#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/queue.h>
#include <netinet/in.h>
#include <setjmp.h>
#include <stdarg.h>
#include <ctype.h>
#include <errno.h>
#include <getopt.h>
#include <fcntl.h>
#include <unistd.h>
#include <signal.h>
#ifdef RTE_CRYPTO_SCHEDULER
#endif
enum cdev_type {
CDEV_TYPE_ANY,
CDEV_TYPE_HW,
CDEV_TYPE_SW
};
#define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
#define NB_MBUF 8192
#define MAX_STR_LEN 32
#define MAX_KEY_SIZE 128
#define MAX_IV_SIZE 16
#define MAX_AAD_SIZE 65535
#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100
#define SESSION_POOL_CACHE_SIZE 0
#define MAXIMUM_IV_LENGTH 16
#define IV_OFFSET (sizeof(struct rte_crypto_op) + \
sizeof(struct rte_crypto_sym_op))
#define RX_DESC_DEFAULT 1024
#define TX_DESC_DEFAULT 1024
static uint16_t nb_rxd = RX_DESC_DEFAULT;
static uint16_t nb_txd = TX_DESC_DEFAULT;
static uint64_t l2fwd_enabled_port_mask;
static uint64_t l2fwd_enabled_crypto_mask;
static uint16_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
struct pkt_buffer {
unsigned len;
};
struct op_buffer {
unsigned len;
};
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT 16
enum l2fwd_crypto_xform_chain {
L2FWD_CRYPTO_CIPHER_HASH,
L2FWD_CRYPTO_HASH_CIPHER,
L2FWD_CRYPTO_CIPHER_ONLY,
L2FWD_CRYPTO_HASH_ONLY,
L2FWD_CRYPTO_AEAD
};
struct l2fwd_key {
uint8_t *data;
uint32_t length;
};
struct l2fwd_iv {
uint8_t *data;
uint16_t length;
};
struct l2fwd_crypto_options {
unsigned portmask;
unsigned nb_ports_per_lcore;
unsigned refresh_period;
unsigned single_lcore:1;
enum cdev_type type;
unsigned sessionless:1;
enum l2fwd_crypto_xform_chain xform_chain;
unsigned ckey_param;
int ckey_random_size;
uint8_t cipher_key[MAX_KEY_SIZE];
struct l2fwd_iv cipher_iv;
unsigned int cipher_iv_param;
int cipher_iv_random_size;
uint8_t akey_param;
int akey_random_size;
uint8_t auth_key[MAX_KEY_SIZE];
struct l2fwd_iv auth_iv;
unsigned int auth_iv_param;
int auth_iv_random_size;
unsigned int aead_key_param;
int aead_key_random_size;
uint8_t aead_key[MAX_KEY_SIZE];
struct l2fwd_iv aead_iv;
unsigned int aead_iv_param;
int aead_iv_random_size;
struct l2fwd_key aad;
unsigned aad_param;
int aad_random_size;
int digest_size;
uint16_t block_size;
char string_type[MAX_STR_LEN];
uint64_t cryptodev_mask;
unsigned int mac_updating;
};
struct l2fwd_crypto_params {
uint8_t dev_id;
uint8_t qp_id;
unsigned digest_length;
unsigned block_size;
uint32_t cipher_dataunit_len;
struct l2fwd_iv cipher_iv;
struct l2fwd_iv auth_iv;
struct l2fwd_iv aead_iv;
struct l2fwd_key aad;
void *session;
uint8_t do_cipher;
uint8_t do_hash;
uint8_t do_aead;
uint8_t hash_verify;
};
struct lcore_queue_conf {
unsigned nb_rx_ports;
uint16_t rx_port_list[MAX_RX_QUEUE_PER_LCORE];
unsigned nb_crypto_devs;
unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE];
struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS];
struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS];
struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
},
.txmode = {
},
};
static struct {
} session_pool_socket[RTE_MAX_NUMA_NODES];
struct l2fwd_port_statistics {
uint64_t tx;
uint64_t rx;
uint64_t crypto_enqueued;
uint64_t crypto_dequeued;
uint64_t dropped;
struct l2fwd_crypto_statistics {
uint64_t enqueued;
uint64_t dequeued;
uint64_t errors;
struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS];
#define TIMER_MILLISECOND (rte_get_tsc_hz() / 1000)
#define MAX_TIMER_PERIOD 86400UL
#define DEFAULT_TIMER_PERIOD 10UL
static volatile bool signal_received;
static void
print_stats(void)
{
uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
uint64_t total_packets_enqueued, total_packets_dequeued,
total_packets_errors;
uint16_t portid;
uint64_t cdevid;
total_packets_dropped = 0;
total_packets_tx = 0;
total_packets_rx = 0;
total_packets_enqueued = 0;
total_packets_dequeued = 0;
total_packets_errors = 0;
const char clr[] = { 27, '[', '2', 'J', '\0' };
const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
printf("%s%s", clr, topLeft);
printf("\nPort statistics ====================================");
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
continue;
printf("\nStatistics for port %u ------------------------------"
"\nPackets sent: %32"PRIu64
"\nPackets received: %28"PRIu64
"\nPackets dropped: %29"PRIu64,
portid,
port_statistics[portid].tx,
port_statistics[portid].rx,
port_statistics[portid].dropped);
total_packets_dropped += port_statistics[portid].dropped;
total_packets_tx += port_statistics[portid].tx;
total_packets_rx += port_statistics[portid].rx;
}
printf("\nCrypto statistics ==================================");
for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) {
if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0)
continue;
printf("\nStatistics for cryptodev %"PRIu64
" -------------------------"
"\nPackets enqueued: %28"PRIu64
"\nPackets dequeued: %28"PRIu64
"\nPackets errors: %30"PRIu64,
cdevid,
crypto_statistics[cdevid].enqueued,
crypto_statistics[cdevid].dequeued,
crypto_statistics[cdevid].errors);
total_packets_enqueued += crypto_statistics[cdevid].enqueued;
total_packets_dequeued += crypto_statistics[cdevid].dequeued;
total_packets_errors += crypto_statistics[cdevid].errors;
}
printf("\nAggregate statistics ==============================="
"\nTotal packets received: %22"PRIu64
"\nTotal packets enqueued: %22"PRIu64
"\nTotal packets dequeued: %22"PRIu64
"\nTotal packets sent: %26"PRIu64
"\nTotal packets dropped: %23"PRIu64
"\nTotal packets crypto errors: %17"PRIu64,
total_packets_rx,
total_packets_enqueued,
total_packets_dequeued,
total_packets_tx,
total_packets_dropped,
total_packets_errors);
printf("\n====================================================\n");
fflush(stdout);
}
static int
l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
struct l2fwd_crypto_params *cparams)
{
unsigned ret;
qconf->op_buf[cparams->dev_id].buffer;
cparams->qp_id, op_buffer, (uint16_t) n);
crypto_statistics[cparams->dev_id].enqueued += ret;
crypto_statistics[cparams->dev_id].errors += (n - ret);
do {
} while (++ret < n);
}
return 0;
}
static int
struct l2fwd_crypto_params *cparams)
{
unsigned lcore_id, len;
struct lcore_queue_conf *qconf;
qconf = &lcore_queue_conf[lcore_id];
len = qconf->op_buf[cparams->dev_id].len;
qconf->op_buf[cparams->dev_id].buffer[len] = op;
len++;
if (len == MAX_PKT_BURST) {
l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
len = 0;
}
qconf->op_buf[cparams->dev_id].len = len;
return 0;
}
static int
l2fwd_simple_crypto_enqueue(
struct rte_mbuf *m,
struct l2fwd_crypto_params *cparams)
{
uint32_t ipdata_offset, data_len;
uint32_t pad_len = 0;
char *padding;
return -1;
ipdata_offset);
if ((cparams->do_hash || cparams->do_aead) && cparams->hash_verify)
data_len -= cparams->digest_length;
if (cparams->do_cipher) {
switch (cparams->cipher_algo) {
if (data_len % cparams->block_size)
pad_len = cparams->block_size -
