DPDK 22.11.6
examples/ipsec-secgw/ipsec.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2020 Intel Corporation
*/
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <rte_log.h>
#include <rte_crypto.h>
#include <rte_security.h>
#include <rte_cryptodev.h>
#include <rte_ipsec.h>
#include <rte_ethdev.h>
#include <rte_mbuf.h>
#include <rte_hash.h>
#include "ipsec.h"
#include "esp.h"
static inline void
set_ipsec_conf(struct ipsec_sa *sa, struct rte_security_ipsec_xform *ipsec)
{
&ipsec->tunnel;
if (IS_IP4_TUNNEL(sa->flags)) {
tunnel->type =
tunnel->ipv4.ttl = IPDEFTTL;
memcpy((uint8_t *)&tunnel->ipv4.src_ip,
(uint8_t *)&sa->src.ip.ip4, 4);
memcpy((uint8_t *)&tunnel->ipv4.dst_ip,
(uint8_t *)&sa->dst.ip.ip4, 4);
} else if (IS_IP6_TUNNEL(sa->flags)) {
tunnel->type =
tunnel->ipv6.hlimit = IPDEFTTL;
tunnel->ipv6.dscp = 0;
tunnel->ipv6.flabel = 0;
memcpy((uint8_t *)&tunnel->ipv6.src_addr,
(uint8_t *)&sa->src.ip.ip6.ip6_b, 16);
memcpy((uint8_t *)&tunnel->ipv6.dst_addr,
(uint8_t *)&sa->dst.ip.ip6.ip6_b, 16);
}
/* TODO support for Transport */
}
ipsec->replay_win_sz = app_sa_prm.window_size;
ipsec->options.esn = app_sa_prm.enable_esn;
ipsec->options.udp_encap = sa->udp_encap;
if (IS_HW_REASSEMBLY_EN(sa->flags))
}
int
create_lookaside_session(struct ipsec_ctx *ipsec_ctx_lcore[],
struct socket_ctx *skt_ctx, const struct eventmode_conf *em_conf,
struct ipsec_sa *sa, struct rte_ipsec_session *ips)
{
uint16_t cdev_id = RTE_CRYPTO_MAX_DEVS;
enum rte_crypto_op_sess_type sess_type;
struct rte_cryptodev_info cdev_info;
enum rte_crypto_op_type op_type;
unsigned long cdev_id_qp = 0;
struct ipsec_ctx *ipsec_ctx;
struct cdev_key key = { 0 };
void *sess = NULL;
uint32_t lcore_id;
int32_t ret = 0;
RTE_LCORE_FOREACH(lcore_id) {
ipsec_ctx = ipsec_ctx_lcore[lcore_id];
/* Core is not bound to any cryptodev, skip it */
if (ipsec_ctx->cdev_map == NULL)
continue;
/* Looking for cryptodev, which can handle this SA */
key.lcore_id = lcore_id;
key.cipher_algo = (uint8_t)sa->cipher_algo;
key.auth_algo = (uint8_t)sa->auth_algo;
key.aead_algo = (uint8_t)sa->aead_algo;
ret = rte_hash_lookup_data(ipsec_ctx->cdev_map, &key,
(void **)&cdev_id_qp);
if (ret == -ENOENT)
continue;
if (ret < 0) {
RTE_LOG(ERR, IPSEC,
"No cryptodev: core %u, cipher_algo %u, "
"auth_algo %u, aead_algo %u\n",
key.lcore_id,
key.cipher_algo,
key.auth_algo,
key.aead_algo);
return ret;
}
/* Verify that all cores are using same cryptodev for current
* algorithm combination, required by SA.
* Current cryptodev mapping process will map SA to the first
* cryptodev that matches requirements, so it's a double check,
* not an additional restriction.
