Next: Incomplete Lines, Previous: What Comparison Means, Up: Comparing and Merging Files [Contents][Index]
diff
Output Formatsdiff
has several mutually exclusive options for output format.
The following sections describe each format, illustrating how
diff
reports the differences between two sample input files.
Next: Showing Differences in Their Context, Up: diff
Output Formats [Contents][Index]
Here are two sample files that we will use in numerous examples to
illustrate the output of diff
and how various options can change
it.
This is the file lao:
The Way that can be told of is not the eternal Way; The name that can be named is not the eternal name. The Nameless is the origin of Heaven and Earth; The Named is the mother of all things. Therefore let there always be non-being, so we may see their subtlety, And let there always be being, so we may see their outcome. The two are the same, But after they are produced, they have different names.
This is the file tzu:
The Nameless is the origin of Heaven and Earth; The named is the mother of all things. Therefore let there always be non-being, so we may see their subtlety, And let there always be being, so we may see their outcome. The two are the same, But after they are produced, they have different names. They both may be called deep and profound. Deeper and more profound, The door of all subtleties!
In this example, the first hunk contains just the first two lines of lao, the second hunk contains the fourth line of lao opposing the second and third lines of tzu, and the last hunk contains just the last three lines of tzu.
Next: Showing Differences Side by Side, Previous: Two Sample Input Files, Up: diff
Output Formats [Contents][Index]
Usually, when you are looking at the differences between files, you will also want to see the parts of the files near the lines that differ, to help you understand exactly what has changed. These nearby parts of the files are called the context.
GNU diff
provides two output formats that show context
around the differing lines: context format and unified
format. It can optionally show in which function or section of the
file the differing lines are found.
If you are distributing new versions of files to other people in the
form of diff
output, you should use one of the output formats
that show context so that they can apply the diffs even if they have
made small changes of their own to the files. patch
can apply
the diffs in this case by searching in the files for the lines of
context around the differing lines; if those lines are actually a few
lines away from where the diff says they are, patch
can adjust
the line numbers accordingly and still apply the diff correctly.
See Applying Imperfect Patches, for more information on using patch
to apply
imperfect diffs.
Next: Unified Format, Up: Showing Differences in Their Context [Contents][Index]
The context output format shows several lines of context around the lines that differ. It is the standard format for distributing updates to source code.
To select this output format, use the
--context[=lines] (-C lines)
or -c option. The
argument lines that some of these options take is the number of
lines of context to show. If you do not specify lines, it
defaults to three. For proper operation, patch
typically needs
at least two lines of context.
Here is the output of ‘diff -c lao tzu’ (see Two Sample Input Files, for the complete contents of the two files). Notice that up to three lines that are not different are shown around each line that is different; they are the context lines. Also notice that the first two hunks have run together, because their contents overlap.
*** lao 2002-02-21 23:30:39.942229878 -0800 --- tzu 2002-02-21 23:30:50.442260588 -0800 *************** *** 1,7 **** - The Way that can be told of is not the eternal Way; - The name that can be named is not the eternal name. The Nameless is the origin of Heaven and Earth; ! The Named is the mother of all things. Therefore let there always be non-being, so we may see their subtlety, And let there always be being, --- 1,6 ---- The Nameless is the origin of Heaven and Earth; ! The named is the mother of all things. ! Therefore let there always be non-being, so we may see their subtlety, And let there always be being, *************** *** 9,11 **** --- 8,13 ---- The two are the same, But after they are produced, they have different names. + They both may be called deep and profound. + Deeper and more profound, + The door of all subtleties!
Next: Detailed Description of Context Format, Previous: An Example of Context Format, Up: Context Format [Contents][Index]
Here is the output of ‘diff -C 1 lao tzu’ (see Two Sample Input Files, for the complete contents of the two files). Notice that at most one context line is reported here.
