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Abstract

This paper describes in detail the algorithm implemented in Dynare for computing the
first order approximated solution of a nonlinear rational expectations model. The core of
the algorithm is a generalized Schur decomposition (also known as the QZ decomposition),
as advocated by several authors in the literature. The contribution of the present paper is
to focus on implementation details that make the algorithm more generic and more efficient,
especially for large models.
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1 Introduction

Perturbation techniques are widely used for solving and estimating rational expectation models
and Dynare1 offers a popular, user-friendly access to these techniques. The purpose of the
present paper is to describe in detail the algorithm implemented in Dynare for computing the
first order approximated solution of nonlinear rational expectations models.2

This algorithm is based on a generalized Schur decomposition—also known as the QZ
decomposition—and is therefore essentially a variation on the methods presented by Klein
(2000), Sims (2002) and Uhlig (1999).

The contribution of this paper is to present some implementation details that make the al-
gorithm more generic and more efficient for large models. In particular I describe the algorithm
for removing the leads and lags of more than one in a nonlinear model. I also describe a way
of reducing the size of the Schur decomposition problem by dealing separately with endoge-
nous variables that appear only at the current date (called static endogenous variables in the
following).

*Copyright © 2009, 2011 Sébastien Villemot. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license can be found at: https://www.gnu.org/licenses/fdl.txt
The author acknowledges funding through the Seventh Framework Programme for Research (FP7) of the Eu-
ropean Commission’s Socio-economic Sciences and Humanities (SSH) Program under grant agreement SSH-CT-
2009-225149.

�Paris School of Economics and CEPREMAP. E-mail: sebastien@dynare.org.
1Dynare is a free software platform for handling a wide class of economic models. See http://www.dynare.org

and Adjemian et al. (2011) for more details.
2This algorithm is available using the stoch simul command of Dynare. The original implementation of this al-

gorithm was done by Michel Juillard, using MATLAB, and is available in the matlab/dyn first order solver.m

file which is distributed with Dynare.
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It should be noted that Dynare is able to go further than first order and can deliver second
and third order approximation of the solution of rational expectations models. These higher
order solutions can be computed recursively using the first order solution as a starting point.
For algorithmic details on this issue, the interested reader can refer to Collard and Juillard
(2001) or Schmitt-Grohé and Uŕıbe (2004).

The rest of this paper is organized as follows. Section 2 presents the class of models to be
solved and defines a typology of the endogenous variables. Section 3 defines the solution to the
model and characterizes its first order approximation. Sections 4 and 5 describe the algorithm
used to recover this first order approximation.

2 The problem to be solved

2.1 The model

In the following, we consider a dynamic nonlinear rational expectations model composed of
several variables (endogenous and exogenous) and several equations. In compact form, the
model is written as:

Etf(y
+
t+1, yt, y

−
t−1, ut) = 0 (1)

where yt is the vector of endogenous variables, y+t+1 (resp. y−t−1) is the subset of variables of yt
that appear with a lead (resp. a lag), and ut is the vector of exogenous variables. For obvious
identification reasons, the model must contain as many equations as there are endogenous
variables; let n be this number.

For the timing of variables, the convention used here is the same as in Dynare: a variable
decided at date t should have a time subscript of t. For example, in a typical RBC model,
the capital stock used to produce date t output is actually decided at date t − 1, so it will be
written as kt−1 using this convention. Thus accordingly, the law of motion of capital will be
kt = (1− δ)kt−1 + it. Another way of expressing this timing convention is that stock variables
should use the “end-of-period” convention.

The vector of exogenous variables ut (of dimension p) follows a Markov process:

ut = P (ut−1, εt)

where the εt are independent and identically distributed innovations with zero mean and
variance-covariance matrix Σ.

Note that the stochastic process adopted here for exogenous variables is more generic than
the one allowed in Dynare (which only accepts a white noise for stochastic variables, i.e. ut = εt).

2.2 Typology of variables

All endogenous variables are required to appear at least at one period. However it is not
required that all endogenous variables appear at the current period (a weaker condition is
actually sufficient, see assumption (5) below).

