstract class ExprNode has an abstract sub-class called
AbstractExternalFunctionNode
This abstract sub-class has 3 sub-classes, corresponding to the 3
types of external function nodes:

▶ ExternalFunctionNode for external functions. Contains the identifier
of the external function and a vector of its arguments

▶ FirstDerivExternalFunctionNode for the first derivative of an
external function. In addition to the information contained in
ExternalFunctionNode, contains the index w.r.t. which this node is
the derivative.

▶ SecondDerivExternalFunctionNode for the second derivative of an
external function. In addition to the information contained in
FirstDerivExternalFunctionNode, contains the index w.r.t. which
this node is the second derivative.

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 22 / 54

Classes DataTree and ModelTree
Class DataTree is a container for storing a set of expression trees
Class ModelTree is a sub-class container of DataTree, specialized for
storing a set of model equations.
In the code, we use ModelTree-derived classes: DynamicModel (the
model with lags) and StaticModel (the model without lags)
Class ModFile contains:

▶ one instance of DataTree for storing all expressions outside model
block

▶ several instances of DynamicModel, one each for storing the equations
of the model block for the original model, modified model, original
Ramsey model, the Ramsey FOCs, etc.

▶ one instance of StaticModel for storing the equations of model block
without lags

Expression storage is optimized through three mechanisms:
▶ symbolic simplification rules
▶ sub-expression sharing
▶ pre-computing of numerical constants

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 23 / 54

Constructing expression trees

Class DataTree contains a set of methods for constructing expression
trees
Construction is done bottom-up, node by node:

▶ one method for adding a constant node
(AddPossiblyNegativeConstant(double))

▶ one method for a log node (AddLog(arg))
▶ one method for a plus node (AddPlus(arg1, arg2))

These methods take pointers to ExprNode, allocate the memory for
the node, construct it, and return its pointer
These methods are called:

▶ from ParsingDriver in the semantic actions associated to the parsing
of expressions

▶ during symbolic derivation, to create derivatives expressions
▶ when creating the static model from the dynamic model
▶ . . .

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 24 / 54

Reduction of constants and symbolic simplifications

The construction methods compute constants whenever possible
▶ Suppose you ask to construct the node 1 + 1
▶ The AddPlus() method will return a pointer to a constant node

containing 2
The construction methods also apply a set of simplification rules,
such as:

▶ 0 + 0 = 0
▶ x + 0 = x
▶ 0 − x = −x
▶ −(−x) = x
▶ x ∗ 0 = 0
▶ x/1 = x
▶ x0 = 1

When a simplification rule applies, no new node is created

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 25 / 54

Sub-expression sharing (1/2)

Consider the two following expressions: (1 + z) ∗ log(y) and 2(1+z)

Expressions share a common sub-expression: 1 + z
The internal representation of these expressions is:

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 26 / 54

Sub-expression sharing (2/2)
Construction methods implement a simple algorithm which achieves
maximal expression sharing
Algorithm uses the fact that each node has a unique memory address
(pointer to the corresponding instance of ExprNode)
It maintains 9 tables which keep track of the already-constructed
nodes: one table by type of node (constants, variables, unary ops,
binary ops, trinary ops, external functions, first deriv of external
functions, second deriv of external functions, local variables)
Suppose you want to create the node e1 + e2 (where e1 and e2 are
sub-expressions):

▶ the algorithm searches the binary ops table for the tuple equal to
(address of e1, address of e2, op code of +) (it is the search key)

▶ if the tuple is found in the table, the node already exists and its
memory address is returned

▶ otherwise, the node is created and is added to the table with its search
key

Maximum sharing is achieved because expression trees are
constructed bottom-up

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 27 / 54

Final remarks about expressions

Storage of negative constants
▶ class NumConstNode only accepts positive constants
▶ a negative constant is stored as a unary minus applied to a positive

constant
▶ this is a kind of identification constraint to avoid having two ways of

representing negative constants: (−2) and −(2)
Widely used constants

▶ class DataTree has attributes containing pointers to constants: 0, 1, 2,
−1, NaN, ∞, −∞, and π

▶ these constants are used in many places (in simplification rules, in
derivation algorithm. . .)

▶ sub-expression sharing algorithm ensures that these constants will never
be duplicated

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 28 / 54

List of statements

A statement is represented by an instance of a subclass of the
abstract class Statement
Three groups of statements:

▶ initialization statements (parameter initialization with p = . . .,
initval, histval, or endval block)

▶ shocks blocks (shocks, mshocks, . . .)
▶ computing tasks (steady, check, simul, . . .)