*/
if (cdev_id == RTE_CRYPTO_MAX_DEVS)
cdev_id = ipsec_ctx->tbl[cdev_id_qp].id;
else if (cdev_id != ipsec_ctx->tbl[cdev_id_qp].id) {
struct rte_cryptodev_info dev_info_1, dev_info_2;
rte_cryptodev_info_get(cdev_id, &dev_info_1);
rte_cryptodev_info_get(ipsec_ctx->tbl[cdev_id_qp].id,
&dev_info_2);
if (dev_info_1.driver_id == dev_info_2.driver_id) {
RTE_LOG(WARNING, IPSEC,
"SA mapped to multiple cryptodevs for SPI %d\n",
sa->spi);
} else {
RTE_LOG(WARNING, IPSEC,
"SA mapped to multiple cryptodevs of different types for SPI %d\n",
sa->spi);
}
}
/* Store per core queue pair information */
sa->cqp[lcore_id] = &ipsec_ctx->tbl[cdev_id_qp];
}
if (cdev_id == RTE_CRYPTO_MAX_DEVS) {
RTE_LOG(WARNING, IPSEC, "No cores found to handle SA\n");
return 0;
}
RTE_LOG(DEBUG, IPSEC, "Create session for SA spi %u on cryptodev "
"%u\n", sa->spi, cdev_id);
struct rte_security_session_conf sess_conf = {
.action_type = ips->type,
{.ipsec = {
.spi = sa->spi,
.salt = sa->salt,
.options = { 0 },
.replay_win_sz = 0,
.direction = sa->direction,
.mode = (IS_TUNNEL(sa->flags)) ?
} },
.crypto_xform = sa->xforms,
.userdata = NULL,
};
struct rte_security_ctx *ctx = (struct rte_security_ctx *)
cdev_id);
/* Set IPsec parameters in conf */
set_ipsec_conf(sa, &(sess_conf.ipsec));
ips->security.ses = rte_security_session_create(ctx,
&sess_conf, skt_ctx->session_pool);
if (ips->security.ses == NULL) {
RTE_LOG(ERR, IPSEC,
"SEC Session init failed: err: %d\n", ret);
return -1;
}
ips->security.ctx = ctx;
sess = ips->security.ses;
} else {
RTE_LOG(ERR, IPSEC, "Inline not supported\n");
return -1;
}
} else {
struct rte_cryptodev_info info;
rte_cryptodev_info_get(cdev_id, &info);
if (!(info.feature_flags &
return -ENOTSUP;
}
ips->crypto.dev_id = cdev_id;
ips->crypto.ses = rte_cryptodev_sym_session_create(cdev_id,
sa->xforms, skt_ctx->session_pool);
rte_cryptodev_info_get(cdev_id, &cdev_info);
}
/* Setup meta data required by event crypto adapter */
if (em_conf->enable_event_crypto_adapter && sess != NULL) {
const struct eventdev_params *eventdev_conf;
eventdev_conf = &(em_conf->eventdev_config[0]);
memset(&m_data, 0, sizeof(m_data));
/* Fill in response information */
m_data.response_info.sched_type = em_conf->ext_params.sched_type;
m_data.response_info.op = RTE_EVENT_OP_NEW;
m_data.response_info.queue_id = eventdev_conf->ev_cpt_queue_id;
/* Fill in request information */
m_data.request_info.cdev_id = cdev_id;
m_data.request_info.queue_pair_id = 0;
/* Attach meta info to session */
rte_cryptodev_session_event_mdata_set(cdev_id, sess, op_type,
sess_type, &m_data, sizeof(m_data));
}
return 0;
}
int
create_inline_session(struct socket_ctx *skt_ctx, struct ipsec_sa *sa,
struct rte_ipsec_session *ips)
{
int32_t ret = 0;
struct rte_security_ctx *sec_ctx;
struct rte_security_session_conf sess_conf = {
.action_type = ips->type,
{.ipsec = {
.spi = sa->spi,
.salt = sa->salt,
.options = { 0 },
.replay_win_sz = 0,
.direction = sa->direction,
} },
.crypto_xform = sa->xforms,
.userdata = NULL,
};
if (IS_TRANSPORT(sa->flags)) {
if (IS_IP4(sa->flags)) {
sess_conf.ipsec.tunnel.type =
