DPDK 22.11.6
examples/l3fwd/l3fwd_lpm.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <stdbool.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_cycles.h>
#include <rte_mbuf.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_lpm.h>
#include <rte_lpm6.h>
#include "l3fwd.h"
#include "l3fwd_common.h"
#include "l3fwd_event.h"
#include "lpm_route_parse.c"
#define IPV4_L3FWD_LPM_MAX_RULES 1024
#define IPV4_L3FWD_LPM_NUMBER_TBL8S (1 << 8)
#define IPV6_L3FWD_LPM_MAX_RULES 1024
#define IPV6_L3FWD_LPM_NUMBER_TBL8S (1 << 16)
static struct rte_lpm *ipv4_l3fwd_lpm_lookup_struct[NB_SOCKETS];
static struct rte_lpm6 *ipv6_l3fwd_lpm_lookup_struct[NB_SOCKETS];
/* Performing LPM-based lookups. 8< */
static inline uint16_t
lpm_get_ipv4_dst_port(const struct rte_ipv4_hdr *ipv4_hdr,
uint16_t portid,
struct rte_lpm *ipv4_l3fwd_lookup_struct)
{
uint32_t dst_ip = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
uint32_t next_hop;
if (rte_lpm_lookup(ipv4_l3fwd_lookup_struct, dst_ip, &next_hop) == 0)
return next_hop;
else
return portid;
}
/* >8 End of performing LPM-based lookups. */
static inline uint16_t
lpm_get_ipv6_dst_port(const struct rte_ipv6_hdr *ipv6_hdr,
uint16_t portid,
struct rte_lpm6 *ipv6_l3fwd_lookup_struct)
{
const uint8_t *dst_ip = ipv6_hdr->dst_addr;
uint32_t next_hop;
if (rte_lpm6_lookup(ipv6_l3fwd_lookup_struct, dst_ip, &next_hop) == 0)
return next_hop;
else
return portid;
}
static __rte_always_inline uint16_t
lpm_get_dst_port(const struct lcore_conf *qconf, struct rte_mbuf *pkt,
uint16_t portid)
{
struct rte_ipv6_hdr *ipv6_hdr;
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_ether_hdr *eth_hdr;
eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
ipv4_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
return lpm_get_ipv4_dst_port(ipv4_hdr, portid,
qconf->ipv4_lookup_struct);
} else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) {
eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
ipv6_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1);
return lpm_get_ipv6_dst_port(ipv6_hdr, portid,
qconf->ipv6_lookup_struct);
}
return portid;
}
/*
* lpm_get_dst_port optimized routine for packets where dst_ipv4 is already
* precalculated. If packet is ipv6 dst_addr is taken directly from packet
* header and dst_ipv4 value is not used.
*/
static __rte_always_inline uint16_t
lpm_get_dst_port_with_ipv4(const struct lcore_conf *qconf, struct rte_mbuf *pkt,
uint32_t dst_ipv4, uint16_t portid)
{
uint32_t next_hop;
struct rte_ipv6_hdr *ipv6_hdr;
struct rte_ether_hdr *eth_hdr;
return (uint16_t) ((rte_lpm_lookup(qconf->ipv4_lookup_struct,
dst_ipv4, &next_hop) == 0)
? next_hop : portid);
} else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) {
eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
ipv6_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1);
return (uint16_t) ((rte_lpm6_lookup(qconf->ipv6_lookup_struct,
ipv6_hdr->dst_addr, &next_hop) == 0)
? next_hop : portid);
}
return portid;
}
#if defined(RTE_ARCH_X86)
#include "l3fwd_lpm_sse.h"
#elif defined __ARM_NEON
#include "l3fwd_lpm_neon.h"
#elif defined(RTE_ARCH_PPC_64)
#include "l3fwd_lpm_altivec.h"
#else
#include "l3fwd_lpm.h"
#endif
/* main processing loop */
int