Each type of statement has its own class (e.g. InitValStatement,
SimulStatement, . . .)
The class ModFile stores a list of pointers of type Statement*,
corresponding to the statements of the mod file, in their order of
declaration
Heavy use of polymorphism in the check pass, computing pass, and
when writing outputs: abstract class Statement provides a virtual
method for these 3 actions

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 29 / 54

Evaluation context

The ModFile class contains an evaluation context
It is a map associating a numerical value to some symbols
Filled in with initval block values and parameter initializations
Used during equation normalization (in the block decomposition), for
finding non-zero entries in the jacobian
Used in testing that trends are compatible with a balanced growth
path, for finding non-zero cross partials of equations with respect to
trend variables and endogenous varibales

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 30 / 54

Outline

1 Invoking the preprocessor

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Transform pass

6 Computing pass

7 Writing outputs

8 Proposed Changes

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 31 / 54

Error checking during parsing

Some errors in the mod file can be detected during parsing:
▶ syntax errors
▶ use of undeclared symbols in model block, initval block. . .
▶ use of a symbol incompatible with its type (e.g. parameter in initval,

local variable used both in model and outside model)
▶ multiple shock declarations for the same variable

But some other checks can only be done when parsing is completed. . .

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 32 / 54

Check pass

The check pass is implemented through the method
ModFile::checkPass()
Performs many checks. Examples include:

▶ check there is at least one equation in the model (except if doing a
standalone BVAR estimation)

▶ checks for coherence in statements (e.g. options passed to statements
do not conflict with each other, required options have been passed)

▶ checks for coherence among statements (e.g. if osr statement is
present, ensure osr_params and optim_weights statements are
present)

▶ checks for coherence between statements and attributes of mod file
(e.g. use_dll is not used with block or bytecode)

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 33 / 54

Outline

1 Invoking the preprocessor

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Transform pass

6 Computing pass

7 Writing outputs

8 Proposed Changes

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 34 / 54

Transform pass (1/2)

The transform pass is implemented through the method
ModFile::transformPass(bool nostrict)
It makes necessary transformations (notably to the dynamic model,
symbol table, and statements list) preparing the ModFile object for
the computing pass. Examples of transformations include:

▶ creation of auxiliary variables and equations for leads, lags, expectation
operator, differentiated forward variables, etc.

▶ detrending of model equations if nonstationary variables are present
▶ decreasing leads/lags of predetermined variables by one period
▶ addition of FOCs of Langrangian for Ramsey problem
▶ addition of dsge_prior_weight initialization before all other

statements if estimating a DSGE-VAR where the weight of the DSGE
prior of the VAR is calibrated

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 35 / 54

Transform pass (2/2)

It then freezes the symbol table, meaning that no more symbols can
be created on the ModFile object
Finally checks are performed on the transformed model. Examples
include:

▶ same number of endogenous varibables as equations (not done in
certain situations, e.g. Ramsey, discretionary policy, etc.)

▶ correspondence among variables and statements, e.g. Ramsey policy,
identification, perfect foresight solver, and simul are incompatible with
deterministic exogenous variables

▶ correspondence among statements, e.g. for DSGE-VAR without
bayesian_irf option, the number of shocks must be greater than or
equal to the number of observed variables

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 36 / 54

Outline

1 Invoking the preprocessor

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Transform pass

6 Computing pass

7 Writing outputs

8 Proposed Changes

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 37 / 54

Overview of the computing pass
Computing pass implemented in ModFile::computingPass()

Creates Static model from Dynamic (by removing leads/lags)
Determines which derivatives to compute
Then calls DynamicModel::computingPass() which computes:

▶ leag/lag variable incidence matrix
▶ symbolic derivatives w.r.t. endogenous, exogenous, and parameters, if

needed
▶ equation normalization + block decomposition
▶ temporary terms
▶ computes equation cross references, if desired

NB: analagous operations for Static model are performed by
StaticModel::computingPass()

Asserts that equations declared linear are indeed linear (by checking
that Hessian == 0)
Finally, calls Statement::computingPass() on all statements