*** lao 2002-02-21 23:30:39.942229878 -0800 --- tzu 2002-02-21 23:30:50.442260588 -0800 *************** *** 1,5 **** - The Way that can be told of is not the eternal Way; - The name that can be named is not the eternal name. The Nameless is the origin of Heaven and Earth; ! The Named is the mother of all things. Therefore let there always be non-being, --- 1,4 ---- The Nameless is the origin of Heaven and Earth; ! The named is the mother of all things. ! Therefore let there always be non-being, *************** *** 11 **** --- 10,13 ---- they have different names. + They both may be called deep and profound. + Deeper and more profound, + The door of all subtleties!
Previous: An Example of Context Format with Less Context, Up: Context Format [Contents][Index]
The context output format starts with a two-line header, which looks like this:
*** from-file from-file-modification-time --- to-file to-file-modification time
The timestamp normally looks like ‘2002-02-21 23:30:39.942229878
-0800’ to indicate the date, time with fractional seconds, and time
zone in Internet RFC
2822 format. (The fractional seconds are omitted on hosts that do
not support fractional timestamps.) However, a traditional timestamp
like ‘Thu Feb 21 23:30:39 2002’ is used if the
LC_TIME
locale category is either ‘C’ or ‘POSIX’.
You can change the header’s content with the --label=label option; see Showing Alternate File Names.
Next come one or more hunks of differences; each hunk shows one area where the files differ. Context format hunks look like this:
*************** *** from-file-line-numbers **** from-file-line from-file-line… --- to-file-line-numbers ---- to-file-line to-file-line…
If a hunk contains two or more lines, its line numbers look like ‘start,end’. Otherwise only its end line number appears. An empty hunk is considered to end at the line that precedes the hunk.
The lines of context around the lines that differ start with two space characters. The lines that differ between the two files start with one of the following indicator characters, followed by a space character:
A line that is part of a group of one or more lines that changed between the two files. There is a corresponding group of lines marked with ‘!’ in the part of this hunk for the other file.
An “inserted” line in the second file that corresponds to nothing in the first file.
A “deleted” line in the first file that corresponds to nothing in the second file.
If all of the changes in a hunk are insertions, the lines of from-file are omitted. If all of the changes are deletions, the lines of to-file are omitted.
Next: Showing Which Sections Differences Are in, Previous: Context Format, Up: Showing Differences in Their Context [Contents][Index]
The unified output format is a variation on the context format that is more compact because it omits redundant context lines. To select this output format, use the --unified[=lines] (-U lines), or -u option. The argument lines is the number of lines of context to show. When it is not given, it defaults to three.
In the early 1990s, only GNU diff
could produce this format and
only GNU patch
could automatically apply diffs in this
format. For proper operation, patch
typically needs at
least three lines of context.
Next: Detailed Description of Unified Format, Up: Unified Format [Contents][Index]
Here is the output of the command ‘diff -u lao tzu’ (see Two Sample Input Files, for the complete contents of the two files):
--- lao 2002-02-21 23:30:39.942229878 -0800 +++ tzu 2002-02-21 23:30:50.442260588 -0800 @@ -1,7 +1,6 @@ -The Way that can be told of is not the eternal Way; -The name that can be named is not the eternal name. The Nameless is the origin of Heaven and Earth; -The Named is the mother of all things. +The named is the mother of all things. + Therefore let there always be non-being, so we may see their subtlety, And let there always be being, @@ -9,3 +8,6 @@ The two are the same, But after they are produced, they have different names. +They both may be called deep and profound. +Deeper and more profound, +The door of all subtleties!
Previous: An Example of Unified Format, Up: Unified Format [Contents][Index]
The unified output format starts with a two-line header, which looks like this:
--- from-file from-file-modification-time +++ to-file to-file-modification-time
The timestamp looks like ‘2002-02-21 23:30:39.942229878 -0800’ to indicate the date, time with fractional seconds, and time zone. The fractional seconds are omitted on hosts that do not support fractional timestamps.