sess_conf.ipsec.tunnel.ipv4.src_ip.s_addr =
sa->src.ip.ip4;
sess_conf.ipsec.tunnel.ipv4.dst_ip.s_addr =
sa->dst.ip.ip4;
} else if (IS_IP6(sa->flags)) {
sess_conf.ipsec.tunnel.type =
memcpy(sess_conf.ipsec.tunnel.ipv6.src_addr.s6_addr,
sa->src.ip.ip6.ip6_b, 16);
memcpy(sess_conf.ipsec.tunnel.ipv6.dst_addr.s6_addr,
sa->dst.ip.ip6.ip6_b, 16);
}
} else if (IS_TUNNEL(sa->flags)) {
if (IS_IP4(sa->flags)) {
sess_conf.ipsec.tunnel.type =
sess_conf.ipsec.tunnel.ipv4.src_ip.s_addr =
sa->src.ip.ip4;
sess_conf.ipsec.tunnel.ipv4.dst_ip.s_addr =
sa->dst.ip.ip4;
} else if (IS_IP6(sa->flags)) {
sess_conf.ipsec.tunnel.type =
memcpy(sess_conf.ipsec.tunnel.ipv6.src_addr.s6_addr,
sa->src.ip.ip6.ip6_b, 16);
memcpy(sess_conf.ipsec.tunnel.ipv6.dst_addr.s6_addr,
sa->dst.ip.ip6.ip6_b, 16);
} else {
RTE_LOG(ERR, IPSEC, "invalid tunnel type\n");
return -1;
}
}
if (sa->udp_encap) {
sess_conf.ipsec.options.udp_encap = 1;
sess_conf.ipsec.udp.sport = htons(sa->udp.sport);
sess_conf.ipsec.udp.dport = htons(sa->udp.dport);
}
if (sa->esn > 0) {
sess_conf.ipsec.options.esn = 1;
sess_conf.ipsec.esn.value = sa->esn;
}
RTE_LOG_DP(DEBUG, IPSEC, "Create session for SA spi %u on port %u\n",
sa->spi, sa->portid);
struct rte_flow_error err;
const struct rte_security_capability *sec_cap;
int ret = 0;
sec_ctx = (struct rte_security_ctx *)
sa->portid);
if (sec_ctx == NULL) {
RTE_LOG(ERR, IPSEC,
" rte_eth_dev_get_sec_ctx failed\n");
return -1;
}
ips->security.ses = rte_security_session_create(sec_ctx,
&sess_conf, skt_ctx->session_pool);
if (ips->security.ses == NULL) {
RTE_LOG(ERR, IPSEC,
"SEC Session init failed: err: %d\n", ret);
return -1;
}
sec_cap = rte_security_capabilities_get(sec_ctx);
/* iterate until ESP tunnel*/
while (sec_cap->action != RTE_SECURITY_ACTION_TYPE_NONE) {
if (sec_cap->action == ips->type &&
sec_cap->protocol ==
sec_cap->ipsec.mode ==
sec_cap->ipsec.direction == sa->direction)
break;
sec_cap++;
}
RTE_LOG(ERR, IPSEC,
"No suitable security capability found\n");
return -1;
}
ips->security.ol_flags = sec_cap->ol_flags;
ips->security.ctx = sec_ctx;
sa->pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
if (IS_IP6(sa->flags)) {
sa->pattern[1].mask = &rte_flow_item_ipv6_mask;
sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV6;
sa->pattern[1].spec = &sa->ipv6_spec;
memcpy(sa->ipv6_spec.hdr.dst_addr,
sa->dst.ip.ip6.ip6_b, 16);
memcpy(sa->ipv6_spec.hdr.src_addr,
sa->src.ip.ip6.ip6_b, 16);
} else if (IS_IP4(sa->flags)) {
sa->pattern[1].mask = &rte_flow_item_ipv4_mask;
sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV4;
sa->pattern[1].spec = &sa->ipv4_spec;
sa->ipv4_spec.hdr.dst_addr = sa->dst.ip.ip4;
sa->ipv4_spec.hdr.src_addr = sa->src.ip.ip4;
}
sa->esp_spec.hdr.spi = rte_cpu_to_be_32(sa->spi);
if (sa->udp_encap) {
sa->udp_spec.hdr.dst_port =
rte_cpu_to_be_16(sa->udp.dport);
sa->udp_spec.hdr.src_port =
rte_cpu_to_be_16(sa->udp.sport);
sa->pattern[2].mask = &rte_flow_item_udp_mask;
sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_UDP;
sa->pattern[2].spec = &sa->udp_spec;
sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_ESP;