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 38 / 54

Model Variables

In the context of class ModelTree, a variable is a pair (symbol, lag)
The symbol must correspond to a variable of type endogenous,
exogenous, deterministic exogenous variable, or parameter
The SymbolTable class keeps track of valid symbols while the
variable_node_map keeps track of model variables (symbol, lag
pairs stored in VariableNode objects)
After the computing pass, the DynamicModel class writes the
leag/lag incidence matrix:

▶ three rows: the first row indicates t − 1, the second row t, and the
third row t + 1

▶ one column for every endogenous symbol in order of declaration; NB:
includes endogenous auxiliary variables created during the transform
pass

▶ elements of the matrix are either 0 (if the variable does not appear in
the model) or correspond to the variable’s column in the Jacobian of
the dynamic model

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 39 / 54

Static versus dynamic model

The static model is simply the dynamic model without leads and lags
Static model used to characterize the steady state
The jacobian of the static model is used in the (MATLAB) solver for
determining the steady state

Example
suppose dynamic model is 2xt · xt−1 = 0
static model is 2x2 = 0, whose derivative w.r.t. x is 4x
dynamic derivative w.r.t. xt is 2xt−1, and w.r.t. xt−1 is 2xt

removing leads/lags from dynamic derivatives and summing over the
two partial derivatives w.r.t. xt and xt−1 gives 4x

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 40 / 54

Which derivatives to compute?
In deterministic mode:

▶ static jacobian w.r.t. endogenous variables only
▶ dynamic jacobian w.r.t. endogenous variables only

In stochastic mode:
▶ static jacobian w.r.t. endogenous variables only
▶ dynamic jacobian w.r.t. endogenous, exogenous, and deterministic

exogenous variables
▶ dynamic hessian w.r.t. endogenous, exogenous, and deterministic

exogenous variables
▶ possibly dynamic 3rd derivatives (if order option ≥ 3)
▶ possibly dynamic jacobian and/or hessian w.r.t. parameters (if

identification or analytic derivs needed for estimation and
params_derivs_order > 0)

For Ramsey policy: the same as above, but with one further order of
derivation than declared by the user with order option (the
derivation order is determined in the check pass, see
RamseyPolicyStatement::checkPass())

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 41 / 54

Derivation algorithm (1/2)

Derivation of the model implemented in
ModelTree::computeJacobian(),
ModelTree::computeHessian(),
ModelTree::computeThirdDerivatives(), and
ModelTree::computeParamsDerivatives()

Simply call ExprNode::getDerivative(deriv_id) on each
equation node
Use of polymorphism:

▶ for a constant or variable node, derivative is straightforward (0 or 1)
▶ for a unary, binary, trinary op nodes and external function nodes,

recursively calls method computeDerivative() on children to
construct derivative

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 42 / 54

Derivation algorithm (2/2)
Optimizations

Caching of derivation results
▶ method ExprNode::getDerivative(deriv_id) memorizes its result

in a member attribute (derivatives) the first time it is called
▶ the second time it is called (with the same argument), it simply returns

the cached value without recomputation
▶ caching is useful because of sub-expression sharing

Efficiently finds symbolic derivatives equal to 0
▶ consider the expression x + y2

▶ without any computation, you know its derivative w.r.t. z is zero
▶ each node stores in an attribute (non_null_derivatives) the set of

variables which appear in the expression it represents ({x , y} in the
example)

▶ this set is computed in prepareForDerivation()
▶ when getDerivative(deriv_id) is called, immediately returns zero

if deriv_id is not in that set

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 43 / 54

Temporary terms (1/2)

When the preprocessor writes equations and derivatives in its outputs,
it takes advantage of sub-expression sharing
In MATLAB static and dynamic output files, equations are preceded
by a list of temporary terms
These terms are variables containing expressions shared by several
equations or derivatives
Using these terms greatly enhances the computing speed of the model
residual, jacobian, hessian, or third derivative

Example
The equations:

residual(0)=x+y^2-z^3;
residual(1)=3*(x+y^2)+1;

Can be optimized in:

T1=x+y^2;
residual(0)=T1-z^3;
residual(1)=3*T1+1;

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 44 / 54

Temporary terms (2/2)

Expression storage in the preprocessor implements maximal sharing
but this is not optimal for the MATLAB output files, because creating
a temporary variable also has a cost (in terms of CPU and of memory)
Computation of temporary terms implements a trade-off between:

▶ cost of duplicating sub-expressions
▶ cost of creating new variables

Algorithm uses a recursive cost calculation, which marks some nodes
as being “temporary”
Problem: redundant with optimizations done by the C/C++ compiler
(when Dynare is in DLL mode) ⇒ compilation very slow on big
models