lpm_main_loop(__rte_unused void *dummy)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned lcore_id;
uint64_t prev_tsc, diff_tsc, cur_tsc;
int i, nb_rx;
uint16_t portid, queueid;
struct lcore_conf *qconf;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
US_PER_S * BURST_TX_DRAIN_US;
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
const uint16_t n_rx_q = qconf->n_rx_queue;
const uint16_t n_tx_p = qconf->n_tx_port;
if (n_rx_q == 0) {
RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
return 0;
}
RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < n_rx_q; i++) {
portid = qconf->rx_queue_list[i].port_id;
queueid = qconf->rx_queue_list[i].queue_id;
RTE_LOG(INFO, L3FWD,
" -- lcoreid=%u portid=%u rxqueueid=%" PRIu16 "\n",
lcore_id, portid, queueid);
}
cur_tsc = rte_rdtsc();
prev_tsc = cur_tsc;
while (!force_quit) {
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
for (i = 0; i < n_tx_p; ++i) {
portid = qconf->tx_port_id[i];
if (qconf->tx_mbufs[portid].len == 0)
continue;
send_burst(qconf,
qconf->tx_mbufs[portid].len,
portid);
qconf->tx_mbufs[portid].len = 0;
}
prev_tsc = cur_tsc;
}
/*
* Read packet from RX queues
*/
for (i = 0; i < n_rx_q; ++i) {
portid = qconf->rx_queue_list[i].port_id;
queueid = qconf->rx_queue_list[i].queue_id;
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
MAX_PKT_BURST);
if (nb_rx == 0)
continue;
#if defined RTE_ARCH_X86 || defined __ARM_NEON \
|| defined RTE_ARCH_PPC_64
l3fwd_lpm_send_packets(nb_rx, pkts_burst,
portid, qconf);
#else
l3fwd_lpm_no_opt_send_packets(nb_rx, pkts_burst,
portid, qconf);
#endif /* X86 */
}
cur_tsc = rte_rdtsc();
}
return 0;
}
static __rte_always_inline uint16_t
lpm_process_event_pkt(const struct lcore_conf *lconf, struct rte_mbuf *mbuf)
{
mbuf->port = lpm_get_dst_port(lconf, mbuf, mbuf->port);
#if defined RTE_ARCH_X86 || defined __ARM_NEON \
|| defined RTE_ARCH_PPC_64
process_packet(mbuf, &mbuf->port);
#else
struct rte_ether_hdr *eth_hdr = rte_pktmbuf_mtod(mbuf,
struct rte_ether_hdr *);
/* dst addr */
*(uint64_t *)&eth_hdr->dst_addr = dest_eth_addr[mbuf->port];
/* src addr */
rte_ether_addr_copy(&ports_eth_addr[mbuf->port],
&eth_hdr->src_addr);
rfc1812_process(rte_pktmbuf_mtod_offset(mbuf, struct rte_ipv4_hdr *,
sizeof(struct rte_ether_hdr)),
&mbuf->port, mbuf->packet_type);
#endif
return mbuf->port;
}
lpm_event_loop_single(struct l3fwd_event_resources *evt_rsrc,
const uint8_t flags)
{
const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[
evt_rsrc->evq.nb_queues - 1];
const uint8_t event_d_id = evt_rsrc->event_d_id;
uint8_t enq = 0, deq = 0;
struct lcore_conf *lconf;
unsigned int lcore_id;
struct rte_event ev;
if (event_p_id < 0)
return;
lcore_id = rte_lcore_id();
lconf = &lcore_conf[lcore_id];
RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
while (!force_quit) {
deq = rte_event_dequeue_burst(event_d_id, event_p_id, &ev, 1,
0);
if (!deq)
continue;
if (lpm_process_event_pkt(lconf, ev.mbuf) == BAD_PORT) {
rte_pktmbuf_free(ev.mbuf);
continue;
}
if (flags & L3FWD_EVENT_TX_ENQ) {
ev.queue_id = tx_q_id;
do {
event_d_id, event_p_id, &ev, 1);
} while (!enq && !force_quit);
}
if (flags & L3FWD_EVENT_TX_DIRECT) {
do {
event_d_id, event_p_id, &ev, 1, 0);
} while (!enq && !force_quit);
}
}