sa->pattern[3].spec = &sa->esp_spec;
sa->pattern[3].mask = &rte_flow_item_esp_mask;
sa->pattern[4].type = RTE_FLOW_ITEM_TYPE_END;
} else {
sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_ESP;
sa->pattern[2].spec = &sa->esp_spec;
sa->pattern[2].mask = &rte_flow_item_esp_mask;
sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_END;
}
sa->action[0].type = RTE_FLOW_ACTION_TYPE_SECURITY;
sa->action[0].conf = ips->security.ses;
sa->action[1].type = RTE_FLOW_ACTION_TYPE_END;
sa->attr.egress = (sa->direction ==
sa->attr.ingress = (sa->direction ==
if (sa->attr.ingress) {
uint8_t rss_key[64];
struct rte_eth_rss_conf rss_conf = {
.rss_key_len = sizeof(rss_key),
};
struct rte_eth_dev_info dev_info;
uint16_t queue[RTE_MAX_QUEUES_PER_PORT];
struct rte_flow_action_rss action_rss;
unsigned int i;
unsigned int j;
/* Don't create flow if default flow is created */
if (flow_info_tbl[sa->portid].rx_def_flow)
return 0;
ret = rte_eth_dev_info_get(sa->portid, &dev_info);
if (ret != 0) {
RTE_LOG(ERR, IPSEC,
"Error during getting device (port %u) info: %s\n",
sa->portid, strerror(-ret));
return ret;
}
sa->action[2].type = RTE_FLOW_ACTION_TYPE_END;
/* Try RSS. */
sa->action[1].type = RTE_FLOW_ACTION_TYPE_RSS;
sa->action[1].conf = &action_rss;
&rss_conf);
if (ret != 0) {
RTE_LOG(ERR, IPSEC,
"rte_eth_dev_rss_hash_conf_get:ret=%d\n",
ret);
return -1;
}
for (i = 0, j = 0; i < dev_info.nb_rx_queues; ++i)
queue[j++] = i;
action_rss = (struct rte_flow_action_rss){
.types = rss_conf.rss_hf,
.key_len = rss_conf.rss_key_len,
.queue_num = j,
.key = rss_key,
.queue = queue,
};
ret = rte_flow_validate(sa->portid, &sa->attr,
sa->pattern, sa->action,
&err);
if (!ret)
goto flow_create;
/* Try Queue. */
sa->action[1].type = RTE_FLOW_ACTION_TYPE_QUEUE;
sa->action[1].conf =
.index = 0,
};
ret = rte_flow_validate(sa->portid, &sa->attr,
sa->pattern, sa->action,
&err);
/* Try End. */
sa->action[1].type = RTE_FLOW_ACTION_TYPE_END;
sa->action[1].conf = NULL;
ret = rte_flow_validate(sa->portid, &sa->attr,
sa->pattern, sa->action,
&err);
if (ret)
goto flow_create_failure;
} else if (sa->attr.egress &&
(ips->security.ol_flags &
sa->action[1].type =
sa->action[2].type =
}
flow_create:
sa->flow = rte_flow_create(sa->portid,
&sa->attr, sa->pattern, sa->action, &err);
if (sa->flow == NULL) {
flow_create_failure:
RTE_LOG(ERR, IPSEC,
"Failed to create ipsec flow msg: %s\n",
err.message);
return -1;
}
const struct rte_security_capability *sec_cap;
sec_ctx = (struct rte_security_ctx *)
if (sec_ctx == NULL) {
RTE_LOG(ERR, IPSEC,
"Ethernet device doesn't have security features registered\n");
return -1;
}
/* Set IPsec parameters in conf */
set_ipsec_conf(sa, &(sess_conf.ipsec));
/* Save SA as userdata for the security session. When
* the packet is received, this userdata will be
* retrieved using the metadata from the packet.
*
* The PMD is expected to set similar metadata for other
* operations, like rte_eth_event, which are tied to
* security session. In such cases, the userdata could
* be obtained to uniquely identify the security
* parameters denoted.
