[ previous ] [ Contents ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] [ 7 ] [ 8 ] [ A ] [ B ] [ next ]
This appendix contains an overview of the ISO 8879:1986 character entities and their equivalents in the output formats that DebianDoc-SGML supports. [2]
á => á
Á => Á
â => â
 => Â
à => à
À => À
å => å
Å => Å
ã => ã
à => Ã
ä => ä
Ä => Ä
æ => æ
Æ => Æ
ç => ç
Ç => Ç
ð => ð
Ð => Ð
é => é
É => É
ê => ê
Ê => Ê
è => è
È => È
ë => ë
Ë => Ë
í => í
Í => Í
î => î
Î => Î
ì => ì
Ì => Ì
ï => ï
Ï => Ï
ñ => ñ
Ñ => Ñ
ó => ó
Ó => Ó
ô => ô
Ô => Ô
ò => ò
Ò => Ò
ø => ø
Ø => Ø
õ => õ
Õ => Õ
ö => ö
Ö => Ö
ß => ß
þ => þ
Þ => Þ
ú => ú
Ú => Ú
û => û
Û => Û
ù => ù
Ù => Ù
ü => ü
Ü => Ü
ý => ý
Ý => Ý
ÿ => ÿ
ă => [abreve]
Ă => [Abreve]
ā => [amacr]
Ā => [Amacr]
ą => [aogon]
Ą => [Aogon]
ć => [cacute]
Ć => [Cacute]
č => [ccaron]
Č => [Ccaron]
ĉ => [ccirc]
Ĉ => [Ccirc]
ċ => [cdot]
Ċ => [Cdot]
ď => [dcaron]
Ď => [Dcaron]
đ => [dstrok]
Đ => [Dstrok]
ě => [ecaron]
Ě => [Ecaron]
ė => [edot]
Ė => [Edot]
ē => [emacr]
Ē => [Emacr]
ę => [eogon]
Ę => [Eogon]
ǵ => [gacute]
ğ => [gbreve]
Ğ => [Gbreve]
Ģ => [Gcedil]
ĝ => [gcirc]
Ĝ => [Gcirc]
ġ => [gdot]
Ġ => [Gdot]
ĥ => [hcirc]
Ĥ => [Hcirc]
ħ => [hstrok]
Ħ => [Hstrok]
İ => [Idot]
Ī => [Imacr]
ī => [imacr]
ij => ij
IJ => IJ
ı => [inodot]
į => [iogon]
Į => [Iogon]
ĩ => [itilde]
Ĩ => [Itilde]
ĵ => [jcirc]
Ĵ => [Jcirc]
ķ => [kcedil]
Ķ => [Kcedil]
ĸ => [kgreen]
ĺ => [lacute]
Ĺ => [Lacute]
ľ => [lcaron]
Ľ => [Lcaron]
ļ => [lcedil]
Ļ => [Lcedil]
ŀ => [lmidot]
Ŀ => [Lmidot]
ł => [lstrok]
Ł => [Lstrok]
ń => [nacute]
Ń => [Nacute]
ŋ => [eng]
Ŋ => [ENG]
ʼn => n'
ň => [ncaron]
Ň => [Ncaron]
ņ => [ncedil]
Ņ => [Ncedil]
ő => [odblac]
Ő => [Odblac]
ō => [omacr]
Ō => [Omacr]
œ => œ
Œ => Œ
ŕ => [racute]
Ŕ => [Racute]
ř => [rcaron]
Ř => [Rcaron]
ŗ => [rcedil]
Ŗ => [Rcedil]
ś => [sacute]
Ś => [Sacute]
š => š
Š => Š
ş => [scedil]
Ş => [Scedil]
ŝ => [scirc]
Ŝ => [Scirc]
ť => [tcaron]
Ť => [Tcaron]
ţ => [tcedil]
Ţ => [Tcedil]
ŧ => [tstrok]
Ŧ => [Tstrok]
ŭ => [ubreve]
Ŭ => [Ubreve]
ű => [udblac]
Ű => [Udblac]
ū => [umacr]
Ū => [Umacr]
ų => [uogon]
Ų => [Uogon]
ů => [uring]
Ů => [Uring]
ũ => [utilde]
Ũ => [Utilde]
ŵ => [wcirc]
Ŵ => [Wcirc]
ŷ => [ycirc]
Ŷ => [Ycirc]
Ÿ => Ÿ
ź => [zacute]
Ź => [Zacute]
ž => [zcaron]
Ž => [Zcaron]
ż => [zdot]
Ż => [Zdot]
&agr; => [agr]
&Agr; => [Agr]
&bgr; => [bgr]
&Bgr; => [Bgr]
&ggr; => [ggr]
&Ggr; => [Ggr]
&dgr; => [dgr]
&Dgr; => [Dgr]
&egr; => [egr]
&Egr; => [Egr]
&zgr; => [zgr]
&Zgr; => [Zgr]