l3fwd_event_worker_cleanup(event_d_id, event_p_id, &ev, enq, deq, 0);
}
lpm_event_loop_burst(struct l3fwd_event_resources *evt_rsrc,
const uint8_t flags)
{
const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[
evt_rsrc->evq.nb_queues - 1];
const uint8_t event_d_id = evt_rsrc->event_d_id;
const uint16_t deq_len = evt_rsrc->deq_depth;
struct rte_event events[MAX_PKT_BURST];
int i, nb_enq = 0, nb_deq = 0;
struct lcore_conf *lconf;
unsigned int lcore_id;
if (event_p_id < 0)
return;
lcore_id = rte_lcore_id();
lconf = &lcore_conf[lcore_id];
RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
while (!force_quit) {
/* Read events from RX queues */
nb_deq = rte_event_dequeue_burst(event_d_id, event_p_id,
events, deq_len, 0);
if (nb_deq == 0) {
continue;
}
for (i = 0; i < nb_deq; i++) {
if (flags & L3FWD_EVENT_TX_ENQ) {
events[i].queue_id = tx_q_id;
events[i].op = RTE_EVENT_OP_FORWARD;
}
if (flags & L3FWD_EVENT_TX_DIRECT)
0);
lpm_process_event_pkt(lconf, events[i].mbuf);
}
if (flags & L3FWD_EVENT_TX_ENQ) {
nb_enq = rte_event_enqueue_burst(event_d_id, event_p_id,
events, nb_deq);
while (nb_enq < nb_deq && !force_quit)
nb_enq += rte_event_enqueue_burst(event_d_id,
event_p_id, events + nb_enq,
nb_deq - nb_enq);
}
if (flags & L3FWD_EVENT_TX_DIRECT) {
nb_enq = rte_event_eth_tx_adapter_enqueue(event_d_id,
event_p_id, events, nb_deq, 0);
while (nb_enq < nb_deq && !force_quit)
event_d_id, event_p_id,
events + nb_enq,
nb_deq - nb_enq, 0);
}
}
l3fwd_event_worker_cleanup(event_d_id, event_p_id, events, nb_enq,
nb_deq, 0);
}
lpm_event_loop(struct l3fwd_event_resources *evt_rsrc,
const uint8_t flags)
{
if (flags & L3FWD_EVENT_SINGLE)
lpm_event_loop_single(evt_rsrc, flags);
if (flags & L3FWD_EVENT_BURST)
lpm_event_loop_burst(evt_rsrc, flags);
}
lpm_event_main_loop_tx_d(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc =
l3fwd_get_eventdev_rsrc();
lpm_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT | L3FWD_EVENT_SINGLE);
return 0;
}
lpm_event_main_loop_tx_d_burst(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc =
l3fwd_get_eventdev_rsrc();
lpm_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT | L3FWD_EVENT_BURST);
return 0;
}
lpm_event_main_loop_tx_q(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc =
l3fwd_get_eventdev_rsrc();
lpm_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ | L3FWD_EVENT_SINGLE);
return 0;
}
lpm_event_main_loop_tx_q_burst(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc =
l3fwd_get_eventdev_rsrc();
lpm_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ | L3FWD_EVENT_BURST);
return 0;
}
lpm_process_event_vector(struct rte_event_vector *vec, struct lcore_conf *lconf,
uint16_t *dst_port)
{
struct rte_mbuf **mbufs = vec->mbufs;
int i;
#if defined RTE_ARCH_X86 || defined __ARM_NEON || defined RTE_ARCH_PPC_64
if (vec->attr_valid) {
l3fwd_lpm_process_packets(vec->nb_elem, mbufs, vec->port,
dst_port, lconf, 1);
} else {
for (i = 0; i < vec->nb_elem; i++)
l3fwd_lpm_process_packets(1, &mbufs[i], mbufs[i]->port,
&dst_port[i], lconf, 1);
}
#else
for (i = 0; i < vec->nb_elem; i++)
dst_port[i] = lpm_process_event_pkt(lconf, mbufs[i]);
#endif
process_event_vector(vec, dst_port);
}
/* Same eventdev loop for single and burst of vector */