*/
sess_conf.userdata = (void *) sa;
ips->security.ses = rte_security_session_create(sec_ctx,
&sess_conf, skt_ctx->session_pool);
if (ips->security.ses == NULL) {
RTE_LOG(ERR, IPSEC,
"SEC Session init failed: err: %d\n", ret);
return -1;
}
sec_cap = rte_security_capabilities_get(sec_ctx);
if (sec_cap == NULL) {
RTE_LOG(ERR, IPSEC,
"No capabilities registered\n");
return -1;
}
/* iterate until ESP tunnel*/
while (sec_cap->action !=
if (sec_cap->action == ips->type &&
sec_cap->protocol ==
sec_cap->ipsec.mode ==
sess_conf.ipsec.mode &&
sec_cap->ipsec.direction == sa->direction)
break;
sec_cap++;
}
RTE_LOG(ERR, IPSEC,
"No suitable security capability found\n");
return -1;
}
ips->security.ol_flags = sec_cap->ol_flags;
ips->security.ctx = sec_ctx;
}
return 0;
}
int
create_ipsec_esp_flow(struct ipsec_sa *sa)
{
int ret = 0;
struct rte_flow_error err = {};
if (sa->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
RTE_LOG(ERR, IPSEC,
"No Flow director rule for Egress traffic\n");
return -1;
}
if (sa->flags == TRANSPORT) {
RTE_LOG(ERR, IPSEC,
"No Flow director rule for transport mode\n");
return -1;
}
sa->action[0].type = RTE_FLOW_ACTION_TYPE_QUEUE;
sa->pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
sa->action[0].conf = &(struct rte_flow_action_queue) {
.index = sa->fdir_qid,
};
sa->attr.egress = 0;
sa->attr.ingress = 1;
if (IS_IP6(sa->flags)) {
sa->pattern[1].mask = &rte_flow_item_ipv6_mask;
sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV6;
sa->pattern[1].spec = &sa->ipv6_spec;
memcpy(sa->ipv6_spec.hdr.dst_addr,
sa->dst.ip.ip6.ip6_b, sizeof(sa->dst.ip.ip6.ip6_b));
memcpy(sa->ipv6_spec.hdr.src_addr,
sa->src.ip.ip6.ip6_b, sizeof(sa->src.ip.ip6.ip6_b));
sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_ESP;
sa->pattern[2].spec = &sa->esp_spec;
sa->pattern[2].mask = &rte_flow_item_esp_mask;
sa->esp_spec.hdr.spi = rte_cpu_to_be_32(sa->spi);
sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_END;
} else if (IS_IP4(sa->flags)) {
sa->pattern[1].mask = &rte_flow_item_ipv4_mask;
sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV4;
sa->pattern[1].spec = &sa->ipv4_spec;
sa->ipv4_spec.hdr.dst_addr = sa->dst.ip.ip4;
sa->ipv4_spec.hdr.src_addr = sa->src.ip.ip4;
sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_ESP;
sa->pattern[2].spec = &sa->esp_spec;
sa->pattern[2].mask = &rte_flow_item_esp_mask;
sa->esp_spec.hdr.spi = rte_cpu_to_be_32(sa->spi);
sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_END;
}
sa->action[1].type = RTE_FLOW_ACTION_TYPE_END;
ret = rte_flow_validate(sa->portid, &sa->attr, sa->pattern, sa->action,
&err);
if (ret < 0) {
RTE_LOG(ERR, IPSEC, "Flow validation failed %s\n", err.message);
return ret;
}
sa->flow = rte_flow_create(sa->portid, &sa->attr, sa->pattern,
sa->action, &err);
if (!sa->flow) {
RTE_LOG(ERR, IPSEC, "Flow creation failed %s\n", err.message);
return -1;
}
return 0;
}
/*
* queue crypto-ops into PMD queue.
*/
void
enqueue_cop_burst(struct cdev_qp *cqp)
{
uint32_t i, len, ret;
len = cqp->len;
ret = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp, cqp->buf, len);
if (ret < len) {
RTE_LOG_DP(DEBUG, IPSEC, "Cryptodev %u queue %u:"
" enqueued %u crypto ops out of %u\n",
cqp->id, cqp->qp, ret, len);
/* drop packets that we fail to enqueue */
for (i = ret; i < len; i++)
free_pkts(&cqp->buf[i]->sym->m_src, 1);
}
cqp->in_flight += ret;
cqp->len = 0;
}
static inline void
enqueue_cop(struct cdev_qp *cqp, struct rte_crypto_op *cop)
{
cqp->buf[cqp->len++] = cop;
if (cqp->len == MAX_PKT_BURST)
enqueue_cop_burst(cqp);
}
static inline void
ipsec_enqueue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
struct rte_mbuf *pkts[], void *sas[],