(data_len % cparams->block_size);
break;
if (cparams->cipher_dataunit_len != 0 &&
(data_len % cparams->cipher_dataunit_len))
pad_len = cparams->cipher_dataunit_len -
(data_len % cparams->cipher_dataunit_len);
break;
default:
pad_len = 0;
}
if (pad_len) {
return -1;
data_len += pad_len;
memset(padding, 0, pad_len);
}
}
if (cparams->do_hash) {
if (cparams->auth_iv.length) {
uint8_t *,
IV_OFFSET +
cparams->cipher_iv.length);
cparams->auth_iv.length);
}
if (!cparams->hash_verify) {
cparams->digest_length);
} else {
uint8_t *) + ipdata_offset + data_len;
}
} else {
}
}
if (cparams->do_cipher) {
IV_OFFSET);
cparams->cipher_iv.length);
} else {
}
}
if (cparams->do_aead) {
IV_OFFSET);
cparams->aead_iv.length);
else
cparams->aead_iv.length);
if (!cparams->hash_verify) {
cparams->digest_length);
} else {
uint8_t *) + ipdata_offset + data_len;
}
if (cparams->aad.length) {
}
}
return l2fwd_crypto_enqueue(op, cparams);
}
static int
l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n,
uint16_t port)
{
unsigned ret;
pkt_buffer = (
struct rte_mbuf **)qconf->pkt_buf[
port].buffer;
port_statistics[
port].tx += ret;
port_statistics[
port].dropped += (n - ret);
do {
} while (++ret < n);
}
return 0;
}
static int
{
unsigned lcore_id, len;
struct lcore_queue_conf *qconf;
qconf = &lcore_queue_conf[lcore_id];
len = qconf->pkt_buf[port].len;
qconf->pkt_buf[port].buffer[len] = m;
len++;
l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
len = 0;
}
qconf->pkt_buf[port].len = len;
return 0;
}
static void
l2fwd_mac_updating(
struct rte_mbuf *m, uint16_t dest_portid)
{
void *tmp;
*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40);
}
static void
l2fwd_simple_forward(
struct rte_mbuf *m, uint16_t portid,
struct l2fwd_crypto_options *options)
{
uint16_t dst_port;
uint32_t pad_len;
ipdata_offset);
dst_port = l2fwd_dst_ports[portid];
if (options->mac_updating)
l2fwd_mac_updating(m, dst_port);
ipdata_offset;
}
l2fwd_send_packet(m, dst_port);
}
static void
generate_random_key(uint8_t *key, unsigned length)
{
int fd;
int ret;
fd = open("/dev/urandom", O_RDONLY);
if (fd < 0)
rte_exit(EXIT_FAILURE,
"Failed to generate random key\n");
ret = read(fd, key, length);
close(fd);
if (ret != (signed)length)
rte_exit(EXIT_FAILURE,
"Failed to generate random key\n");
}
static void *
initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id)
{
int retval = rte_cryptodev_socket_id(cdev_id);
if (retval < 0)
return NULL;
uint8_t socket_id = (uint8_t) retval;
if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
first_xform = &options->aead_xform;
} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
first_xform = &options->cipher_xform;
first_xform->
next = &options->auth_xform;
} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
first_xform = &options->auth_xform;
first_xform->
next = &options->cipher_xform;
} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
first_xform = &options->cipher_xform;
} else {
first_xform = &options->auth_xform;
}
session_pool_socket[socket_id].sess_mp);
}
static void
l2fwd_crypto_options_print(struct l2fwd_crypto_options *options);
static void
l2fwd_main_loop(struct l2fwd_crypto_options *options)
{
struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST];
uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
unsigned int i, j, nb_rx, len;
uint16_t portid;
struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id];
US_PER_S * BURST_TX_DRAIN_US;
struct l2fwd_crypto_params *cparams;
struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs];
void *session;
if (qconf->nb_rx_ports == 0) {
RTE_LOG(INFO, L2FWD,
"lcore %u has nothing to do\n", lcore_id);
return;
}
RTE_LOG(INFO, L2FWD,
"entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->nb_rx_ports; i++) {
portid = qconf->rx_port_list[i];
RTE_LOG(INFO, L2FWD,
" -- lcoreid=%u portid=%u\n", lcore_id,
portid);
}
for (i = 0; i < qconf->nb_crypto_devs; i++) {
port_cparams[i].do_cipher = 0;
port_cparams[i].do_hash = 0;
port_cparams[i].do_aead = 0;
switch (options->xform_chain) {
case L2FWD_CRYPTO_AEAD:
port_cparams[i].do_aead = 1;
break;
case L2FWD_CRYPTO_CIPHER_HASH:
case L2FWD_CRYPTO_HASH_CIPHER:
port_cparams[i].do_cipher = 1;
port_cparams[i].do_hash = 1;
break;
case L2FWD_CRYPTO_HASH_ONLY:
port_cparams[i].do_hash = 1;
break;
case L2FWD_CRYPTO_CIPHER_ONLY:
port_cparams[i].do_cipher = 1;
break;
}
port_cparams[i].dev_id = qconf->cryptodev_list[i];
port_cparams[i].qp_id = 0;
port_cparams[i].block_size = options->block_size;
if (port_cparams[i].do_hash) {
port_cparams[i].auth_iv.data = options->auth_iv.data;
port_cparams[i].auth_iv.length = options->auth_iv.length;
if (!options->auth_iv_param)
generate_random_key(port_cparams[i].auth_iv.data,
port_cparams[i].auth_iv.length);
port_cparams[i].hash_verify = 1;
else
port_cparams[i].hash_verify = 0;
port_cparams[i].auth_algo = options->auth_xform.auth.algo;
port_cparams[i].digest_length =
options->auth_xform.auth.digest_length;
if (options->auth_iv.length) {
options->auth_xform.auth.iv.offset =
IV_OFFSET + options->cipher_iv.length;
options->auth_xform.auth.iv.length =
options->auth_iv.length;
}
}
if (port_cparams[i].do_aead) {
port_cparams[i].aead_iv.data = options->aead_iv.data;
port_cparams[i].aead_iv.length = options->aead_iv.length;
if (!options->aead_iv_param)
generate_random_key(port_cparams[i].aead_iv.data,
port_cparams[i].aead_iv.length);
port_cparams[i].aead_algo = options->aead_xform.aead.algo;
port_cparams[i].digest_length =
options->aead_xform.aead.digest_length;
if (options->aead_xform.aead.aad_length) {
port_cparams[i].aad.data = options->aad.data;
port_cparams[i].aad.phys_addr = options->aad.phys_addr;
port_cparams[i].aad.length = options->aad.length;
if (!options->aad_param)
generate_random_key(port_cparams[i].aad.data,
port_cparams[i].aad.length);
memmove(port_cparams[i].aad.data + 18,
port_cparams[i].aad.data,
port_cparams[i].aad.length);
} else
port_cparams[i].aad.length = 0;
port_cparams[i].hash_verify = 1;
else
port_cparams[i].hash_verify = 0;
options->aead_xform.aead.iv.offset = IV_OFFSET;
options->aead_xform.aead.iv.length = options->aead_iv.length;
}
if (port_cparams[i].do_cipher) {
port_cparams[i].cipher_iv.data = options->cipher_iv.data;
port_cparams[i].cipher_iv.length = options->cipher_iv.length;
if (!options->cipher_iv_param)
generate_random_key(port_cparams[i].cipher_iv.data,
port_cparams[i].cipher_iv.length);
port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo;
port_cparams[i].cipher_dataunit_len =
options->cipher_xform.cipher.dataunit_len;
options->cipher_xform.cipher.iv.offset = IV_OFFSET;
options->cipher_xform.cipher.iv.length =
options->cipher_iv.length;
}
session = initialize_crypto_session(options,
port_cparams[i].dev_id);
if (session == NULL)
rte_exit(EXIT_FAILURE,
"Failed to initialize crypto session\n");
port_cparams[i].session = session;
RTE_LOG(INFO, L2FWD,
" -- lcoreid=%u cryptoid=%u\n", lcore_id,