lpm_event_loop_vector(struct l3fwd_event_resources *evt_rsrc,
const uint8_t flags)
{
const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
const uint8_t tx_q_id =
evt_rsrc->evq.event_q_id[evt_rsrc->evq.nb_queues - 1];
const uint8_t event_d_id = evt_rsrc->event_d_id;
const uint16_t deq_len = evt_rsrc->deq_depth;
struct rte_event events[MAX_PKT_BURST];
int i, nb_enq = 0, nb_deq = 0;
struct lcore_conf *lconf;
uint16_t *dst_port_list;
unsigned int lcore_id;
if (event_p_id < 0)
return;
lcore_id = rte_lcore_id();
lconf = &lcore_conf[lcore_id];
dst_port_list =
rte_zmalloc("", sizeof(uint16_t) * evt_rsrc->vector_size,
RTE_CACHE_LINE_SIZE);
if (dst_port_list == NULL)
return;
RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
while (!force_quit) {
/* Read events from RX queues */
nb_deq = rte_event_dequeue_burst(event_d_id, event_p_id, events,
deq_len, 0);
if (nb_deq == 0) {
continue;
}
for (i = 0; i < nb_deq; i++) {
if (flags & L3FWD_EVENT_TX_ENQ) {
events[i].queue_id = tx_q_id;
events[i].op = RTE_EVENT_OP_FORWARD;
}
lpm_process_event_vector(events[i].vec, lconf,
dst_port_list);
}
if (flags & L3FWD_EVENT_TX_ENQ) {
nb_enq = rte_event_enqueue_burst(event_d_id, event_p_id,
events, nb_deq);
while (nb_enq < nb_deq && !force_quit)
event_d_id, event_p_id, events + nb_enq,
nb_deq - nb_enq);
}
if (flags & L3FWD_EVENT_TX_DIRECT) {
event_d_id, event_p_id, events, nb_deq, 0);
while (nb_enq < nb_deq && !force_quit)
event_d_id, event_p_id, events + nb_enq,
nb_deq - nb_enq, 0);
}
}
l3fwd_event_worker_cleanup(event_d_id, event_p_id, events, nb_enq,
nb_deq, 1);
rte_free(dst_port_list);
}
lpm_event_main_loop_tx_d_vector(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc();
lpm_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_DIRECT);
return 0;
}
lpm_event_main_loop_tx_d_burst_vector(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc();
lpm_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_DIRECT);
return 0;
}
lpm_event_main_loop_tx_q_vector(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc();
lpm_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_ENQ);
return 0;
}
lpm_event_main_loop_tx_q_burst_vector(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc();
lpm_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_ENQ);
return 0;
}
void
setup_lpm(const int socketid)
{
struct rte_eth_dev_info dev_info;
struct rte_lpm6_config config;
struct rte_lpm_config config_ipv4;
int i;
int ret;
char s[64];
char abuf[INET6_ADDRSTRLEN];
/* create the LPM table */
config_ipv4.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
config_ipv4.number_tbl8s = IPV4_L3FWD_LPM_NUMBER_TBL8S;
config_ipv4.flags = 0;
snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
ipv4_l3fwd_lpm_lookup_struct[socketid] =
rte_lpm_create(s, socketid, &config_ipv4);
if (ipv4_l3fwd_lpm_lookup_struct[socketid] == NULL)
rte_exit(EXIT_FAILURE,
"Unable to create the l3fwd LPM table on socket %d\n",
socketid);
/* populate the LPM table */
for (i = 0; i < route_num_v4; i++) {
struct in_addr in;
/* skip unused ports */
if ((1 << route_base_v4[i].if_out &
enabled_port_mask) == 0)
continue;
rte_eth_dev_info_get(route_base_v4[i].if_out,
&dev_info);
ret = rte_lpm_add(ipv4_l3fwd_lpm_lookup_struct[socketid],