We define four types of endogenous variables:

Static endogenous variables: those that appear only at the current period. Their number
is ns ≤ n, and their indices in the yt vector are ζsj , j = 1 . . . ns

Purely forward endogenous variables: those that appear only at the future period, possi-
bly at the current period, but not at the previous period. Their number is n++ ≤ n, and
their indices ζ++

j , j = 1 . . . n++
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Purely backward endogenous variables: those that appear only at the previous period,
possibly at the current period, but not at the future period. Their number is n−− ≤ n,
and their indices ζ−−

j , j = 1 . . . n−−

Mixed endogenous variables: those that appear both at the future and the previous period,
and possibly at the current period. Their number is nm ≤ n, and their indices ζmj , j =
1 . . . nm

These four types of variables form a partition of the endogenous variables, and we therefore
have:

nm + n++ + n−− + ns = n

We also define:

Forward endogenous variables: the union of mixed and purely forward endogenous vari-
ables. Their number is n+ = n++ + nm, and their indices ζ+j , j = 1 . . . n+.

Backward endogenous variables: the union of mixed and purely backward endogenous vari-
ables. Their number is n− = n−− + nm, and their indices ζ−j , j = 1 . . . n−

Dynamic endogenous variables: all the variables except static endogenous variables. Their
number is nd = n− ns, and their indices ζdj , j = 1 . . . nd

The seven indices are such that 1 ≤ ζk1 < ζk2 < . . . < ζk
nk ≤ n, where k ∈ {s,+,++,−,−−,m, d}.

We denote by yt = (y1,t, . . . , yn,t)
′ the vector of endogenous variables at date t. We denote by

ykt = (yζk1 ,t
, . . . , yζk

nk ,t
)′ a subvector of endogenous variables, where k ∈ {s,+,++,−,−−,m, d}.

We denote by β+
j , j = 1 . . . nm the indices of mixed endogenous variables inside the ζ+j

sequence, i.e. β+
j is such that ζ+

β+
j

is a mixed endogenous variable. We similarly define β−
j

for mixed endogenous variables inside the ζ−j sequence. We similarly define π+
j (resp. π−

j ) for

purely forward (resp. purely backward) endogenous variables inside ζ+j (resp ζ−j ).
Finally, the vector of state variables is formed by the union of backward endogenous variables

at the previous period and of exogenous variables at the current period, and is therefore of size
n− + p.

2.3 Removing extra leads and lags

The form given in equation (1) makes the assumption that endogenous variables appear with
at most one lead and one lag, and that exogenous variables appear only at the current period.
This assumption does not imply any loss of generality, since it is easy to transform a nonlinear
model with many leads and lags into an equivalent model of the form given in (1), as is detailed
below.3

For every variable xt in the original model whose maximum lag is xt−d−k with k > 0 (and
d = 1 if x is an endogenous variable or d = 0 if it is an exogenous variable), the transformation
is the following:

� introduce k new endogenous variables zjt , for j ∈ {1, . . . , k};
3The algorithm described in the present section is implemented in the Dynare preprocessor, since version 4.1.

Auxiliary variables are created automatically and will show up at several places in Dynare output; see Adjemian
et al. (2011) for the names of these variables.
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� add k new equations to the model:{
z1t = xt−d

zjt = zj−1
t−1 for j ∈ {2, . . . , k} ;

� replace all occurrences of xt−d−j (with j > 0) in the original model by zjt−1 in the trans-
formed model.

The transformation for variables with a lead is a bit more elaborate because one has to
handle the fact that there is an expectation operator in front of all equations. The algorithm is
as follows:

� decompose every equation of the original model in the following form:

A+
∑
i∈I

Bi EtCi = 0

where A and the Bi are (possibly nonlinear) expressions containing only current or lagged
variables, and the Ci are (possibly nonlinear) expressions which may contain leads; this
decomposition is not unique, but one should aim at making the Ci terms as simple as
possible;

� for every Ci where there is a lead of 2 or more on an endogenous variable, or a lead on an
exogenous variable:

– let k be the minimal number of periods so that C
(−k)
i has at most one lead on

endogenous variables and no lead on exogenous variables (where C
(−k)
i stands for

the transformation of Ci where all variables have been lagged by k periods);

– introduce k new endogenous variables zjt , for j ∈ {1, . . . , k};
– add k new equations to the model:{

z1t = EtC
(−k)
i

zjt = Etz
j−1
t+1 for j ∈ {2, . . . , k}

;

– replace all occurrences of EtCi in the original model by Etz
k
t+1 in the transformed

model.

It is straightforward to see that this transformed model is under the form given in (1). And by
the law of iterated expectations, it is equivalent to the original one.