port_cparams[i].dev_id);
}
l2fwd_crypto_options_print(options);
prev_tsc = rte_rdtsc();
while (1) {
cur_tsc = rte_rdtsc();
diff_tsc = cur_tsc - prev_tsc;
for (i = 0; i < qconf->nb_crypto_devs; i++) {
cparams = &port_cparams[i];
len = qconf->op_buf[cparams->dev_id].len;
l2fwd_crypto_send_burst(qconf, len, cparams);
qconf->op_buf[cparams->dev_id].len = 0;
}
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
if (qconf->pkt_buf[portid].len == 0)
continue;
l2fwd_send_burst(&lcore_queue_conf[lcore_id],
qconf->pkt_buf[portid].len,
portid);
qconf->pkt_buf[portid].len = 0;
}
if (options->refresh_period > 0) {
timer_tsc += diff_tsc;
options->refresh_period)) {
print_stats();
timer_tsc = 0;
}
}
}
prev_tsc = cur_tsc;
}
for (i = 0; i < qconf->nb_rx_ports; i++) {
portid = qconf->rx_port_list[i];
cparams = &port_cparams[i];
pkts_burst, MAX_PKT_BURST);
return;
port_statistics[portid].rx += nb_rx;
if (nb_rx) {
l2fwd_crypto_op_pool,
ops_burst, nb_rx) !=
nb_rx) {
for (j = 0; j < nb_rx; j++)
nb_rx = 0;
}
for (j = 0; j < nb_rx; j++) {
m = pkts_burst[j];
l2fwd_simple_crypto_enqueue(m,
ops_burst[j], cparams);
}
}
do {
cparams->dev_id, cparams->qp_id,
ops_burst, MAX_PKT_BURST);
crypto_statistics[cparams->dev_id].dequeued +=
nb_rx;
for (j = 0; j < nb_rx; j++) {
l2fwd_simple_forward(m, portid,
options);
}
} while (nb_rx == MAX_PKT_BURST);
}
}
}
static int
l2fwd_launch_one_lcore(void *arg)
{
l2fwd_main_loop((struct l2fwd_crypto_options *)arg);
return 0;
}
static void
l2fwd_crypto_usage(const char *prgname)
{
printf("%s [EAL options] --\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
" -q NQ: number of queue (=ports) per lcore (default is 1)\n"
" -s manage all ports from single lcore\n"
" -T PERIOD: statistics will be refreshed each PERIOD seconds"
" (0 to disable, 10 default, 86400 maximum)\n"
" --cdev_type HW / SW / ANY\n"
" --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /"
" HASH_ONLY / AEAD\n"
" --cipher_algo ALGO\n"
" --cipher_op ENCRYPT / DECRYPT\n"
" --cipher_key KEY (bytes separated with \":\")\n"
" --cipher_key_random_size SIZE: size of cipher key when generated randomly\n"
" --cipher_iv IV (bytes separated with \":\")\n"
" --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n"
" --cipher_dataunit_len SIZE: length of the algorithm data-unit\n"
" --auth_algo ALGO\n"
" --auth_op GENERATE / VERIFY\n"
" --auth_key KEY (bytes separated with \":\")\n"
" --auth_key_random_size SIZE: size of auth key when generated randomly\n"
" --auth_iv IV (bytes separated with \":\")\n"
" --auth_iv_random_size SIZE: size of auth IV when generated randomly\n"
" --aead_algo ALGO\n"
" --aead_op ENCRYPT / DECRYPT\n"
" --aead_key KEY (bytes separated with \":\")\n"
" --aead_key_random_size SIZE: size of AEAD key when generated randomly\n"
" --aead_iv IV (bytes separated with \":\")\n"
" --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n"
" --aad AAD (bytes separated with \":\")\n"
" --aad_random_size SIZE: size of AAD when generated randomly\n"
" --digest_size SIZE: size of digest to be generated/verified\n"
" --sessionless\n"
" --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n"
" --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)\n"
" When enabled:\n"
" - The source MAC address is replaced by the TX port MAC address\n"
" - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID\n",
prgname);
}
static int
parse_cryptodev_type(enum cdev_type *type, char *optarg)
{
if (strcmp("HW", optarg) == 0) {
*type = CDEV_TYPE_HW;
return 0;
} else if (strcmp("SW", optarg) == 0) {
*type = CDEV_TYPE_SW;
return 0;
} else if (strcmp("ANY", optarg) == 0) {
*type = CDEV_TYPE_ANY;
return 0;
}
return -1;
}
static int
parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg)
{
if (strcmp("CIPHER_HASH", optarg) == 0) {
options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
return 0;
} else if (strcmp("HASH_CIPHER", optarg) == 0) {
options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER;
return 0;
} else if (strcmp("CIPHER_ONLY", optarg) == 0) {
options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY;
return 0;
} else if (strcmp("HASH_ONLY", optarg) == 0) {
options->xform_chain = L2FWD_CRYPTO_HASH_ONLY;
return 0;
} else if (strcmp("AEAD", optarg) == 0) {
options->xform_chain = L2FWD_CRYPTO_AEAD;
return 0;
}
return -1;
}
static int
{
RTE_LOG(ERR, USER1,
"Cipher algorithm specified "
"not supported!\n");
return -1;
}
return 0;
}
static int
{
if (strcmp("ENCRYPT", optarg) == 0) {
return 0;
} else if (strcmp("DECRYPT", optarg) == 0) {
return 0;
}
printf("Cipher operation not supported!\n");
return -1;
}
static int
parse_bytes(uint8_t *data, char *input_arg, uint16_t max_size)
{
unsigned byte_count;
char *token;
errno = 0;
for (byte_count = 0, token = strtok(input_arg, ":");
(byte_count < max_size) && (token != NULL);
token = strtok(NULL, ":")) {
int number = (int)strtol(token, NULL, 16);
if (errno == EINVAL || errno == ERANGE || number > 0xFF)
return -1;
data[byte_count++] = (uint8_t)number;
}
return byte_count;
}
static int
parse_size(int *size, const char *q_arg)
{
char *end = NULL;
unsigned long n;
n = strtoul(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
n = 0;
if (n == 0) {
printf("invalid size\n");
return -1;
}
*size = n;
return 0;
}
static int
{
RTE_LOG(ERR, USER1,
"Authentication algorithm specified "
"not supported!\n");
return -1;
}
return 0;
}
static int
{
if (strcmp("VERIFY", optarg) == 0) {
return 0;
} else if (strcmp("GENERATE", optarg) == 0) {
return 0;
}
printf("Authentication operation specified not supported!\n");
return -1;
}
static int
{
RTE_LOG(ERR, USER1,
"AEAD algorithm specified "
"not supported!\n");
return -1;
}
return 0;
}
static int
{
if (strcmp("ENCRYPT", optarg) == 0) {
return 0;
} else if (strcmp("DECRYPT", optarg) == 0) {
return 0;
}
printf("AEAD operation specified not supported!\n");
return -1;
}
static int
parse_cryptodev_mask(struct l2fwd_crypto_options *options,
const char *q_arg)
{
char *end = NULL;
uint64_t pm;
pm = strtoul(q_arg, &end, 16);
if ((pm == '\0') || (end == NULL) || (*end != '\0'))
pm = 0;
options->cryptodev_mask = pm;
if (options->cryptodev_mask == 0) {
printf("invalid cryptodev_mask specified\n");
return -1;
}
return 0;
}
static int
l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options,
struct option *lgopts, int option_index)
{
int retval;
int val;
if (strcmp(lgopts[option_index].name, "cdev_type") == 0) {
retval = parse_cryptodev_type(&options->type, optarg);
if (retval == 0)
strlcpy(options->string_type, optarg, MAX_STR_LEN);
return retval;
}
else if (strcmp(lgopts[option_index].name, "chain") == 0)
return parse_crypto_opt_chain(options, optarg);
else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0)
return parse_cipher_algo(&options->cipher_xform.cipher.algo,
optarg);
else if (strcmp(lgopts[option_index].name, "cipher_op") == 0)
return parse_cipher_op(&options->cipher_xform.cipher.op,