&eegr; => [eegr]
&EEgr; => [EEgr]
&thgr; => [thgr]
&THgr; => [THgr]
&igr; => [igr]
&Igr; => [Igr]
&kgr; => [kgr]
&Kgr; => [Kgr]
&lgr; => [lgr]
&Lgr; => [Lgr]
&mgr; => [mgr]
&Mgr; => [Mgr]
&ngr; => [ngr]
&Ngr; => [Ngr]
&xgr; => [xgr]
&Xgr; => [Xgr]
&ogr; => [ogr]
&Ogr; => [Ogr]
&pgr; => [pgr]
&Pgr; => [Pgr]
&rgr; => [rgr]
&Rgr; => [Rgr]
&sgr; => [sgr]
&Sgr; => [Sgr]
&sfgr; => [sfgr]
&tgr; => [tgr]
&Tgr; => [Tgr]
&ugr; => [ugr]
&Ugr; => [Ugr]
&phgr; => [phgr]
&PHgr; => [PHgr]
&khgr; => [khgr]
&KHgr; => [KHgr]
&psgr; => [psgr]
&PSgr; => [PSgr]
&ohgr; => [ohgr]
&OHgr; => [OHgr]
&aacgr; => [aacgr]
&Aacgr; => [Aacgr]
&eacgr; => [eacgr]
&Eacgr; => [Eacgr]
&eeacgr; => [eeacgr]
&EEacgr; => [EEacgr]
&idigr; => [idigr]
&Idigr; => [Idigr]
&iacgr; => [iacgr]
&Iacgr; => [Iacgr]
&idiagr; => [idiagr]
&oacgr; => [oacgr]
&Oacgr; => [Oacgr]
&udigr; => [udigr]
&Udigr; => [Udigr]
&uacgr; => [uacgr]
&Uacgr; => [Uacgr]
&udiagr; => [udiagr]
&ohacgr; => [ohacgr]
&OHacgr; => [OHacgr]
а => [acy]
А => [Acy]
б => [bcy]
Б => [Bcy]
в => [vcy]
В => [Vcy]
г => [gcy]
Г => [Gcy]
д => [dcy]
Д => [Dcy]
е => [iecy]
Е => [IEcy]
ё => [iocy]
Ё => [IOcy]
ж => [zhcy]
Ж => [ZHcy]
з => [zcy]
З => [Zcy]
и => [icy]
И => [Icy]
й => [jcy]
Й => [Jcy]
к => [kcy]
К => [Kcy]
л => [lcy]
Л => [Lcy]
м => [mcy]
М => [Mcy]
н => [ncy]
Н => [Ncy]
о => [ocy]
О => [Ocy]
п => [pcy]
П => [Pcy]
р => [rcy]
Р => [Rcy]
с => [scy]
С => [Scy]
т => [tcy]
Т => [Tcy]
у => [ucy]
У => [Ucy]
ф => [fcy]
Ф => [Fcy]
х => [khcy]
Х => [KHcy]
ц => [tscy]
Ц => [TScy]
ч => [chcy]
Ч => [CHcy]
ш => [shcy]
Ш => [SHcy]
щ => [shchcy]
Щ => [SHCHcy]
ъ => [hardcy]
Ъ => [HARDcy]
ы => [ycy]
Ы => [Ycy]
ь => [softcy]
Ь => [SOFTcy]
э => [ecy]
Э => [Ecy]
ю => [yucy]
Ю => [YUcy]
я => [yacy]
Я => [YAcy]
№ => [numero]
ђ => [djcy]
Ђ => [DJcy]
ѓ => [gjcy]
Ѓ => [GJcy]
є => [jukcy]
Є => [Jukcy]
ѕ => [dscy]
Ѕ => [DScy]
і => [iukcy]
І => [Iukcy]
ї => [yicy]
Ї => [YIcy]
ј => [jsercy]
Ј => [Jsercy]
љ => [ljcy]
Љ => [LJcy]
њ => [njcy]
Њ => [NJcy]
ћ => [tshcy]
Ћ => [TSHcy]
ќ => [kjcy]
Ќ => [KJcy]
ў => [ubrcy]
Ў => [Ubrcy]
џ => [dzcy]
Џ => [DZcy]
½ => ½
½ => ½
¼ => ¼
¾ => ¾
⅛ => 1/8
⅜ => 3/8
⅝ => 5/8
⅞ => 7/8
¹ => ¹
² => ²
³ => ³
+ => +
± => ±
< => <
= => =
> => >
÷ => ÷
× => ×
¤ => ¤
£ => £
$ => $
¢ => ¢
¥ => ¥
# => #
% => %
& => &
* => *
@ => @
[ => [
\ => \
] => ]
{ => {
― => --
| => |
} => }
µ => µ
Ω => [ohm]
° => °
º => º
ª => ª
§ => §
¶ => ¶
· => ·
← => ←
→ => →
↑ => ↑
↓ => ↓
© => ©
® => ®
™ => ™
¦ => ¦
¬ => ¬
♪ => [sung]
! => !