You can change the header’s content with the --label=label option. See Showing Alternate File Names.
Next come one or more hunks of differences; each hunk shows one area where the files differ. Unified format hunks look like this:
@@ from-file-line-numbers to-file-line-numbers @@ line-from-either-file line-from-either-file…
If a hunk contains just one line, only its start line number appears. Otherwise its line numbers look like ‘start,count’. An empty hunk is considered to start at the line that follows the hunk.
If a hunk and its context contain two or more lines, its line numbers look like ‘start,count’. Otherwise only its end line number appears. An empty hunk is considered to end at the line that precedes the hunk.
The lines common to both files begin with a space character. The lines that actually differ between the two files have one of the following indicator characters in the left print column:
A line was added here to the first file.
A line was removed here from the first file.
Next: Showing Alternate File Names, Previous: Unified Format, Up: Showing Differences in Their Context [Contents][Index]
Sometimes you might want to know which part of the files each change
falls in. If the files are source code, this could mean which
function was changed. If the files are documents, it could mean which
chapter or appendix was changed. GNU diff
can
show this by displaying the nearest section heading line that precedes
the differing lines. Which lines are “section headings” is
determined by a regular expression.
To show in which sections differences occur for files that are not
source code for C or similar languages, use the
--show-function-line=regexp (-F regexp) option.
diff
considers lines that match the grep
-style regular expression
regexp to be the beginning
of a section of the file. Here are suggested regular expressions for
some common languages:
C, C++, Prolog
Lisp
Texinfo
This option does not automatically select an output format; in order to use it, you must select the context format (see Context Format) or unified format (see Unified Format). In other output formats it has no effect.
The --show-function-line (-F) option finds the nearest
unchanged line that precedes each hunk of differences and matches the
given regular expression. Then it adds that line to the end of the
line of asterisks in the context format, or to the ‘@@’ line in
unified format. If no matching line exists, this option leaves the output for
that hunk unchanged. If that line is more than 40 characters long, it
outputs only the first 40 characters. You can specify more than one
regular expression for such lines; diff
tries to match each line
against each regular expression, starting with the last one given. This
means that you can use -p and -F together, if you wish.
Previous: Showing Lines That Match Regular Expressions, Up: Showing Which Sections Differences Are in [Contents][Index]
To show in which functions differences occur for C and similar languages, you can use the --show-c-function (-p) option. This option automatically defaults to the context output format (see Context Format), with the default number of lines of context. You can override that number with -C lines elsewhere in the command line. You can override both the format and the number with -U lines elsewhere in the command line.
The --show-c-function (-p) option is equivalent to
-F '^[[:alpha:]$_]' if the unified format is specified, otherwise
-c -F '^[[:alpha:]$_]' (see Showing Lines That Match Regular Expressions). GNU
diff
provides this option for the sake of convenience.
Previous: Showing Which Sections Differences Are in, Up: Showing Differences in Their Context [Contents][Index]
If you are comparing two files that have meaningless or uninformative
names, you might want diff
to show alternate names in the header
of the context and unified output formats. To do this, use the
--label=label option. The first time
you give this option, its argument replaces the name and date of the
first file in the header; the second time, its argument replaces the
name and date of the second file. If you give this option more than
twice, diff
reports an error. The --label option does not
affect the file names in the pr
header when the -l or
--paginate option is used (see Paginating diff
Output).
Here are the first two lines of the output from ‘diff -C 2 --label=original --label=modified lao tzu’:
*** original --- modified
Next: Showing Differences Without Context, Previous: Showing Differences in Their Context, Up: diff
Output Formats [Contents][Index]
diff
can produce a side by side difference listing of two files.
The files are listed in two columns with a gutter between them. The
gutter contains one of the following markers:
The corresponding lines are in common. That is, either the lines are identical, or the difference is ignored because of one of the --ignore options (see Suppressing Differences in Blank and Tab Spacing).