optarg);
else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) {
options->ckey_param = 1;
options->cipher_xform.cipher.key.length =
parse_bytes(options->cipher_key, optarg, MAX_KEY_SIZE);
if (options->cipher_xform.cipher.key.length > 0)
return 0;
else
return -1;
}
else if (strcmp(lgopts[option_index].name, "cipher_dataunit_len") == 0) {
retval = parse_size(&val, optarg);
if (retval == 0 && val >= 0) {
options->cipher_xform.cipher.dataunit_len =
(uint32_t)val;
return 0;
} else
return -1;
}
else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0)
return parse_size(&options->ckey_random_size, optarg);
else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) {
options->cipher_iv_param = 1;
options->cipher_iv.length =
parse_bytes(options->cipher_iv.data, optarg, MAX_IV_SIZE);
if (options->cipher_iv.length > 0)
return 0;
else
return -1;
}
else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0)
return parse_size(&options->cipher_iv_random_size, optarg);
else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) {
return parse_auth_algo(&options->auth_xform.auth.algo,
optarg);
}
else if (strcmp(lgopts[option_index].name, "auth_op") == 0)
return parse_auth_op(&options->auth_xform.auth.op,
optarg);
else if (strcmp(lgopts[option_index].name, "auth_key") == 0) {
options->akey_param = 1;
options->auth_xform.auth.key.length =
parse_bytes(options->auth_key, optarg, MAX_KEY_SIZE);
if (options->auth_xform.auth.key.length > 0)
return 0;
else
return -1;
}
else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) {
return parse_size(&options->akey_random_size, optarg);
}
else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) {
options->auth_iv_param = 1;
options->auth_iv.length =
parse_bytes(options->auth_iv.data, optarg, MAX_IV_SIZE);
if (options->auth_iv.length > 0)
return 0;
else
return -1;
}
else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0)
return parse_size(&options->auth_iv_random_size, optarg);
else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) {
return parse_aead_algo(&options->aead_xform.aead.algo,
optarg);
}
else if (strcmp(lgopts[option_index].name, "aead_op") == 0)
return parse_aead_op(&options->aead_xform.aead.op,
optarg);
else if (strcmp(lgopts[option_index].name, "aead_key") == 0) {
options->aead_key_param = 1;
options->aead_xform.aead.key.length =
parse_bytes(options->aead_key, optarg, MAX_KEY_SIZE);
if (options->aead_xform.aead.key.length > 0)
return 0;
else
return -1;
}
else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0)
return parse_size(&options->aead_key_random_size, optarg);
else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) {
options->aead_iv_param = 1;
options->aead_iv.length =
parse_bytes(options->aead_iv.data, optarg, MAX_IV_SIZE);
if (options->aead_iv.length > 0)
return 0;
else
return -1;
}
else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0)
return parse_size(&options->aead_iv_random_size, optarg);
else if (strcmp(lgopts[option_index].name, "aad") == 0) {
options->aad_param = 1;
options->aad.length =
parse_bytes(options->aad.data, optarg, MAX_AAD_SIZE);
if (options->aad.length > 0)
return 0;
else
return -1;
}
else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) {
return parse_size(&options->aad_random_size, optarg);
}
else if (strcmp(lgopts[option_index].name, "digest_size") == 0) {
return parse_size(&options->digest_size, optarg);
}
else if (strcmp(lgopts[option_index].name, "sessionless") == 0) {
options->sessionless = 1;
return 0;
}
else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0)
return parse_cryptodev_mask(options, optarg);
else if (strcmp(lgopts[option_index].name, "mac-updating") == 0) {
options->mac_updating = 1;
return 0;
}
else if (strcmp(lgopts[option_index].name, "no-mac-updating") == 0) {
options->mac_updating = 0;
return 0;
}
return -1;
}
static int
l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options,
const char *q_arg)
{
char *end = NULL;
unsigned long pm;
pm = strtoul(q_arg, &end, 16);
if ((pm == '\0') || (end == NULL) || (*end != '\0'))
pm = 0;
options->portmask = pm;
if (options->portmask == 0) {
printf("invalid portmask specified\n");
return -1;
}
return pm;
}
static int
l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options,
const char *q_arg)
{
char *end = NULL;
unsigned long n;
n = strtoul(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
n = 0;
else if (n >= MAX_RX_QUEUE_PER_LCORE)
n = 0;
options->nb_ports_per_lcore = n;
if (options->nb_ports_per_lcore == 0) {
printf("invalid number of ports selected\n");
return -1;
}
return 0;
}
static int
l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options,
const char *q_arg)
{
char *end = NULL;
unsigned long n;
n = (unsigned)strtol(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
n = 0;
if (n >= MAX_TIMER_PERIOD) {
printf("Warning refresh period specified %lu is greater than "
"max value %lu! using max value",
n, MAX_TIMER_PERIOD);
n = MAX_TIMER_PERIOD;
}
options->refresh_period = n * 1000 * TIMER_MILLISECOND;
return 0;
}
static void
l2fwd_crypto_default_options(struct l2fwd_crypto_options *options)
{
options->portmask = 0xffffffff;
options->nb_ports_per_lcore = 1;
options->refresh_period = DEFAULT_TIMER_PERIOD *
TIMER_MILLISECOND * 1000;
options->single_lcore = 0;
options->sessionless = 0;
options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
options->cipher_xform.next = NULL;
options->ckey_param = 0;
options->ckey_random_size = -1;
options->cipher_xform.cipher.key.length = 0;
options->cipher_iv_param = 0;
options->cipher_iv_random_size = -1;
options->cipher_iv.length = 0;
options->cipher_xform.cipher.dataunit_len = 0;
options->auth_xform.next = NULL;
options->akey_param = 0;
options->akey_random_size = -1;
options->auth_xform.auth.key.length = 0;
options->auth_iv_param = 0;
options->auth_iv_random_size = -1;
options->auth_iv.length = 0;
options->aead_xform.next = NULL;
options->aead_key_param = 0;
options->aead_key_random_size = -1;
options->aead_xform.aead.key.length = 0;
options->aead_iv_param = 0;
options->aead_iv_random_size = -1;
options->aead_iv.length = 0;
options->aad_param = 0;
options->aad_random_size = -1;
options->aad.length = 0;
options->digest_size = -1;
options->type = CDEV_TYPE_ANY;
options->cryptodev_mask = UINT64_MAX;
options->mac_updating = 1;
}
static void
display_cipher_info(struct l2fwd_crypto_options *options)
{
printf("\n---- Cipher information ---\n");
printf("Algorithm: %s\n",
options->cipher_xform.cipher.key.data,
options->cipher_xform.cipher.key.length);
rte_hexdump(stdout,
"IV:", options->cipher_iv.data, options->cipher_iv.length);
}
static void
display_auth_info(struct l2fwd_crypto_options *options)
{
printf("\n---- Authentication information ---\n");
printf("Algorithm: %s\n",
options->auth_xform.auth.key.data,
options->auth_xform.auth.key.length);
rte_hexdump(stdout,