route_base_v4[i].ip,
route_base_v4[i].depth,
route_base_v4[i].if_out);
if (ret < 0) {
lpm_free_routes();
rte_exit(EXIT_FAILURE,
"Unable to add entry %u to the l3fwd LPM table on socket %d\n",
i, socketid);
}
in.s_addr = htonl(route_base_v4[i].ip);
printf("LPM: Adding route %s / %d (%d) [%s]\n",
inet_ntop(AF_INET, &in, abuf, sizeof(abuf)),
route_base_v4[i].depth,
route_base_v4[i].if_out, rte_dev_name(dev_info.device));
}
/* create the LPM6 table */
snprintf(s, sizeof(s), "IPV6_L3FWD_LPM_%d", socketid);
config.max_rules = IPV6_L3FWD_LPM_MAX_RULES;
config.number_tbl8s = IPV6_L3FWD_LPM_NUMBER_TBL8S;
config.flags = 0;
ipv6_l3fwd_lpm_lookup_struct[socketid] = rte_lpm6_create(s, socketid,
&config);
if (ipv6_l3fwd_lpm_lookup_struct[socketid] == NULL) {
lpm_free_routes();
rte_exit(EXIT_FAILURE,
"Unable to create the l3fwd LPM table on socket %d\n",
socketid);
}
/* populate the LPM table */
for (i = 0; i < route_num_v6; i++) {
/* skip unused ports */
if ((1 << route_base_v6[i].if_out &
enabled_port_mask) == 0)
continue;
rte_eth_dev_info_get(route_base_v6[i].if_out,
&dev_info);
ret = rte_lpm6_add(ipv6_l3fwd_lpm_lookup_struct[socketid],
route_base_v6[i].ip_8,
route_base_v6[i].depth,
route_base_v6[i].if_out);
if (ret < 0) {
lpm_free_routes();
rte_exit(EXIT_FAILURE,
"Unable to add entry %u to the l3fwd LPM table on socket %d\n",
i, socketid);
}
printf("LPM: Adding route %s / %d (%d) [%s]\n",
inet_ntop(AF_INET6, route_base_v6[i].ip_8, abuf,
sizeof(abuf)),
route_base_v6[i].depth,
route_base_v6[i].if_out, rte_dev_name(dev_info.device));
}
}
int
lpm_check_ptype(int portid)
{
int i, ret;
int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0;
uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
if (ret <= 0)
return 0;
uint32_t ptypes[ret];
ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
for (i = 0; i < ret; ++i) {
if (ptypes[i] & RTE_PTYPE_L3_IPV4)
ptype_l3_ipv4 = 1;
if (ptypes[i] & RTE_PTYPE_L3_IPV6)
ptype_l3_ipv6 = 1;
}
if (ptype_l3_ipv4 == 0)
printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
if (ptype_l3_ipv6 == 0)
printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
if (ptype_l3_ipv4 && ptype_l3_ipv6)
return 1;
return 0;
}
static inline void
lpm_parse_ptype(struct rte_mbuf *m)
{
struct rte_ether_hdr *eth_hdr;
uint32_t packet_type = RTE_PTYPE_UNKNOWN;
uint16_t ether_type;
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
ether_type = eth_hdr->ether_type;
m->packet_type = packet_type;
}
uint16_t
lpm_cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
struct rte_mbuf *pkts[], uint16_t nb_pkts,
uint16_t max_pkts __rte_unused,
void *user_param __rte_unused)
{
unsigned int i;
if (unlikely(nb_pkts == 0))
return nb_pkts;
rte_prefetch0(rte_pktmbuf_mtod(pkts[0], struct ether_hdr *));
for (i = 0; i < (unsigned int) (nb_pkts - 1); ++i) {
struct ether_hdr *));
lpm_parse_ptype(pkts[i]);
}
lpm_parse_ptype(pkts[i]);
return nb_pkts;
}
/* Return ipv4/ipv6 lpm fwd lookup struct. */
void *
lpm_get_ipv4_l3fwd_lookup_struct(const int socketid)
{
return ipv4_l3fwd_lpm_lookup_struct[socketid];
}
void *
lpm_get_ipv6_l3fwd_lookup_struct(const int socketid)
{
return ipv6_l3fwd_lpm_lookup_struct[socketid];
}
#define unlikely(x)