uint16_t nb_pkts)
{
int32_t ret = 0, i;
struct ipsec_mbuf_metadata *priv;
struct rte_crypto_sym_op *sym_cop;
struct ipsec_sa *sa;
struct rte_ipsec_session *ips;
for (i = 0; i < nb_pkts; i++) {
if (unlikely(sas[i] == NULL)) {
free_pkts(&pkts[i], 1);
continue;
}
rte_prefetch0(sas[i]);
rte_prefetch0(pkts[i]);
priv = get_priv(pkts[i]);
sa = ipsec_mask_saptr(sas[i]);
priv->sa = sa;
ips = ipsec_get_primary_session(sa);
switch (ips->type) {
priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
rte_prefetch0(&priv->sym_cop);
if (unlikely(ips->security.ses == NULL)) {
free_pkts(&pkts[i], 1);
continue;
}
if (unlikely((pkts[i]->packet_type &
MBUF_PTYPE_TUNNEL_ESP_IN_UDP &&
sa->udp_encap != 1)) {
free_pkts(&pkts[i], 1);
continue;
}
sym_cop = get_sym_cop(&priv->cop);
sym_cop->m_src = pkts[i];
ips->security.ses);
break;
RTE_LOG(ERR, IPSEC, "CPU crypto is not supported by the"
" legacy mode.");
free_pkts(&pkts[i], 1);
continue;
priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
rte_prefetch0(&priv->sym_cop);
if (unlikely(ips->crypto.ses == NULL)) {
free_pkts(&pkts[i], 1);
continue;
}
ips->crypto.ses);
ret = xform_func(pkts[i], sa, &priv->cop);
if (unlikely(ret)) {
free_pkts(&pkts[i], 1);
continue;
}
break;
RTE_ASSERT(ips->security.ses != NULL);
ipsec_ctx->ol_pkts[ipsec_ctx->ol_pkts_cnt++] = pkts[i];
if (ips->security.ol_flags &
ips->security.ctx, ips->security.ses,
pkts[i], NULL);
continue;
RTE_ASSERT(ips->security.ses != NULL);
priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
rte_prefetch0(&priv->sym_cop);
ips->security.ses);
ret = xform_func(pkts[i], sa, &priv->cop);
if (unlikely(ret)) {
free_pkts(&pkts[i], 1);
continue;
}
ipsec_ctx->ol_pkts[ipsec_ctx->ol_pkts_cnt++] = pkts[i];
if (ips->security.ol_flags &
ips->security.ctx, ips->security.ses,
pkts[i], NULL);
continue;
}
RTE_ASSERT(sa->cqp[ipsec_ctx->lcore_id] != NULL);
enqueue_cop(sa->cqp[ipsec_ctx->lcore_id], &priv->cop);
}
}
static inline int32_t
ipsec_inline_dequeue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
struct rte_mbuf *pkts[], uint16_t max_pkts)
{
int32_t nb_pkts, ret;
struct ipsec_mbuf_metadata *priv;
struct ipsec_sa *sa;
struct rte_mbuf *pkt;
nb_pkts = 0;
while (ipsec_ctx->ol_pkts_cnt > 0 && nb_pkts < max_pkts) {
pkt = ipsec_ctx->ol_pkts[--ipsec_ctx->ol_pkts_cnt];
priv = get_priv(pkt);
sa = priv->sa;
ret = xform_func(pkt, sa, &priv->cop);
if (unlikely(ret)) {
free_pkts(&pkt, 1);
continue;
}
pkts[nb_pkts++] = pkt;
}
return nb_pkts;
}
static inline int
ipsec_dequeue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
struct rte_mbuf *pkts[], uint16_t max_pkts)
{
int32_t nb_pkts = 0, ret = 0, i, j, nb_cops;
struct ipsec_mbuf_metadata *priv;
struct rte_crypto_op *cops[max_pkts];
struct ipsec_sa *sa;
struct rte_mbuf *pkt;
for (i = 0; i < ipsec_ctx->nb_qps && nb_pkts < max_pkts; i++) {
struct cdev_qp *cqp;
cqp = &ipsec_ctx->tbl[ipsec_ctx->last_qp++];
if (ipsec_ctx->last_qp == ipsec_ctx->nb_qps)
ipsec_ctx->last_qp %= ipsec_ctx->nb_qps;
if (cqp->in_flight == 0)
continue;
nb_cops = rte_cryptodev_dequeue_burst(cqp->id, cqp->qp,
cops, max_pkts - nb_pkts);
cqp->in_flight -= nb_cops;
for (j = 0; j < nb_cops; j++) {
pkt = cops[j]->sym->m_src;
priv = get_priv(pkt);
sa = priv->sa;
RTE_ASSERT(sa != NULL);
if (ipsec_get_action_type(sa) ==
ret = xform_func(pkt, sa, cops[j]);
if (unlikely(ret)) {
free_pkts(&pkt, 1);
continue;
}
} else if (ipsec_get_action_type(sa) ==
if (cops[j]->status) {
free_pkts(&pkt, 1);
continue;
}
}
pkts[nb_pkts++] = pkt;
}
}
/* return packets */
return nb_pkts;
}
uint16_t
ipsec_inbound(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
uint16_t nb_pkts, uint16_t len)
{