"IV:", options->auth_iv.data, options->auth_iv.length);
}
static void
display_aead_info(struct l2fwd_crypto_options *options)
{
printf("\n---- AEAD information ---\n");
printf("Algorithm: %s\n",
options->aead_xform.aead.key.data,
options->aead_xform.aead.key.length);
rte_hexdump(stdout,
"IV:", options->aead_iv.data, options->aead_iv.length);
rte_hexdump(stdout,
"AAD:", options->aad.data, options->aad.length);
}
static void
l2fwd_crypto_options_print(struct l2fwd_crypto_options *options)
{
char string_cipher_op[MAX_STR_LEN];
char string_auth_op[MAX_STR_LEN];
char string_aead_op[MAX_STR_LEN];
strcpy(string_cipher_op, "Encrypt");
else
strcpy(string_cipher_op, "Decrypt");
strcpy(string_auth_op, "Auth generate");
else
strcpy(string_auth_op, "Auth verify");
strcpy(string_aead_op, "Authenticated encryption");
else
strcpy(string_aead_op, "Authenticated decryption");
printf("Options:-\nn");
printf("portmask: %x\n", options->portmask);
printf("ports per lcore: %u\n", options->nb_ports_per_lcore);
printf("refresh period : %u\n", options->refresh_period);
printf("single lcore mode: %s\n",
options->single_lcore ? "enabled" : "disabled");
printf("stats_printing: %s\n",
options->refresh_period == 0 ? "disabled" : "enabled");
printf("sessionless crypto: %s\n",
options->sessionless ? "enabled" : "disabled");
if (options->ckey_param && (options->ckey_random_size != -1))
printf("Cipher key already parsed, ignoring size of random key\n");
if (options->akey_param && (options->akey_random_size != -1))
printf("Auth key already parsed, ignoring size of random key\n");
if (options->cipher_iv_param && (options->cipher_iv_random_size != -1))
printf("Cipher IV already parsed, ignoring size of random IV\n");
if (options->auth_iv_param && (options->auth_iv_random_size != -1))
printf("Auth IV already parsed, ignoring size of random IV\n");
if (options->aad_param && (options->aad_random_size != -1))
printf("AAD already parsed, ignoring size of random AAD\n");
printf("\nCrypto chain: ");
switch (options->xform_chain) {
case L2FWD_CRYPTO_AEAD:
printf("Input --> %s --> Output\n", string_aead_op);
display_aead_info(options);
break;
case L2FWD_CRYPTO_CIPHER_HASH:
printf("Input --> %s --> %s --> Output\n",
string_cipher_op, string_auth_op);
display_cipher_info(options);
display_auth_info(options);
break;
case L2FWD_CRYPTO_HASH_CIPHER:
printf("Input --> %s --> %s --> Output\n",
string_auth_op, string_cipher_op);
display_cipher_info(options);
display_auth_info(options);
break;
case L2FWD_CRYPTO_HASH_ONLY:
printf("Input --> %s --> Output\n", string_auth_op);
display_auth_info(options);
break;
case L2FWD_CRYPTO_CIPHER_ONLY:
printf("Input --> %s --> Output\n", string_cipher_op);
display_cipher_info(options);
break;
}
}
static int
l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options,
int argc, char **argv)
{
int opt, retval, option_index;
char **argvopt = argv, *prgname = argv[0];
static struct option lgopts[] = {
{ "sessionless", no_argument, 0, 0 },
{ "cdev_type", required_argument, 0, 0 },
{ "chain", required_argument, 0, 0 },
{ "cipher_algo", required_argument, 0, 0 },
{ "cipher_op", required_argument, 0, 0 },
{ "cipher_key", required_argument, 0, 0 },
{ "cipher_key_random_size", required_argument, 0, 0 },
{ "cipher_iv", required_argument, 0, 0 },
{ "cipher_iv_random_size", required_argument, 0, 0 },
{ "cipher_dataunit_len", required_argument, 0, 0},
{ "auth_algo", required_argument, 0, 0 },
{ "auth_op", required_argument, 0, 0 },
{ "auth_key", required_argument, 0, 0 },
{ "auth_key_random_size", required_argument, 0, 0 },
{ "auth_iv", required_argument, 0, 0 },
{ "auth_iv_random_size", required_argument, 0, 0 },
{ "aead_algo", required_argument, 0, 0 },
{ "aead_op", required_argument, 0, 0 },
{ "aead_key", required_argument, 0, 0 },
{ "aead_key_random_size", required_argument, 0, 0 },
{ "aead_iv", required_argument, 0, 0 },
{ "aead_iv_random_size", required_argument, 0, 0 },
{ "aad", required_argument, 0, 0 },
{ "aad_random_size", required_argument, 0, 0 },
{ "digest_size", required_argument, 0, 0 },
{ "sessionless", no_argument, 0, 0 },
{ "cryptodev_mask", required_argument, 0, 0},
{ "mac-updating", no_argument, 0, 0},
{ "no-mac-updating", no_argument, 0, 0},
{ NULL, 0, 0, 0 }
};
l2fwd_crypto_default_options(options);
while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts,
&option_index)) != EOF) {
switch (opt) {
case 0:
retval = l2fwd_crypto_parse_args_long_options(options,
lgopts, option_index);
if (retval < 0) {
l2fwd_crypto_usage(prgname);
return -1;
}
break;
case 'p':
retval = l2fwd_crypto_parse_portmask(options, optarg);
if (retval < 0) {
l2fwd_crypto_usage(prgname);
return -1;
}
break;
case 'q':
retval = l2fwd_crypto_parse_nqueue(options, optarg);
if (retval < 0) {
l2fwd_crypto_usage(prgname);
return -1;
}
break;
case 's':
options->single_lcore = 1;
break;
case 'T':
retval = l2fwd_crypto_parse_timer_period(options,
optarg);
if (retval < 0) {
l2fwd_crypto_usage(prgname);
return -1;
}
break;
default:
l2fwd_crypto_usage(prgname);
return -1;
}
}
if (optind >= 0)
argv[optind-1] = prgname;
retval = optind-1;
optind = 1;
return retval;
}
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100
#define MAX_CHECK_TIME 90
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
int ret;
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
if (ret < 0) {
all_ports_up = 0;
if (print_flag == 1)
printf("Port %u link get failed: %s\n",
continue;
}
if (print_flag == 1) {
sizeof(link_status_text), &link);
printf("Port %d %s\n", portid,
link_status_text);
continue;
}
all_ports_up = 0;
break;
}
}
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
}
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("done\n");
}
}
}
static int
check_type(const struct l2fwd_crypto_options *options,
{
if (options->type == CDEV_TYPE_HW &&
return 0;
if (options->type == CDEV_TYPE_SW &&
return 0;
if (options->type == CDEV_TYPE_ANY)
return 0;
return -1;
}
check_device_support_cipher_algo(const struct l2fwd_crypto_options *options,
uint8_t cdev_id)
{
unsigned int i = 0;
options->cipher_xform.cipher.algo;
if (cap_cipher_algo == opt_cipher_algo) {
if (check_type(options, dev_info) == 0)
break;
}
}
}
printf("Algorithm %s not supported by cryptodev %u"
" or device not of preferred type (%s)\n",
cdev_id,
options->string_type);
return NULL;
}
return cap;
}
check_device_support_auth_algo(const struct l2fwd_crypto_options *options,
uint8_t cdev_id)
{
unsigned int i = 0;
options->auth_xform.auth.algo;
if (cap_auth_algo == opt_auth_algo) {
if (check_type(options, dev_info) == 0)
break;
}
}
}
printf("Algorithm %s not supported by cryptodev %u"
" or device not of preferred type (%s)\n",
cdev_id,
options->string_type);
return NULL;
}
return cap;
}
check_device_support_aead_algo(const struct l2fwd_crypto_options *options,
uint8_t cdev_id)
{
unsigned int i = 0;
options->aead_xform.aead.algo;
cap_aead_algo = cap->
sym.
aead.