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 45 / 54

The special case of Ramsey policy

For most statements, the method computingPass() is a no-op. . .
. . . except for planner_objective statement, which serves to declare
planner objective when doing optimal policy under commitment
Class PlannerObjectiveStatement contains an instance of
ModelTree, which stores the objective function (i.e. only one
equation in the tree)
During the computing pass, triggers the computation of the first and
second order (static) derivatives of the objective

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 46 / 54

Outline

1 Invoking the preprocessor

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Transform pass

6 Computing pass

7 Writing outputs

8 Proposed Changes

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 47 / 54

Output overview

Implemented in ModFile::writeOutputFiles()

If mod file is model.mod, all created filenames will begin with model
Main output file is model.m, containing:

▶ general initialization commands
▶ symbol table output (from SymbolTable::writeOutput())
▶ lead/lag incidence matrix (from

DynamicModel::writeDynamicMFile())
▶ call to MATLAB functions corresponding to the statements of the mod

file (written by calling Statement::writeOutput() on all statements
through polymorphism)

Subsidiary output files:
▶ one for the static model
▶ one for the dynamic model
▶ one for the auxiliary variables
▶ one for the steady state file (if relevant)
▶ one for the planner objective (if relevant)

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 48 / 54

Model output files

Three possible output types:
MATLAB/Octave mode: static and dynamic files in MATLAB
Julia mode: static and dynamic files in Julia
DLL mode:

▶ static and dynamic files in C++ source code (with corresponding
headers)

▶ compiled through mex to allow execution from within MATLAB
Sparse DLL mode:

▶ static file in MATLAB
▶ two possibilities for dynamic file:

⋆ by default, a C++ source file (with header) and a binary file, to be
read from the C++ code

⋆ or, with no_compiler option, a binary file in custom format, executed
from MATLAB through simulate DLL

⋆ the second option serves to bypass compilation of C++ file which can
be very slow

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 49 / 54

Outline

1 Invoking the preprocessor

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Transform pass

6 Computing pass

7 Writing outputs

8 Proposed Changes

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 50 / 54

Proposed changes with addition of Julia support (1/2)

1 Julia output is provided upon parsing of mod file, everything else done
in Julia

▶ Pros: very few changes to the preprocessor
▶ Cons: repeated code (same checks, transformations, computations

done in preprocessor and Julia); potential code divergence/two parallel
projects

2 Dump preprocessor altogether: do everything with Julia
▶ Pros: simple to distribute, move away from C++ (no contributions,

requires more expertise)
▶ Cons: MATLAB/Octave users must also download Julia, a big project,

speed (?)

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 51 / 54

Proposed changes with addition of Julia support (2/2)

3 Create libraries out of the preprocessor
▶ Pros: Dynare interaction similar across HLPs, preprocessor used as is
▶ Cons: difficult for outsiders to contribute, big project, not much benefit

in speed when compared to. . .
4 Write mod file from HLP then call preprocessor; option to output

JSON file representing ModFile object at every step of the
preprocessor

▶ Pros: Dynare interaction similar across HLPs, preprocessor used as is,
minimal amount of work, easy incremental step, allows users to support
any given HPL given the JSON output

▶ Cons: unnecessary processing when certain changes made in host
language, keeps defaults of current preprocessor, speed (?)

5 Other ideas?

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 52 / 54

Using HLP mod file objects (1/2)

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 53 / 54

Using HLP mod file objects (2/2)

Allows interactivity for all HLPs; requires only
▶ A definition of a mod file class in the HLP
▶ A library function that converts an HLP mod file object to a mod file

Allows users to use Dynare with any HPL. Standard JSON output can
be read in any HPL; user can use it construct desired HPL objects
and work with model in their language of preference
Easy first step
No divergence of codebase: don’t need to repeat code (checks,
transformations, etc.) across platforms
Creates mod files that can be used on other host language platforms
Adds one more HLP library to distribute
Need to design/implement classes that will store processed dynare
mod file in various HLPs

S. Villemot, H.Bastani (CEPREMAP) The Dynare Preprocessor 1 February 2017 54 / 54

		Invoking the preprocessor

		Parsing

		Data structure representing a mod file

		Check pass

		Transform pass

		Computing pass

		Writing outputs

		Proposed Changes