The corresponding lines differ, and they are either both complete or both incomplete.
The files differ and only the first file contains the line.
The files differ and only the second file contains the line.
Only the first file contains the line, but the difference is ignored.
Only the second file contains the line, but the difference is ignored.
The corresponding lines differ, and only the first line is incomplete.
The corresponding lines differ, and only the second line is incomplete.
Normally, an output line is incomplete if and only if the lines that it contains are incomplete. See Incomplete Lines. However, when an output line represents two differing lines, one might be incomplete while the other is not. In this case, the output line is complete, but its the gutter is marked ‘\’ if the first line is incomplete, ‘/’ if the second line is.
Side by side format is sometimes easiest to read, but it has limitations. It generates much wider output than usual, and truncates lines that are too long to fit. Also, it relies on lining up output more heavily than usual, so its output looks particularly bad if you use varying width fonts, nonstandard tab stops, or nonprinting characters.
You can use the sdiff
command to interactively merge side by side
differences. See Interactive Merging with sdiff
, for more information on merging files.
The --side-by-side (-y) option selects side by side format. Because side by side output lines contain two input lines, the output is wider than usual: normally 130 print columns, which can fit onto a traditional printer line. You can set the width of the output with the --width=columns (-W columns) option. The output is split into two halves of equal width, separated by a small gutter to mark differences; the right half is aligned to a tab stop so that tabs line up. Input lines that are too long to fit in half of an output line are truncated for output.
The --left-column option prints only the left column of two common lines. The --suppress-common-lines option suppresses common lines entirely.
Previous: Controlling Side by Side Format, Up: Showing Differences Side by Side [Contents][Index]
Here is the output of the command ‘diff -y -W 72 lao tzu’ (see Two Sample Input Files, for the complete contents of the two files).
The Way that can be told of is n < The name that can be named is no < The Nameless is the origin of He The Nameless is the origin of He The Named is the mother of all t | The named is the mother of all t > Therefore let there always be no Therefore let there always be no so we may see their subtlety, so we may see their subtlety, And let there always be being, And let there always be being, so we may see their outcome. so we may see their outcome. The two are the same, The two are the same, But after they are produced, But after they are produced, they have different names. they have different names. > They both may be called deep and > Deeper and more profound, > The door of all subtleties!
Next: Making Edit Scripts, Previous: Showing Differences Side by Side, Up: diff
Output Formats [Contents][Index]
The “normal” diff
output format shows each hunk of differences
without any surrounding context. Sometimes such output is the clearest
way to see how lines have changed, without the clutter of nearby
unchanged lines (although you can get similar results with the context
or unified formats by using 0 lines of context). However, this format
is no longer widely used for sending out patches; for that purpose, the
context format (see Context Format) and the unified format
(see Unified Format) are superior. Normal format is the default for
compatibility with older versions of diff
and the POSIX
standard. Use the --normal option to select this output
format explicitly.
Next: Detailed Description of Normal Format, Up: Showing Differences Without Context [Contents][Index]
Here is the output of the command ‘diff lao tzu’ (see Two Sample Input Files, for the complete contents of the two files). Notice that it shows only the lines that are different between the two files.
1,2d0 < The Way that can be told of is not the eternal Way; < The name that can be named is not the eternal name. 4c2,3 < The Named is the mother of all things. --- > The named is the mother of all things. > 11a11,13 > They both may be called deep and profound. > Deeper and more profound, > The door of all subtleties!
Previous: An Example of Normal Format, Up: Showing Differences Without Context [Contents][Index]
The normal output format consists of one or more hunks of differences; each hunk shows one area where the files differ. Normal format hunks look like this:
change-command < from-file-line < from-file-line… --- > to-file-line > to-file-line…
There are three types of change commands. Each consists of a line number or comma-separated range of lines in the first file, a single character indicating the kind of change to make, and a line number or comma-separated range of lines in the second file. All line numbers are the original line numbers in each file. The types of change commands are:
Add the lines in range r of the second file after line l of the first file. For example, ‘8a12,15’ means append lines 12–15 of file 2 after line 8 of file 1; or, if changing file 2 into file 1, delete lines 12–15 of file 2.