3 The solution and its first order approximation

We first define the deterministic steady state of the model as the vector (ȳ, ū, ε̄) satisfying:

ε̄ = 0

ū = P (ū, ε̄)

f(ȳ+, ȳ, ȳ−, ū) = 0

Finding the deterministic steady state involves the resolution of a multivariate nonlinear sys-
tem.4 Then, finding the rational expectation solution of the model means finding the policy

4Dynare offers efficient ways of performing this task, but this is out of the scope of the present paper.
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functions (also known as decision rules), which give current endogenous variables as a function
of state variables:

yt = g(y−t−1, ut)

Note that, by definition of the deterministic steady state, we have ȳ = g(ȳ−, ū).
The function g is characterized by the following functional equation:

Etf
[
g+(g−(y−t−1, ut), ut+1), g(y

−
t−1, ut), y

−
t−1, ut

]
= 0 (2)

where g+ (resp. g−) is the restriction of g to forward (resp. backward) endogenous variables.
In the general case, this functional equation cannot be solved exactly, and one has to resort

to numerical techniques to get an approximated solution. The remainder of this paper describes
the first order perturbation technique implemented in Dynare. Let:

fy+ =
∂f

∂y+t+1

, fy0 =
∂f

∂yt
, fy− =

∂f

∂y−t−1

, fu =
∂f

∂ut

gy =
∂g

∂y−t−1

, gu =
∂g

∂ut

Pu =
∂P

∂ut−1
, Pε =

∂P

∂εt

where the derivatives are taken at ȳ, ū and ε̄.
The first order approximation of the policy function is therefore:

ĝ(y−t−1, ut) = ȳ + gyŷ
−
t−1 + guût

where ŷ−t−1 = y−t−1 − ȳ−, ût = ut − ū, and gy and gu are unknowns at this stage.
A first order approximation of (2) around ȳ and ū gives:

f(ȳ+, ȳ, ȳ−, ū) + fy+ [g
+
y (g

−
y ŷ

−
t−1 + g−u ût) + g+u Et[Puût + Pεεt+1]]

+ fy0(gyŷ
−
t−1 + guût) + fy− ŷ

−
t−1 + fuût = 0

where g+y , g
−
y , g

−
u , g

+
u are the derivatives of the restrictions of g with obvious notation. Com-

puting the expectancy term, taking into account the property of the deterministic steady state,
and reorganizing the terms, we obtain:

(fy+g
+
y g

−
y + fy0gy + fy−)ŷ

−
t−1 + (fy+g

+
y g

−
u + fy+g

+
u Pu + fygu + fu)ût = 0 (3)

In the next sections, we exploit this equation in order to recover the unknown coefficients
gu and gy.

4 Recovering gy

Taking into account the term multiplying ŷ−t−1, equation (3) imposes:

fy+g
+
y g

−
y + fy0gy + fy− = 0

This amounts to:
fy+ ŷ

+
t+1 + fy0 ŷt + fy− ŷ

−
t−1 = 0 (4)
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Let S be the n×ns submatrix of fy0 where only the columns for static endogenous variables
are kept, i.e. Si,j = fy0,i,ζsj . A QR decomposition5 gives S = QR where Q is an n×n orthogonal

matrix and R an n× ns upper triangular matrix.
For the model to be identified, we assume that:

rank(R) = ns. (5)

Thus, equation (4) can be rewritten as:

A+ŷ+t+1 +A0ŷt +A−ŷ−t−1 = 0 (6)

where A+ = Q′fy+ , A
0 = Q′fy0 and A− = Q′fy− . By construction, columns of static endogenous

variables in A0 are zero in their lower part: ∀i > ns,∀j ≤ ns, A0
i,ζsj

= 0.

4.1 Non-static endogenous variables

Taking only the nd lower rows of system (6), we get:

Ã+ŷ+t+1 + Ã0+ŷ+t + Ã0−ŷ−t + Ã−ŷ−t−1 = 0 (7)

where Ã+ (resp. Ã−) contains the last nd rows of A+ (resp. A−). Matrices Ã0+ and Ã0− can
be defined in two ways, depending on where we deal with mixed endogenous variables:

� Ã0+ is a submatrix of A0 where only the last nd rows and the columns for forward
endogenous variables are kept (Ã0+

i,j = A0
ns+i,ζ+j

), and Ã0− is such that purely backward

columns are taken from A0 (Ã0−
i,π−

j

= A0
ns+i,ζ−−

j

), and the rest is zero;

� Ã0− is a submatrix of A0 where only the last nd rows and the columns for backward
endogenous variables are kept (Ã0−

i,j = A0
ns+i,ζ−j

), and Ã0+ is such that purely forward

columns are taken from A0 (Ã0+

i,π+
j

= A0
ns+i,ζ++

j

), and the rest is zero.