¡ => ¡
" => "
' => '
( => (
) => )
, => ,
_ => _
‐ => -
. => .
/ => /
: => :
; => ;
? => ?
¿ => ¿
« => «
» => »
‘ => ‘
’ => ’
“ => “
” => ”
=>
­ =>
´ => ´
˘ => [breve]
ˇ => [caron]
¸ => ¸
ˆ => ˆ
˝ => ''
¨ => ¨
˙ => [dot]
` => `
¯ => ¯
˛ => [ogon]
˚ => [ring]
˜ => ˜
¨ => ¨
  =>
  =>
  => [emsp13]
  => [emsp14]
  => [numsp]
  => [puncsp]
  =>
  => [hairsp]
— => —
– => –
‐ => -
␣ => _
… => …
‥ => ..
⅓ => 1/3
⅔ => 2/3
⅕ => 1/5
⅖ => 2/5
⅗ => 3/5
⅘ => 4/5
⅙ => 1/6
⅚ => 5/6
℅ => c/o
█ => [block]
▀ => [uhblk]
▄ => [lhblk]
░ => [blk14]
▒ => [blk12]
▓ => [blk34]
▮ => [marker]
○ => o
□ => [squ]
▭ => [rect]
▵ => [utri]
▿ => [dtri]
☆ => [star]
• => •
▪ => [squf]
▴ => [utrif]
▾ => [dtrif]
◂ => [ltrif]
▸ => [rtrif]
♣ => ♣
♦ => ♦
♥ => ♥
♠ => ♠
✠ => [malt]
† => †
‡ => ‡
✓ => [check]
✗ => x
♯ => #
♭ => [flat]
♂ => [male]
♀ => [female]
☎ => [phone]
⌕ => [telrec]
℗ => [copysr]
⁁ => ^
‚ => '
„ => "
ff => ff
fi => fi
fj => fj
ffi => ffi
ffl => ffl
fl => fl
… => ...