algo;
if (cap_aead_algo == opt_aead_algo) {
if (check_type(options, dev_info) == 0)
break;
}
}
}
printf("Algorithm %s not supported by cryptodev %u"
" or device not of preferred type (%s)\n",
cdev_id,
options->string_type);
return NULL;
}
return cap;
}
static int
check_cryptodev_mask(struct l2fwd_crypto_options *options,
uint8_t cdev_id)
{
if (options->cryptodev_mask & (1 << cdev_id))
return 0;
return -1;
}
static inline int
check_supported_size(uint16_t length, uint16_t min, uint16_t max,
uint16_t increment)
{
uint16_t supp_size;
if (increment == 0) {
if (length == min)
return 0;
else
return -1;
}
for (supp_size = min; supp_size <= max; supp_size += increment) {
if (length == supp_size)
return 0;
}
return -1;
}
static int
unsigned int iv_param, int iv_random_size,
uint16_t iv_length)
{
if (iv_param) {
if (check_supported_size(iv_length,
!= 0)
return -1;
} else if (iv_random_size != -1) {
if (check_supported_size(iv_random_size,
!= 0)
return -1;
}
return 0;
}
static int
check_capabilities(struct l2fwd_crypto_options *options, uint8_t cdev_id)
{
if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
cap = check_device_support_aead_algo(options, &dev_info,
cdev_id);
if (cap == NULL)
return -1;
options->aead_iv_param,
options->aead_iv_random_size,
options->aead_iv.length) != 0) {
"Device %u does not support IV length\n",
cdev_id);
return -1;
}
if (options->aead_key_param) {
if (check_supported_size(
options->aead_xform.aead.key.length,
!= 0) {
"Device %u does not support "
"AEAD key length\n",
cdev_id);
return -1;
}
} else if (options->aead_key_random_size != -1) {
if (check_supported_size(options->aead_key_random_size,
!= 0) {
"Device %u does not support "
"AEAD key length\n",
cdev_id);
return -1;
}
}
if (options->aad_param) {
if (check_supported_size(options->aad.length,
!= 0) {
"Device %u does not support "
"AAD length\n",
cdev_id);
return -1;
}
} else if (options->aad_random_size != -1) {
if (check_supported_size(options->aad_random_size,
!= 0) {
"Device %u does not support "
"AAD length\n",
cdev_id);
return -1;
}
}
if (options->digest_size != -1) {
if (check_supported_size(options->digest_size,
!= 0) {
"Device %u does not support "
"digest length\n",
cdev_id);
return -1;
}
}
}
if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
cap = check_device_support_cipher_algo(options, &dev_info,
cdev_id);
if (cap == NULL)
return -1;
options->cipher_iv_param,
options->cipher_iv_random_size,
options->cipher_iv.length) != 0) {
"Device %u does not support IV length\n",
cdev_id);
return -1;
}
if (options->ckey_param) {
if (check_supported_size(
options->cipher_xform.cipher.key.length,
!= 0) {
"Key length does not match the device "
"%u capability. Key may be wrapped\n",
cdev_id);
} else {
"Key length does not match the device "
"%u capability\n",
cdev_id);
return -1;
}
}
} else if (options->ckey_random_size != -1) {
if (check_supported_size(options->ckey_random_size,
!= 0) {
"Device %u does not support cipher "
"key length\n",
cdev_id);
return -1;
}
}
if (options->cipher_xform.cipher.dataunit_len > 0) {
"Device %u does not support "
"cipher multiple data units\n",
cdev_id);
return -1;
}
int ret = 0;
switch (options->cipher_xform.cipher.dataunit_len) {
case 512:
ret = -1;
break;
case 4096:
RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_4096_BYTES))
ret = -1;
break;
case 1048576:
RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_1_MEGABYTES))
ret = -1;
break;
default:
ret = -1;
}
if (ret == -1) {
"Device %u does not support "
"data-unit length %u\n",
cdev_id,
options->cipher_xform.cipher.dataunit_len);
return -1;
}
}
}
}
if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
cap = check_device_support_auth_algo(options, &dev_info,
cdev_id);
if (cap == NULL)
return -1;
options->auth_iv_param,
options->auth_iv_random_size,
options->auth_iv.length) != 0) {
"Device %u does not support IV length\n",
cdev_id);
return -1;
}
if (options->akey_param) {
if (check_supported_size(
options->auth_xform.auth.key.length,
!= 0) {
"Device %u does not support auth "
"key length\n",
cdev_id);
return -1;
}
} else if (options->akey_random_size != -1) {
if (check_supported_size(options->akey_random_size,
!= 0) {
"Device %u does not support auth "
"key length\n",
cdev_id);
return -1;
}
}
if (options->digest_size != -1) {
if (check_supported_size(options->digest_size,
!= 0) {
"Device %u does not support "
"digest length\n",
cdev_id);
return -1;
}
}
}
return 0;
}
static int
initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports,
uint8_t *enabled_cdevs)
{
uint8_t cdev_id, cdev_count, enabled_cdev_count = 0;
unsigned int sess_sz, max_sess_sz = 0;
uint32_t sessions_needed = 0;
int retval;
if (cdev_count == 0) {
printf("No crypto devices available\n");
return -1;
}
for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports;
cdev_id++) {
if (check_cryptodev_mask(options, cdev_id) < 0)
continue;
if (check_capabilities(options, cdev_id) < 0)
continue;
if (sess_sz > max_sess_sz)
max_sess_sz = sess_sz;
l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id);
enabled_cdevs[cdev_id] = 1;
enabled_cdev_count++;
}
for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
if (enabled_cdevs[cdev_id] == 0)
continue;
if (check_cryptodev_mask(options, cdev_id) < 0)
continue;
if (check_capabilities(options, cdev_id) < 0)
continue;
retval = rte_cryptodev_socket_id(cdev_id);
if (retval < 0) {
printf("Invalid crypto device id used\n");
return -1;
}
uint8_t socket_id = (uint8_t) retval;
};
if (!strcmp(dev_info.
driver_name,
"crypto_scheduler")) {
#ifdef RTE_CRYPTO_SCHEDULER
uint32_t nb_workers = 1 +
NULL);
sessions_needed = enabled_cdev_count * nb_workers;
#endif
} else
sessions_needed = enabled_cdev_count;
if (session_pool_socket[
socket_id].sess_mp == NULL) {
char mp_name[RTE_MEMPOOL_NAMESIZE];
snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
mp_name, sessions_needed, max_sess_sz,
if (session_pool_socket[
socket_id].sess_mp == NULL) {
printf("Cannot create pool on socket %d\n",
return -ENOMEM;
}
printf("Allocated pool \"%s\" on socket %d\n",
}
if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
cap = check_device_support_aead_algo(options, &dev_info,
cdev_id);
if (options->aead_iv_param == 0) {
if (options->aead_iv_random_size != -1)
options->aead_iv.length =
options->aead_iv_random_size;
else
options->aead_iv.length =
}
if (options->aead_key_param == 0) {
if (options->aead_key_random_size != -1)
options->aead_xform.aead.key.length =
options->aead_key_random_size;
else
options->aead_xform.aead.key.length =
generate_random_key(options->aead_key,
options->aead_xform.aead.key.length);
}
if (options->aad_param == 0) {
if (options->aad_random_size != -1)
options->aad.length =
options->aad_random_size;
else
options->aad.length =
}
options->aead_xform.aead.aad_length =
options->aad.length;
if (options->digest_size != -1)
options->aead_xform.aead.digest_length =
options->digest_size;
else
options->aead_xform.aead.digest_length =
}
if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
cap = check_device_support_cipher_algo(options, &dev_info,
cdev_id);
if (options->cipher_iv_param == 0) {
if (options->cipher_iv_random_size != -1)