Note that in equation (7), static endogenous variables no longer appear.
The structural state space representation of (7) is:(

Ã0− Ã+

I− 0

)
︸ ︷︷ ︸

D

(
ŷ−t
ŷ+t+1

)
=

(
−Ã− −Ã0+

0 I+

)
︸ ︷︷ ︸

E

(
ŷ−t−1

ŷ+t

)

where I− is an nm × n− selection matrix for mixed endogenous variables, such that I−
i,β−

i

= 1,

and zero otherwise. Similarly, I+ is an nm×n+ matrix, such that I+
i,β+

i

= 1, and zero otherwise.

Therefore, D and E are square matrices of size n++ + n−− + 2nm.
Using the fact that ŷ+t+1 = g+y ŷ

−
t , this can be rewritten as:

D

(
In−

g+y

)
ŷ−t = E

(
In−

g+y

)
ŷ−t−1 (8)

where In− is the identity matrix of size n−.

5See Golub and Van Loan (2013, section 5.2).
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A generalized Schur decomposition (also known as the QZ decomposition) of the pencil
(D,E) is performed:6 {

D = QTZ
E = QSZ

where T is upper triangular, S quasi upper triangular, and Q and Z are orthogonal matrices.
The decomposition is done is such a way that stable generalized eigenvalues (modulus less than
1) are in the upper left corner of T and S.

Matrices T and S are block decomposed so that the upper left block of both matrices is
square and contains generalized eigenvalues of modulus less than 1, and the lower right block
is square and contains generalized eigenvalues of modulus strictly greater than 1.

Equation (8) can be rewritten as:(
T11 T12

0 T22

)(
Z11 Z12

Z21 Z22

)(
In−

g+y

)
ŷ−t =

(
S11 S12

0 S22

)(
Z11 Z12

Z21 Z22

)(
In−

g+y

)
ŷ−t−1 (9)

where T11 and S11 are square and contain stable generalized eigenvalues, while T22 and S22 are
square and contain explosive generalized eigenvalues.

To exclude explosive trajectories, we impose:(
Z11 Z12

Z21 Z22

)(
In−

g+y

)
=

(
X
0

)
(10)

which implies:
g+y = −(Z22)

−1Z21

Note that the squareness of Z22 is the Blanchard and Kahn (1980) order condition (i.e. the
requirement to have as many explosive eigenvalues as forward or mixed endogenous variables),
and the non-singularity of Z22 is the Blanchard and Kahn (1980) rank condition.

Using equation (10) and the fact that ŷ−t = g−y ŷ
−
t−1, equation (9) implies:(

T11 T12

0 T22

)(
X
0

)
g−y =

(
S11 S12

0 S22

)(
X
0

)
Then, using the fact that solving equation (10) for X gives X = (Z ′

11)
−1, the upper part of this

system gives the solution for g−y :

g−y = X−1T−1
11 S11X = Z ′

11T
−1
11 S11(Z

′
11)

−1

Note that mixed variables appear in both g+ and g−: the corresponding lines will be equal
across the two matrices by construction.

4.2 Static endogenous variables

The ns upper lines of equation (6) can be written as:

Ă+ŷ+t+1 + Ă0dŷdt + Ă0sŷst + Ă−ŷ−t−1 = 0 (11)

where Ă+ (resp. Ă−) contains the first ns rows of A+ (resp. A−). Matrix Ă0s (resp. Ă0d)
contains the first ns rows and only the static (resp. non-static) columns of A0. Recall that Ă0s

is a square upper triangular matrix by construction, and it is invertible because of assumption
(5).

6See Golub and Van Loan (2013, section 7.7) for theoretical and practical details on this decomposition.
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Equation (11) can be rewritten as:

Ă+g+y g
−
y ŷ

−
t−1 + Ă0dgdy ŷ

−
t−1 + Ă0sŷst + Ă−ŷ−t−1 = 0

where gdy , the restriction of gy to non-static endogenous variables, is obtained by combining g+y
and g−y . We therefore have:

gsy = −
[
Ă0s

]−1 (
Ă+g+y g

−
y + Ă0dgdy + Ă−

)
5 Recovering gu

Equation (3) restricted to ût imposes:

fy+g
+
y g

−
u + fy+g

+
u Pu + fygu + fu = 0,

and be rewritten as:
(fy+g

+
y J

− + fy)gu + fy+J
+guPu + fu = 0

where J− (resp J+) is an n− × n matrix (resp. n+ × n matrix) selecting only the backward
(resp. forward) endogenous variables. In the particular case solved by Dynare, where Pu = 0,
the solution to this equation is:

gu = −(fy+g
+
y J

− + fy)
−1fu

In the general case, this equation is a specialized Sylvester equation, which can be solved using
the algorithm proposed by Kamenik (2004)7.
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