Replace the lines in range f of the first file with lines in range t of the second file. This is like a combined add and delete, but more compact. For example, ‘5,7c8,10’ means change lines 5–7 of file 1 to read as lines 8–10 of file 2; or, if changing file 2 into file 1, change lines 8–10 of file 2 to read as lines 5–7 of file 1.
Delete the lines in range r from the first file; line l is where they would have appeared in the second file had they not been deleted. For example, ‘5,7d3’ means delete lines 5–7 of file 1; or, if changing file 2 into file 1, append lines 5–7 of file 1 after line 3 of file 2.
Next: Merging Files with If-then-else, Previous: Showing Differences Without Context, Up: diff
Output Formats [Contents][Index]
Several output modes produce command scripts for editing from-file to produce to-file.
Next: Forward ed
Scripts, Up: Making Edit Scripts [Contents][Index]
ed
Scriptsdiff
can produce commands that direct the ed
text editor
to change the first file into the second file. Long ago, this was the
only output mode that was suitable for editing one file into another
automatically; today, with patch
, it is almost obsolete. Use the
--ed (-e) option to select this output format.
Like the normal format (see Showing Differences Without Context), this output format does not show any context; unlike the normal format, it does not include the information necessary to apply the diff in reverse (to produce the first file if all you have is the second file and the diff).
If the file d contains the output of ‘diff -e old new’, then the command ‘(cat d && echo w) | ed - old’ edits old to make it a copy of new. More generally, if d1, d2, …, dN contain the outputs of ‘diff -e old new1’, ‘diff -e new1 new2’, …, ‘diff -e newN-1 newN’, respectively, then the command ‘(cat d1 d2 … dN && echo w) | ed - old’ edits old to make it a copy of newN.
Next: Detailed Description of ed
Format, Up: ed
Scripts [Contents][Index]
ed
ScriptHere is the output of ‘diff -e lao tzu’ (see Two Sample Input Files, for the complete contents of the two files):
11a They both may be called deep and profound. Deeper and more profound, The door of all subtleties! . 4c The named is the mother of all things. . 1,2d
Previous: Example ed
Script, Up: ed
Scripts [Contents][Index]
ed
FormatThe ed
output format consists of one or more hunks of
differences. The changes closest to the ends of the files come first so
that commands that change the number of lines do not affect how
ed
interprets line numbers in succeeding commands. ed
format hunks look like this:
change-command to-file-line to-file-line… .
Because ed
uses a single period on a line to indicate the
end of input, GNU diff
protects lines of changes
that contain a single period on a line by writing two periods instead,
then writing a subsequent ed
command to change the two
periods into one. The ed
format cannot represent an
incomplete line, so if the second file ends in a changed incomplete
line, diff
reports an error and then pretends that a newline
was appended.
There are three types of change commands. Each consists of a line number or comma-separated range of lines in the first file and a single character indicating the kind of change to make. All line numbers are the original line numbers in the file. The types of change commands are:
Add text from the second file after line l in the first file. For example, ‘8a’ means to add the following lines after line 8 of file 1.
Replace the lines in range r in the first file with the following lines. Like a combined add and delete, but more compact. For example, ‘5,7c’ means change lines 5–7 of file 1 to read as the text file 2.
Delete the lines in range r from the first file. For example, ‘5,7d’ means delete lines 5–7 of file 1.
Next: RCS Scripts, Previous: ed
Scripts, Up: Making Edit Scripts [Contents][Index]
ed
Scriptsdiff
can produce output that is like an ed
script, but
with hunks in forward (front to back) order. The format of the commands
is also changed slightly: command characters precede the lines they
modify, spaces separate line numbers in ranges, and no attempt is made
to disambiguate hunk lines consisting of a single period. Like
ed
format, forward ed
format cannot represent incomplete
lines.