void *sas[nb_pkts];
inbound_sa_lookup(ctx->sa_ctx, pkts, sas, nb_pkts);
ipsec_enqueue(esp_inbound, ctx, pkts, sas, nb_pkts);
return ipsec_inline_dequeue(esp_inbound_post, ctx, pkts, len);
}
uint16_t
ipsec_inbound_cqp_dequeue(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
uint16_t len)
{
return ipsec_dequeue(esp_inbound_post, ctx, pkts, len);
}
uint16_t
ipsec_outbound(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
uint32_t sa_idx[], uint16_t nb_pkts, uint16_t len)
{
void *sas[nb_pkts];
outbound_sa_lookup(ctx->sa_ctx, sa_idx, sas, nb_pkts);
ipsec_enqueue(esp_outbound, ctx, pkts, sas, nb_pkts);
return ipsec_inline_dequeue(esp_outbound_post, ctx, pkts, len);
}
uint16_t
ipsec_outbound_cqp_dequeue(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
uint16_t len)
{
return ipsec_dequeue(esp_outbound_post, ctx, pkts, len);
}
#define unlikely(x)
static rte_be32_t rte_cpu_to_be_32(uint32_t x)
static rte_be16_t rte_cpu_to_be_16(uint16_t x)
static int rte_crypto_op_attach_sym_session(struct rte_crypto_op *op, void *sess)
Definition: rte_crypto.h:433
rte_crypto_op_sess_type
Definition: rte_crypto.h:62
@ RTE_CRYPTO_OP_SECURITY_SESSION
Definition: rte_crypto.h:65
rte_crypto_op_type
Definition: rte_crypto.h:29
@ RTE_CRYPTO_OP_TYPE_SYMMETRIC
Definition: rte_crypto.h:32
@ RTE_CRYPTO_OP_STATUS_NOT_PROCESSED
Definition: rte_crypto.h:42
static uint16_t rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_crypto_op **ops, uint16_t nb_ops)
static uint16_t rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_crypto_op **ops, uint16_t nb_ops)
#define RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO
void * rte_cryptodev_sym_session_create(uint8_t dev_id, struct rte_crypto_sym_xform *xforms, struct rte_mempool *mp)
void * rte_cryptodev_get_sec_ctx(uint8_t dev_id)
__rte_experimental int rte_cryptodev_session_event_mdata_set(uint8_t dev_id, void *sess, enum rte_crypto_op_type op_type, enum rte_crypto_op_sess_type sess_type, void *ev_mdata, uint16_t size)
void rte_cryptodev_info_get(uint8_t dev_id, struct rte_cryptodev_info *dev_info)
int rte_eth_dev_rss_hash_conf_get(uint16_t port_id, struct rte_eth_rss_conf *rss_conf)
int rte_eth_dev_info_get(uint16_t port_id, struct rte_eth_dev_info *dev_info)
void * rte_eth_dev_get_sec_ctx(uint16_t port_id)
#define RTE_EVENT_OP_NEW
int rte_flow_validate(uint16_t port_id, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error)
@ RTE_FLOW_ACTION_TYPE_PASSTHRU
Definition: rte_flow.h:2155
@ RTE_FLOW_ACTION_TYPE_RSS
Definition: rte_flow.h:2224
@ RTE_FLOW_ACTION_TYPE_QUEUE
Definition: rte_flow.h:2195
@ RTE_FLOW_ACTION_TYPE_END
Definition: rte_flow.h:2139
@ RTE_FLOW_ACTION_TYPE_SECURITY
Definition: rte_flow.h:2275
static const struct rte_flow_item_ipv6 rte_flow_item_ipv6_mask
Definition: rte_flow.h:878
static const struct rte_flow_item_udp rte_flow_item_udp_mask
Definition: rte_flow.h:920
static const struct rte_flow_item_ipv4 rte_flow_item_ipv4_mask
Definition: rte_flow.h:837
static const struct rte_flow_item_esp rte_flow_item_esp_mask
Definition: rte_flow.h:1173
struct rte_flow * rte_flow_create(uint16_t port_id, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error)
@ RTE_FLOW_ITEM_TYPE_IPV4
Definition: rte_flow.h:215
@ RTE_FLOW_ITEM_TYPE_ESP
Definition: rte_flow.h:331
@ RTE_FLOW_ITEM_TYPE_END
Definition: rte_flow.h:145
@ RTE_FLOW_ITEM_TYPE_ETH
Definition: rte_flow.h:201
@ RTE_FLOW_ITEM_TYPE_UDP
Definition: rte_flow.h:236
@ RTE_FLOW_ITEM_TYPE_IPV6
Definition: rte_flow.h:222
int rte_hash_lookup_data(const struct rte_hash *h, const void *key, void **data)
#define RTE_LCORE_FOREACH(i)
Definition: rte_lcore.h:218
#define RTE_LOG(l, t,...)