options->cipher_iv.length =
options->cipher_iv_random_size;
else
options->cipher_iv.length =
}
if (options->ckey_param == 0) {
if (options->ckey_random_size != -1)
options->cipher_xform.cipher.key.length =
options->ckey_random_size;
else
options->cipher_xform.cipher.key.length =
generate_random_key(options->cipher_key,
options->cipher_xform.cipher.key.length);
}
}
if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
cap = check_device_support_auth_algo(options, &dev_info,
cdev_id);
if (options->auth_iv_param == 0) {
if (options->auth_iv_random_size != -1)
options->auth_iv.length =
options->auth_iv_random_size;
else
options->auth_iv.length =
}
if (options->akey_param == 0) {
if (options->akey_random_size != -1)
options->auth_xform.auth.key.length =
options->akey_random_size;
else
options->auth_xform.auth.key.length =
generate_random_key(options->auth_key,
options->auth_xform.auth.key.length);
}
if (options->digest_size != -1)
options->auth_xform.auth.digest_length =
options->digest_size;
else
options->auth_xform.auth.digest_length =
}
if (retval < 0) {
printf("Failed to configure cryptodev %u", cdev_id);
return -1;
}
qp_conf.nb_descriptors = 2048;
qp_conf.mp_session = session_pool_socket[
socket_id].sess_mp;
if (retval < 0) {
printf("Failed to setup queue pair %u on cryptodev %u",
0, cdev_id);
return -1;
}
if (retval < 0) {
printf("Failed to start device %u: error %d\n",
cdev_id, retval);
return -1;
}
}
return enabled_cdev_count;
}
static int
initialize_ports(struct l2fwd_crypto_options *options)
{
uint16_t last_portid = 0, portid;
unsigned enabled_portcount = 0;
if (nb_ports == 0) {
printf("No Ethernet ports - bye\n");
return -1;
}
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
l2fwd_dst_ports[portid] = 0;
int retval;
if ((options->portmask & (1 << portid)) == 0)
continue;
printf("Initializing port %u... ", portid);
fflush(stdout);
if (retval != 0) {
printf("Error during getting device (port %u) info: %s\n",
portid, strerror(-retval));
return retval;
}
if (retval < 0) {
printf("Cannot configure device: err=%d, port=%u\n",
retval, portid);
return -1;
}
&nb_txd);
if (retval < 0) {
printf("Cannot adjust number of descriptors: err=%d, port=%u\n",
retval, portid);
return -1;
}
fflush(stdout);
rxq_conf = dev_info.default_rxconf;
&rxq_conf, l2fwd_pktmbuf_pool);
if (retval < 0) {
printf("rte_eth_rx_queue_setup:err=%d, port=%u\n",
retval, portid);
return -1;
}
fflush(stdout);
txq_conf = dev_info.default_txconf;
&txq_conf);
if (retval < 0) {
printf("rte_eth_tx_queue_setup:err=%d, port=%u\n",
retval, portid);
return -1;
}
if (retval < 0) {
printf("rte_eth_dev_start:err=%d, port=%u\n",
retval, portid);
return -1;
}
if (retval != 0) {
printf("rte_eth_promiscuous_enable:err=%s, port=%u\n",
return -1;
}
&l2fwd_ports_eth_addr[portid]);
if (retval < 0) {
printf("rte_eth_macaddr_get :err=%d, port=%u\n",
retval, portid);
return -1;
}
portid,
memset(&port_statistics, 0, sizeof(port_statistics));
if (enabled_portcount % 2) {
l2fwd_dst_ports[portid] = last_portid;
l2fwd_dst_ports[last_portid] = portid;
} else {
last_portid = portid;
}
l2fwd_enabled_port_mask |= (1ULL << portid);
enabled_portcount++;
}
if (enabled_portcount == 1) {
l2fwd_dst_ports[last_portid] = last_portid;
} else if (enabled_portcount % 2) {
printf("odd number of ports in portmask- bye\n");
return -1;
}
check_all_ports_link_status(l2fwd_enabled_port_mask);
return enabled_portcount;
}
static void
reserve_key_memory(struct l2fwd_crypto_options *options)
{
options->cipher_xform.cipher.key.data = options->cipher_key;
options->auth_xform.auth.key.data = options->auth_key;
options->aead_xform.aead.key.data = options->aead_key;
options->cipher_iv.data =
rte_malloc(
"cipher iv", MAX_KEY_SIZE, 0);
if (options->cipher_iv.data == NULL)
rte_exit(EXIT_FAILURE,
"Failed to allocate memory for cipher IV");
options->auth_iv.data =
rte_malloc(
"auth iv", MAX_KEY_SIZE, 0);
if (options->auth_iv.data == NULL)
rte_exit(EXIT_FAILURE,
"Failed to allocate memory for auth IV");
options->aead_iv.data =
rte_malloc(
"aead_iv", MAX_KEY_SIZE, 0);
if (options->aead_iv.data == NULL)
rte_exit(EXIT_FAILURE,
"Failed to allocate memory for AEAD iv");
options->aad.data =
rte_malloc(
"aad", MAX_KEY_SIZE, 0);
if (options->aad.data == NULL)
rte_exit(EXIT_FAILURE,
"Failed to allocate memory for AAD");
}
static void
raise_signal(int signum)
{
if (signum == SIGINT || signum == SIGTERM)
signal_received = true;
}
int
main(int argc, char **argv)
{
struct lcore_queue_conf *qconf = NULL;
struct l2fwd_crypto_options options;
uint8_t nb_cryptodevs, cdev_id;
uint16_t portid;
unsigned lcore_id, rx_lcore_id = 0;
int ret, enabled_cdevcount, enabled_portcount;
uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0};
signal(SIGINT, raise_signal);
signal(SIGTERM, raise_signal);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Invalid EAL arguments\n");
argc -= ret;
argv += ret;
reserve_key_memory(&options);
ret = l2fwd_crypto_parse_args(&options, argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Invalid L2FWD-CRYPTO arguments\n");
printf("MAC updating %s\n",
options.mac_updating ? "enabled" : "disabled");
RTE_CACHE_LINE_SIZE),
if (l2fwd_pktmbuf_pool == NULL)
rte_exit(EXIT_FAILURE,
"Cannot create mbuf pool\n");
if (l2fwd_crypto_op_pool == NULL)
rte_exit(EXIT_FAILURE,
"Cannot create crypto op pool\n");
enabled_portcount = initialize_ports(&options);
if (enabled_portcount < 1)
rte_exit(EXIT_FAILURE,
"Failed to initialize Ethernet ports\n");
if ((options.portmask & (1 << portid)) == 0)
continue;
if (options.single_lcore && qconf == NULL) {
rx_lcore_id++;
if (rx_lcore_id >= RTE_MAX_LCORE)
"Not enough cores\n");
}
} else if (!options.single_lcore) {
lcore_queue_conf[rx_lcore_id].nb_rx_ports ==
options.nb_ports_per_lcore) {
rx_lcore_id++;
if (rx_lcore_id >= RTE_MAX_LCORE)
"Not enough cores\n");
}
}
if (qconf != &lcore_queue_conf[rx_lcore_id])
qconf = &lcore_queue_conf[rx_lcore_id];
qconf->rx_port_list[qconf->nb_rx_ports] = portid;
qconf->nb_rx_ports++;
printf("Lcore %u: RX port %u\n", rx_lcore_id, portid);
}
enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount,
enabled_cdevs);
if (enabled_cdevcount < 0)
rte_exit(EXIT_FAILURE,
"Failed to initialize crypto devices\n");
if (enabled_cdevcount < enabled_portcount)
rte_exit(EXIT_FAILURE,
"Number of capable crypto devices (%d) "
"has to be more or equal to number of ports (%d)\n",
enabled_cdevcount, enabled_portcount);
for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0;
cdev_id < nb_cryptodevs && enabled_cdevcount;
cdev_id++) {
if (!enabled_cdevs[cdev_id])
continue;
if (options.single_lcore && qconf == NULL) {
rx_lcore_id++;
if (rx_lcore_id >= RTE_MAX_LCORE)
"Not enough cores\n");
}
} else if (!options.single_lcore) {
lcore_queue_conf[rx_lcore_id].nb_crypto_devs ==
options.nb_ports_per_lcore) {
rx_lcore_id++;
if (rx_lcore_id >= RTE_MAX_LCORE)
"Not enough cores\n");
}
}
if (qconf != &lcore_queue_conf[rx_lcore_id])
qconf = &lcore_queue_conf[rx_lcore_id];
qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id;
qconf->nb_crypto_devs++;
enabled_cdevcount--;
printf("Lcore %u: cryptodev %u\n", rx_lcore_id,
(unsigned)cdev_id);
}
return -1;
}
return 0;
}