” => "
’ => '
⋮ => :
⁃ => -
◊ => ◊
⧫ => [lozf]
◃ => [ltri]
▹ => [rtri]
★ => [starf]
♮ => [natur]
℞ => [rx]
✶ => [sext]
⌖ => [target]
⌍ => [dlcrop]
⌌ => [drcrop]
⌏ => [ulcrop]
⌎ => [urcrop]
─ => [boxh]
│ => [boxv]
└ => [boxur]
┘ => [boxul]
┐ => [boxdl]
┌ => [boxdr]
├ => [boxvr]
┴ => [boxhu]
┤ => [boxvl]
┬ => [boxhd]
┼ => [boxvh]
╞ => [boxvR]
╨ => [boxhU]
╡ => [boxvL]
╥ => [boxhD]
╪ => [boxvH]
═ => [boxH]
║ => [boxV]
╚ => [boxUR]
╝ => [boxUL]
╗ => [boxDL]
╔ => [boxDR]
╠ => [boxVR]
╩ => [boxHU]
╣ => [boxVL]
╦ => [boxHD]
╬ => [boxVH]
╟ => [boxVr]
╧ => [boxHu]
╢ => [boxVl]
╤ => [boxHd]
╫ => [boxVh]
╘ => [boxuR]
╜ => [boxUl]
╕ => [boxdL]
╓ => [boxDr]
╙ => [boxUr]
╛ => [boxuL]
╖ => [boxDl]
╒ => [boxdR]
ℵ => ℵ
∧ => ∧
&ang90; => |_
∢ => [angsph]
≈ => [ap]
∵ => [becaus]
⊥ => [bottom]
∩ => ∩
≅ => ≅
∮ => [conint]
∪ => ∪
≡ => ≡
∃ => ∃
∀ => ∀
ƒ => ƒ
≥ => ≥
⇔ => <==>
∞ => ∞
∫ => ∫
∈ => ∈
⟨ => 〈
⇐ => ⇐
≤ => ≤
− => −
∓ => -/+
∇ => ∇
≠ => ≠
∋ => ∋
∨ => ∨
∥ => ||
∂ => ∂
‰ => ‰
⊥ => ⊥
′ => ′
″ => ″
∝ => ∝
√ => √
⟩ => 〉
⇒ => ⇒
∼ => ∼
≃ => [sime]
□ => [square]
⊂ => ⊂
⊆ => ⊆
⊃ => ⊃
⊇ => ⊇
∴ => ∴
‖ => ||
Å => AA
ℬ => B
∘ => o
¨ => [Dot]
⃜ => [DotDot]
ℋ => H
ℒ => L
∗ => ∗
∉ => ∉
ℴ => O
ℳ => M
⃛ => [tdot]
‴ => '''
≙ => [wedgeq]
α => α
β => β
γ => γ
Γ => Γ
ϝ => Γ
δ => δ
Δ => Δ
ε => ε
ϵ => ε
&epsis; => ε
ζ => ζ
η => η
&thetas; => θ
Θ => Θ
ϑ => ϑ
ι => ι
κ => κ
ϰ => κ
λ => λ
Λ => Λ
μ => μ
ν => ν
ξ => ξ
Ξ => Ξ
π => π
ϖ => ϖ
Π => Π
ρ => ρ
ϱ => ρ
σ => σ
Σ => Σ
ς => ς
τ => τ
υ => υ
ϒ => Υ
&phis; => φ
Φ => Φ
ϕ => φ
χ => χ
ψ => ψ
Ψ => Ψ
ω => ω
Ω => Ω
&b.alpha; => α
&b.beta; => β
&b.gamma; => γ
&b.Gamma; => Γ
&b.gammad; => Γ
&b.delta; => δ
&b.Delta; => Δ
&b.epsi; => ε
&b.epsiv; => ε
&b.epsis; => ε
&b.zeta; => ζ
&b.eta; => η
&b.thetas; => θ
&b.Theta; => Θ
&b.thetav; => ϑ
&b.iota; => ι
&b.kappa; => κ
&b.kappav; => κ
&b.lambda; => λ
&b.Lambda; => Λ
&b.mu; => μ
&b.nu; => ν
&b.xi; => ξ
&b.Xi; => Ξ
&b.pi; => π
&b.piv; => ϖ
&b.Pi; => Π
&b.rho; => ρ
&b.rhov; => ρ
&b.sigma; => σ
&b.Sigma; => Σ
&b.sigmav; => ς
&b.tau; => τ
&b.upsi; => υ
&b.Upsi; => Υ
&b.phis; => φ
&b.Phi; => Φ
&b.phiv; => φ
&b.chi; => χ
&b.psi; => ψ
&b.Psi; => Ψ
&b.omega; => ω
&b.Omega; => Ω
∠ => ∠
∡ => [angmsd]
ℶ => [beth]
‵ => `
∁ => C
ℸ => [daleth]
ℓ => l
∅ => ∅
ℷ => [gimel]
ℑ => ℑ
ı => [inodot]
&jnodot; => [jnodot]
∄ => [nexist]
Ⓢ => [oS]