static uint32_t rte_be_to_cpu_32(rte_be32_t x)
static rte_be16_t rte_cpu_to_be_16(uint16_t x)
#define __rte_noinline
Definition: rte_common.h:260
__rte_noreturn void rte_exit(int exit_code, const char *format,...) __rte_format_printf(2
#define __rte_unused
Definition: rte_common.h:120
#define __rte_always_inline
Definition: rte_common.h:255
uint64_t rte_get_tsc_hz(void)
const char * rte_dev_name(const struct rte_device *dev)
static uint16_t rte_eth_rx_burst(uint16_t port_id, uint16_t queue_id, struct rte_mbuf **rx_pkts, const uint16_t nb_pkts)
Definition: rte_ethdev.h:5864
int rte_eth_dev_info_get(uint16_t port_id, struct rte_eth_dev_info *dev_info)
int rte_eth_dev_get_supported_ptypes(uint16_t port_id, uint32_t ptype_mask, uint32_t *ptypes, int num)
#define RTE_ETHER_TYPE_IPV4
Definition: rte_ether.h:306
rte_be16_t ether_type
Definition: rte_ether.h:2
#define RTE_ETHER_TYPE_IPV6
Definition: rte_ether.h:307
static void rte_ether_addr_copy(const struct rte_ether_addr *__restrict ea_from, struct rte_ether_addr *__restrict ea_to)
Definition: rte_ether.h:232
static __rte_always_inline void rte_event_eth_tx_adapter_txq_set(struct rte_mbuf *pkt, uint16_t queue)
static uint16_t rte_event_eth_tx_adapter_enqueue(uint8_t dev_id, uint8_t port_id, struct rte_event ev[], uint16_t nb_events, const uint8_t flags)
static uint16_t rte_event_dequeue_burst(uint8_t dev_id, uint8_t port_id, struct rte_event ev[], uint16_t nb_events, uint64_t timeout_ticks)
#define RTE_EVENT_OP_FORWARD
static uint16_t rte_event_enqueue_burst(uint8_t dev_id, uint8_t port_id, const struct rte_event ev[], uint16_t nb_events)
static unsigned rte_lcore_id(void)
Definition: rte_lcore.h:79
#define RTE_LOG(l, t,...)
Definition: rte_log.h:335
int rte_lpm6_add(struct rte_lpm6 *lpm, const uint8_t *ip, uint8_t depth, uint32_t next_hop)
int rte_lpm6_lookup(const struct rte_lpm6 *lpm, const uint8_t *ip, uint32_t *next_hop)
struct rte_lpm6 * rte_lpm6_create(const char *name, int socket_id, const struct rte_lpm6_config *config)
int rte_lpm_add(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t next_hop)
struct rte_lpm * rte_lpm_create(const char *name, int socket_id, const struct rte_lpm_config *config)
static int rte_lpm_lookup(const struct rte_lpm *lpm, uint32_t ip, uint32_t *next_hop)
Definition: rte_lpm.h:282
void * rte_zmalloc(const char *type, size_t size, unsigned align) __rte_alloc_size(2)
void void rte_free(void *ptr)
static void rte_pktmbuf_free(struct rte_mbuf *m)
Definition: rte_mbuf.h:1413
#define rte_pktmbuf_mtod(m, t)
#define rte_pktmbuf_mtod_offset(m, t, o)
#define RTE_PTYPE_L3_IPV6_EXT_UNKNOWN
#define RTE_PTYPE_L3_IPV6
#define RTE_ETH_IS_IPV6_HDR(ptype)
#define RTE_PTYPE_L3_IPV4_EXT_UNKNOWN
#define RTE_ETH_IS_IPV4_HDR(ptype)
#define RTE_PTYPE_L3_MASK
#define RTE_PTYPE_UNKNOWN
#define RTE_PTYPE_L3_IPV4
static void rte_pause(void)
static void rte_prefetch0(const volatile void *p)
rte_be16_t ether_type
Definition: rte_ether.h:290
struct rte_ether_addr src_addr
Definition: rte_ether.h:289
struct rte_ether_addr dst_addr
Definition: rte_ether.h:288
rte_be32_t dst_addr
Definition: rte_ip.h:64
uint8_t dst_addr[16]
Definition: rte_ip.h:544
uint32_t max_rules
Definition: rte_lpm.h:113
uint32_t packet_type
uint16_t port