Definition: rte_log.h:335
#define RTE_LOG_DP(l, t,...)
Definition: rte_log.h:359
#define RTE_PTYPE_TUNNEL_MASK
#define RTE_PTYPE_L4_MASK
static void rte_prefetch0(const volatile void *p)
@ RTE_SECURITY_PROTOCOL_IPSEC
Definition: rte_security.h:647
const struct rte_security_capability * rte_security_capabilities_get(struct rte_security_ctx *instance)
@ RTE_SECURITY_IPSEC_SA_PROTO_ESP
Definition: rte_security.h:40
void * rte_security_session_create(struct rte_security_ctx *instance, struct rte_security_session_conf *conf, struct rte_mempool *mp)
@ RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO
Definition: rte_security.h:637
@ RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL
Definition: rte_security.h:629
@ RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL
Definition: rte_security.h:633
@ RTE_SECURITY_ACTION_TYPE_NONE
Definition: rte_security.h:623
@ RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO
Definition: rte_security.h:625
static int rte_security_attach_session(struct rte_crypto_op *op, void *sess)
Definition: rte_security.h:958
@ RTE_SECURITY_IPSEC_SA_DIR_INGRESS
Definition: rte_security.h:292
@ RTE_SECURITY_IPSEC_SA_DIR_EGRESS
Definition: rte_security.h:290
@ RTE_SECURITY_IPSEC_SA_MODE_TUNNEL
Definition: rte_security.h:32
@ RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT
Definition: rte_security.h:30
static int rte_security_set_pkt_metadata(struct rte_security_ctx *instance, void *sess, struct rte_mbuf *mb, void *params)
Definition: rte_security.h:919
#define RTE_SECURITY_TX_OLOAD_NEED_MDATA
#define RTE_SECURITY_TX_HW_TRAILER_OFFLOAD
@ RTE_SECURITY_IPSEC_TUNNEL_IPV6
Definition: rte_security.h:48
@ RTE_SECURITY_IPSEC_TUNNEL_IPV4
Definition: rte_security.h:46
struct rte_crypto_sym_op sym[0]
Definition: rte_crypto.h:135
struct rte_mbuf * m_src
rte_be32_t spi
Definition: rte_esp.h:24
uint8_t * rss_key
Definition: rte_ethdev.h:464
uint8_t rss_key_len
Definition: rte_ethdev.h:465
uint64_t rss_hf
Definition: rte_ethdev.h:466
const uint16_t * queue
Definition: rte_flow.h:2940
const char * message
Definition: rte_flow.h:3764
struct rte_esp_hdr hdr
Definition: rte_flow.h:1168
struct rte_ipsec_sa * sa
Definition: rte_ipsec.h:64
enum rte_security_session_action_type type
Definition: rte_ipsec.h:66
enum rte_security_session_action_type action
enum rte_security_ipsec_sa_direction direction
struct rte_security_capability::@352::@354 ipsec
enum rte_security_session_protocol protocol
enum rte_security_ipsec_sa_mode mode
struct rte_security_ipsec_tunnel_param::@332::@335 ipv6
enum rte_security_ipsec_tunnel_type type
Definition: rte_security.h:96
struct rte_security_ipsec_tunnel_param::@332::@334 ipv4
struct rte_security_ipsec_tunnel_param tunnel
Definition: rte_security.h:338
struct rte_security_ipsec_sa_options options
Definition: rte_security.h:330
enum rte_security_ipsec_sa_mode mode
Definition: rte_security.h:336
struct rte_security_ipsec_udp_param udp
Definition: rte_security.h:354
union rte_security_ipsec_xform::@336 esn
enum rte_security_session_action_type action_type
Definition: rte_security.h:663