Forward ed
format is not very useful, because neither ed
nor patch
can apply diffs in this format. It exists mainly for
compatibility with older versions of diff
. Use the -f or
--forward-ed option to select it.
Previous: Forward ed
Scripts, Up: Making Edit Scripts [Contents][Index]
The RCS output format is designed specifically for use by
the Revision Control System, which is a set of free programs used for
organizing different versions and systems of files. Use the
--rcs (-n) option to select this output format. It
is like the forward ed
format (see Forward ed
Scripts), but it
can represent arbitrary changes to the contents of a file because it
avoids the forward ed
format’s problems with lines
consisting of a single period and with incomplete lines. Instead of
ending text sections with a line consisting of a single period, each
command specifies the number of lines it affects; a combination of the
‘a’ and ‘d’ commands are used instead of ‘c’. Also, if
the second file ends in a changed incomplete line, then the output
also ends in an incomplete line.
Here is the output of ‘diff -n lao tzu’ (see Two Sample Input Files, for the complete contents of the two files):
d1 2 d4 1 a4 2 The named is the mother of all things. a11 3 They both may be called deep and profound. Deeper and more profound, The door of all subtleties!
Previous: Making Edit Scripts, Up: diff
Output Formats [Contents][Index]
You can use diff
to merge two files of C source code. The output
of diff
in this format contains all the lines of both files.
Lines common to both files are output just once; the differing parts are
separated by the C preprocessor directives #ifdef name
or
#ifndef name
, #else
, and #endif
. When
compiling the output, you select which version to use by either defining
or leaving undefined the macro name.
To merge two files, use diff
with the -D name or
--ifdef=name option. The argument name is the C
preprocessor identifier to use in the #ifdef
and #ifndef
directives.
For example, if you change an instance of wait (&s)
to
waitpid (-1, &s, 0)
and then merge the old and new files with
the --ifdef=HAVE_WAITPID option, then the affected part of your code
might look like this:
do { #ifndef HAVE_WAITPID if ((w = wait (&s)) < 0 && errno != EINTR) #else /* HAVE_WAITPID */ if ((w = waitpid (-1, &s, 0)) < 0 && errno != EINTR) #endif /* HAVE_WAITPID */ return w; } while (w != child);
You can specify formats for languages other than C by using line group formats and line formats, as described in the next sections.
Next: Line Formats, Up: Merging Files with If-then-else [Contents][Index]
Line group formats let you specify formats suitable for many applications that allow if-then-else input, including programming languages and text formatting languages. A line group format specifies the output format for a contiguous group of similar lines.
For example, the following command compares the TeX files old and new, and outputs a merged file in which old regions are surrounded by ‘\begin{em}’-‘\end{em}’ lines, and new regions are surrounded by ‘\begin{bf}’-‘\end{bf}’ lines.
diff \ --old-group-format='\begin{em} %<\end{em} ' \ --new-group-format='\begin{bf} %>\end{bf} ' \ old new
The following command is equivalent to the above example, but it is a little more verbose, because it spells out the default line group formats.
diff \ --old-group-format='\begin{em} %<\end{em} ' \ --new-group-format='\begin{bf} %>\end{bf} ' \ --unchanged-group-format='%=' \ --changed-group-format='\begin{em} %<\end{em} \begin{bf} %>\end{bf} ' \ old new
Here is a more advanced example, which outputs a diff listing with headers containing line numbers in a “plain English” style.
diff \ --unchanged-group-format='' \ --old-group-format='-------- %dn line%(n=1?:s) deleted at %df: %<' \ --new-group-format='-------- %dN line%(N=1?:s) added after %de: %>' \ --changed-group-format='-------- %dn line%(n=1?:s) changed at %df: %<-------- to: %>' \ old new
To specify a line group format, use diff
with one of the options
listed below. You can specify up to four line group formats, one for
each kind of line group. You should quote format, because it
typically contains shell metacharacters.