static uint16_t rte_be_to_cpu_16(rte_be16_t x)
static rte_be16_t rte_cpu_to_be_16(uint16_t x)
#define __rte_cache_aligned
#define RTE_ALIGN(val, align)
__rte_noreturn void rte_exit(int exit_code, const char *format,...) __rte_format_printf(2
static int rte_crypto_op_attach_sym_session(struct rte_crypto_op *op, void *sess)
static unsigned rte_crypto_op_bulk_alloc(struct rte_mempool *mempool, enum rte_crypto_op_type type, struct rte_crypto_op **ops, uint16_t nb_ops)
struct rte_mempool * rte_crypto_op_pool_create(const char *name, enum rte_crypto_op_type type, unsigned nb_elts, unsigned cache_size, uint16_t priv_size, int socket_id)
static void rte_crypto_op_free(struct rte_crypto_op *op)
@ RTE_CRYPTO_OP_TYPE_SYMMETRIC
@ RTE_CRYPTO_OP_TYPE_UNDEFINED
rte_crypto_auth_algorithm
@ RTE_CRYPTO_AUTH_ZUC_EIA3
@ RTE_CRYPTO_AUTH_SNOW3G_UIA2
@ RTE_CRYPTO_AUTH_KASUMI_F9
@ RTE_CRYPTO_AUTH_SHA1_HMAC
const char * rte_crypto_auth_algorithm_strings[]
rte_crypto_cipher_operation
@ RTE_CRYPTO_CIPHER_OP_DECRYPT
@ RTE_CRYPTO_CIPHER_OP_ENCRYPT
@ RTE_CRYPTO_SYM_XFORM_AUTH
@ RTE_CRYPTO_SYM_XFORM_AEAD
@ RTE_CRYPTO_SYM_XFORM_CIPHER
rte_crypto_aead_algorithm
@ RTE_CRYPTO_AEAD_AES_CCM
@ RTE_CRYPTO_AEAD_AES_GCM
rte_crypto_cipher_algorithm
@ RTE_CRYPTO_CIPHER_DES_CBC
@ RTE_CRYPTO_CIPHER_AES_XTS
@ RTE_CRYPTO_CIPHER_SNOW3G_UEA2
@ RTE_CRYPTO_CIPHER_3DES_ECB
@ RTE_CRYPTO_CIPHER_ZUC_EEA3
@ RTE_CRYPTO_CIPHER_KASUMI_F8
@ RTE_CRYPTO_CIPHER_AES_CBC
@ RTE_CRYPTO_CIPHER_3DES_CBC
@ RTE_CRYPTO_CIPHER_AES_ECB
rte_crypto_auth_operation
@ RTE_CRYPTO_AUTH_OP_VERIFY
@ RTE_CRYPTO_AUTH_OP_GENERATE
const char * rte_crypto_aead_algorithm_strings[]
rte_crypto_aead_operation
@ RTE_CRYPTO_AEAD_OP_DECRYPT
@ RTE_CRYPTO_AEAD_OP_ENCRYPT
const char * rte_crypto_cipher_algorithm_strings[]
static uint16_t rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_crypto_op **ops, uint16_t nb_ops)
uint8_t rte_cryptodev_count(void)
static uint16_t rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_crypto_op **ops, uint16_t nb_ops)
int rte_cryptodev_start(uint8_t dev_id)
#define RTE_CRYPTODEV_FF_SECURITY
unsigned int rte_cryptodev_sym_get_private_session_size(uint8_t dev_id)
int rte_cryptodev_get_auth_algo_enum(enum rte_crypto_auth_algorithm *algo_enum, const char *algo_string)
#define RTE_CRYPTODEV_FF_HW_ACCELERATED
int rte_cryptodev_configure(uint8_t dev_id, struct rte_cryptodev_config *config)
#define RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY
void * rte_cryptodev_sym_session_create(uint8_t dev_id, struct rte_crypto_sym_xform *xforms, struct rte_mempool *mp)
#define RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_512_BYTES
int rte_cryptodev_get_cipher_algo_enum(enum rte_crypto_cipher_algorithm *algo_enum, const char *algo_string)
#define RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS
int rte_cryptodev_get_aead_algo_enum(enum rte_crypto_aead_algorithm *algo_enum, const char *algo_string)
int rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, const struct rte_cryptodev_qp_conf *qp_conf, int socket_id)
__rte_experimental struct rte_mempool * rte_cryptodev_sym_session_pool_create(const char *name, uint32_t nb_elts, uint32_t elt_size, uint32_t cache_size, uint16_t priv_size, int socket_id)
void rte_cryptodev_info_get(uint8_t dev_id, struct rte_cryptodev_info *dev_info)
#define rte_crypto_op_ctod_offset(c, t, o)
int rte_cryptodev_scheduler_workers_get(uint8_t scheduler_id, uint8_t *workers)
uint64_t rte_get_tsc_hz(void)
static void rte_delay_ms(unsigned ms)
int rte_eal_init(int argc, char **argv)
int rte_eal_cleanup(void)
const char * rte_strerror(int errnum)
int rte_eth_dev_configure(uint16_t port_id, uint16_t nb_rx_queue, uint16_t nb_tx_queue, const struct rte_eth_conf *eth_conf)
#define RTE_ETH_LINK_DOWN
int rte_eth_rx_queue_setup(uint16_t port_id, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mb_pool)
static uint16_t rte_eth_rx_burst(uint16_t port_id, uint16_t queue_id, struct rte_mbuf **rx_pkts, const uint16_t nb_pkts)
#define RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE
int rte_eth_promiscuous_enable(uint16_t port_id)
__rte_experimental int rte_eth_link_to_str(char *str, size_t len, const struct rte_eth_link *eth_link)
int rte_eth_dev_info_get(uint16_t port_id, struct rte_eth_dev_info *dev_info)
int rte_eth_tx_queue_setup(uint16_t port_id, uint16_t tx_queue_id, uint16_t nb_tx_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf)
#define RTE_ETH_LINK_MAX_STR_LEN
static uint16_t rte_eth_tx_burst(uint16_t port_id, uint16_t queue_id, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
int rte_eth_macaddr_get(uint16_t port_id, struct rte_ether_addr *mac_addr)
uint16_t rte_eth_dev_count_avail(void)
int rte_eth_dev_socket_id(uint16_t port_id)
int rte_eth_link_get_nowait(uint16_t port_id, struct rte_eth_link *link)
int rte_eth_dev_adjust_nb_rx_tx_desc(uint16_t port_id, uint16_t *nb_rx_desc, uint16_t *nb_tx_desc)
#define RTE_ETH_FOREACH_DEV(p)
int rte_eth_dev_start(uint16_t port_id)
#define RTE_ETHER_ADDR_PRT_FMT
#define RTE_ETHER_TYPE_IPV4
#define RTE_ETHER_ADDR_BYTES(mac_addrs)
static void rte_ether_addr_copy(const struct rte_ether_addr *__restrict ea_from, struct rte_ether_addr *__restrict ea_to)
void rte_hexdump(FILE *f, const char *title, const void *buf, unsigned int len)
#define RTE_IPV4_HDR_IHL_MASK
#define RTE_IPV4_IHL_MULTIPLIER
int rte_eal_mp_remote_launch(lcore_function_t *f, void *arg, enum rte_rmt_call_main_t call_main)
int rte_eal_wait_lcore(unsigned worker_id)
int rte_lcore_is_enabled(unsigned int lcore_id)
unsigned int rte_get_main_lcore(void)
unsigned int rte_socket_id(void)
#define RTE_LCORE_FOREACH_WORKER(i)
static unsigned rte_lcore_id(void)
#define RTE_LOG(l, t,...)
void * rte_malloc(const char *type, size_t size, unsigned align) __rte_alloc_size(2)
rte_iova_t rte_malloc_virt2iova(const void *addr)
static void rte_pktmbuf_free(struct rte_mbuf *m)
#define rte_pktmbuf_data_len(m)
static char * rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
#define rte_pktmbuf_pkt_len(m)
struct rte_mempool * rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size, uint16_t priv_size, uint16_t data_room_size, int socket_id)
static int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
#define rte_pktmbuf_iova_offset(m, o)
#define rte_pktmbuf_mtod(m, t)
static void * rte_memcpy(void *dst, const void *src, size_t n)
struct rte_crypto_sym_op sym[0]
struct rte_crypto_sym_op::@84::@86::@89 data
struct rte_crypto_sym_op::@84::@86::@90 digest
struct rte_crypto_sym_op::@84::@86::@91 aad
enum rte_crypto_op_type op
struct rte_cryptodev_symmetric_capability sym
const struct rte_cryptodev_capabilities * capabilities
enum rte_crypto_auth_algorithm algo
struct rte_crypto_param_range iv_size
struct rte_crypto_param_range digest_size
struct rte_crypto_param_range aad_size
struct rte_cryptodev_symmetric_capability::@97::@99 auth
struct rte_cryptodev_symmetric_capability::@97::@100 cipher
struct rte_crypto_param_range key_size
enum rte_crypto_sym_xform_type xform_type
struct rte_eth_txmode txmode
struct rte_eth_rxmode rxmode
enum rte_eth_rx_mq_mode mq_mode
uint8_t addr_bytes[RTE_ETHER_ADDR_LEN]
struct rte_ether_addr src_addr
struct rte_ether_addr dst_addr