These line groups are hunks containing only lines from the first file. The default old group format is the same as the changed group format if it is specified; otherwise it is a format that outputs the line group as-is.
These line groups are hunks containing only lines from the second file. The default new group format is same as the changed group format if it is specified; otherwise it is a format that outputs the line group as-is.
These line groups are hunks containing lines from both files. The default changed group format is the concatenation of the old and new group formats.
These line groups contain lines common to both files. The default unchanged group format is a format that outputs the line group as-is.
In a line group format, ordinary characters represent themselves; conversion specifications start with ‘%’ and have one of the following forms.
stands for the lines from the first file, including the trailing newline. Each line is formatted according to the old line format (see Line Formats).
stands for the lines from the second file, including the trailing newline. Each line is formatted according to the new line format.
stands for the lines common to both files, including the trailing newline. Each line is formatted according to the unchanged line format.
stands for ‘%’.
where C is a single character, stands for C. C may not be a backslash or an apostrophe. For example, ‘%c':'’ stands for a colon, even inside the then-part of an if-then-else format, which a colon would normally terminate.
where O is a string of 1, 2, or 3 octal digits, stands for the character with octal code O. For example, ‘%c'\0'’ stands for a null character.
where F is a printf
conversion specification and n is one
of the following letters, stands for n’s value formatted with F.
The line number of the line just before the group in the old file.
The line number of the first line in the group in the old file; equals e + 1.
The line number of the last line in the group in the old file.
The line number of the line just after the group in the old file; equals l + 1.
The number of lines in the group in the old file; equals l - f + 1.
Likewise, for lines in the new file.
The printf
conversion specification can be ‘%d’,
‘%o’, ‘%x’, or ‘%X’, specifying decimal, octal,
lower case hexadecimal, or upper case hexadecimal output
respectively. After the ‘%’ the following options can appear in
sequence: a series of zero or more flags; an integer
specifying the minimum field width; and a period followed by an
optional integer specifying the minimum number of digits.
The flags are ‘-’ for left-justification, ‘'’ for separating
the digit into groups as specified by the LC_NUMERIC
locale category,
and ‘0’ for padding with zeros instead of spaces.
For example, ‘%5dN’ prints the number of new lines in the group
in a field of width 5 characters, using the printf
format "%5d"
.
If A equals B then T else E. A and B are each either a decimal constant or a single letter interpreted as above. This format spec is equivalent to T if A’s value equals B’s; otherwise it is equivalent to E.
For example, ‘%(N=0?no:%dN) line%(N=1?:s)’ is equivalent to ‘no lines’ if N (the number of lines in the group in the new file) is 0, to ‘1 line’ if N is 1, and to ‘%dN lines’ otherwise.
Next: An Example of If-then-else Format, Previous: Line Group Formats, Up: Merging Files with If-then-else [Contents][Index]
Line formats control how each line taken from an input file is output as part of a line group in if-then-else format.
For example, the following command outputs text with a one-character change indicator to the left of the text. The first character of output is ‘-’ for deleted lines, ‘|’ for added lines, and a space for unchanged lines. The formats contain newline characters where newlines are desired on output.
diff \ --old-line-format='-%l ' \ --new-line-format='|%l ' \ --unchanged-line-format=' %l ' \ old new
To specify a line format, use one of the following options. You should quote format, since it often contains shell metacharacters.
formats lines just from the first file.
formats lines just from the second file.
formats lines common to both files.
formats all lines; in effect, it sets all three above options simultaneously.
In a line format, ordinary characters represent themselves; conversion specifications start with ‘%’ and have one of the following forms.
stands for the contents of the line, not counting its trailing newline (if any). This format ignores whether the line is incomplete; See Incomplete Lines.
stands for the contents of the line, including its trailing newline (if any). If a line is incomplete, this format preserves its incompleteness.
stands for ‘%’.
where C is a single character, stands for C. C may not be a backslash or an apostrophe. For example, ‘%c':'’ stands for a colon.
where O is a string of 1, 2, or 3 octal digits, stands for the character with octal code O. For example, ‘%c'\0'’ stands for a null character.
where F is a printf
conversion specification,
stands for the line number formatted with F.
For example, ‘%.5dn’ prints the line number using the
printf
format "%.5d"
. See Line Group Formats, for
more about printf conversion specifications.
The default line format is ‘%l’ followed by a newline character.
If the input contains tab characters and it is important that they line up on output, you should ensure that ‘%l’ or ‘%L’ in a line format is just after a tab stop (e.g. by preceding ‘%l’ or ‘%L’ with a tab character), or you should use the -t or --expand-tabs option.
Taken together, the line and line group formats let you specify many
different formats. For example, the following command uses a format
similar to normal diff
format. You can tailor this command
to get fine control over diff
output.
diff \ --old-line-format='< %l ' \ --new-line-format='> %l ' \ --old-group-format='%df%(f=l?:,%dl)d%dE %<' \ --new-group-format='%dea%dF%(F=L?:,%dL) %>' \ --changed-group-format='%df%(f=l?:,%dl)c%dF%(F=L?:,%dL) %<--- %>' \ --unchanged-group-format='' \ old new
Next: Detailed Description of If-then-else Format, Previous: Line Formats, Up: Merging Files with If-then-else [Contents][Index]
Here is the output of ‘diff -DTWO lao tzu’ (see Two Sample Input Files, for the complete contents of the two files):
#ifndef TWO The Way that can be told of is not the eternal Way; The name that can be named is not the eternal name. #endif /* ! TWO */ The Nameless is the origin of Heaven and Earth; #ifndef TWO The Named is the mother of all things. #else /* TWO */ The named is the mother of all things. #endif /* TWO */ Therefore let there always be non-being, so we may see their subtlety, And let there always be being, so we may see their outcome. The two are the same, But after they are produced, they have different names. #ifdef TWO They both may be called deep and profound. Deeper and more profound, The door of all subtleties! #endif /* TWO */
Previous: An Example of If-then-else Format, Up: Merging Files with If-then-else [Contents][Index]
For lines common to both files, diff
uses the unchanged line
group format. For each hunk of differences in the merged output
format, if the hunk contains only lines from the first file,
diff
uses the old line group format; if the hunk contains only
lines from the second file, diff
uses the new group format;
otherwise, diff
uses the changed group format.
The old, new, and unchanged line formats specify the output format of lines from the first file, lines from the second file, and lines common to both files, respectively.
The option --ifdef=name is equivalent to the following sequence of options using shell syntax:
--old-group-format='#ifndef name %<#endif /* ! name */ ' \ --new-group-format='#ifdef name %>#endif /* name */ ' \ --unchanged-group-format='%=' \ --changed-group-format='#ifndef name %<#else /* name */ %>#endif /* name */ '
You should carefully check the diff
output for proper nesting.
For example, when using the -D name or
--ifdef=name option, you should check that if the
differing lines contain any of the C preprocessor directives
‘#ifdef’, ‘#ifndef’, ‘#else’, ‘#elif’, or
‘#endif’, they are nested properly and match. If they don’t, you
must make corrections manually. It is a good idea to carefully check
the resulting code anyway to make sure that it really does what you
want it to; depending on how the input files were produced, the output
might contain duplicate or otherwise incorrect code.
The patch
-D name option behaves like
the diff
-D name option, except it operates on
a file and a diff to produce a merged file. See Options to patch
.
Next: Incomplete Lines, Previous: What Comparison Means, Up: Comparing and Merging Files [Contents][Index]