ℏ => [planck]
ℜ => ℜ
&sbsol; => \
&vprime; => '
℘ => ℘
⨿ => [amalg]
⌆ => [Barwed]
⌅ => [barwed]
⋒ => [Cap]
⋓ => [Cup]
⋎ => [cuvee]
⋏ => [cuwed]
⋄ => [diam]
⋇ => [divonx]
⊺ => [intcal]
⋋ => [lthree]
⋉ => [ltimes]
⊟ => [minusb]
⊛ => [oast]
⊚ => [ocir]
⊝ => [odash]
⊙ => [odot]
⊖ => [ominus]
⊕ => ⊕
⊘ => [osol]
⊗ => ⊗
⊞ => [plusb]
∔ => [plusdo]
⋌ => [rthree]
⋊ => [rtimes]
⋅ => ⋅
⊡ => [sdotb]
∖ => [setmn]
⊓ => [sqcap]
⊔ => [sqcup]
∖ => [ssetmn]
⋆ => [sstarf]
⊠ => [timesb]
⊤ => [top]
⊎ => [uplus]
≀ => [wreath]
◯ => [xcirc]
▽ => [xdtri]
△ => [xutri]
∐ => [coprod]
∏ => ∏
∑ => ∑
≊ => [ape]
≈ => ≈
≌ => [bcong]
϶ => [bepsi]
⋈ => [bowtie]
∽ => [bsim]
⋍ => [bsime]
≎ => [bump]
≏ => [bumpe]
≗ => [cire]
≔ => [colone]
⋞ => [cuepr]
⋟ => [cuesc]
&cupre; => [cupre]
⊣ => [dashv]
≖ => [ecir]
≕ => [ecolon]
≑ => [eDot]
≐ => [esdot]
≒ => [efDot]
⪖ => [egs]
⪕ => [els]
≓ => [erDot]
⋔ => [fork]
⌢ => [frown]
⪆ => [gap]
&gsdot; => [gsdot]
≧ => [gE]
⋛ => [gel]
⪌ => [gEl]
⩾ => [ges]
⋙ => [Gg]
≷ => [gl]
≳ => [gsim]
≫ => [Gt]
⪅ => [lap]
&ldot; => [ldot]
≦ => [lE]
⪋ => [lEg]
⋚ => [leg]
⩽ => [les]
≶ => [lg]
⋘ => [Ll]
≲ => [lsim]
≪ => [Lt]
⊴ => [ltrie]
∣ => [mid]
⊧ => [models]
≺ => [pr]
⪷ => [prap]
⪯ => [pre]
≾ => [prsim]
⊵ => [rtrie]
&samalg; => [samalg]
≻ => [sc]
⪸ => [scap]
≽ => [sccue]
⪰ => [sce]
≿ => [scsim]
⌢ => [sfrown]
∣ => [smid]
⌣ => [smile]
∥ => [spar]
⊏ => [sqsub]
⊑ => [sqsube]
⊐ => [sqsup]
⊒ => [sqsupe]
⌣ => [ssmile]
⋐ => [Sub]
⫅ => [subE]
⋑ => [Sup]
⫆ => [supE]
≈ => [thkap]
∼ => [thksim]
≜ => [trie]
≬ => [twixt]
⊢ => [vdash]
⊩ => [Vdash]
⊨ => [vDash]
⊻ => [veebar]
⊲ => [vltri]
∝ => [vprop]
⊳ => [vrtri]
⊪ => [Vvdash]
⪊ => [gnap]
⪈ => [gne]
≩ => [gnE]
⋧ => [gnsim]
≩︀ => [gvnE]
⪉ => [lnap]
≨ => [lnE]
⪇ => [lne]
⋦ => [lnsim]
≨︀ => [lvnE]
≉ => [nap]
≇ => [ncong]
≢ => [nequiv]
≧̸ => [ngE]
≱ => [nge]
⩾̸ => [nges]
≯ => [ngt]
≰ => [nle]
≦̸ => [nlE]
⩽̸ => [nles]
≮ => [nlt]
⋪ => [nltri]
⋬ => [nltrie]
∤ => [nmid]
∦ => [npar]
⊀ => [npr]
⪯̸ => [npre]
⋫ => [nrtri]
⋭ => [nrtrie]
⊁ => [nsc]
⪰̸ => [nsce]
≁ => [nsim]
≄ => [nsime]
∤ => [nsmid]
∦ => [nspar]
⊄ => ⊄
⊈ => [nsube]
⫅̸ => [nsubE]
⊅ => [nsup]
⫆̸ => [nsupE]
⊉ => [nsupe]
⊬ => [nvdash]
⊭ => [nvDash]
⊯ => [nVDash]
⊮ => [nVdash]
⪹ => [prnap]
⪵ => [prnE]
⋨ => [prnsim]
⪺ => [scnap]
⪶ => [scnE]
⋩ => [scnsim]
⊊ => [subne]
⫋ => [subnE]
⊋ => [supne]
⫌ => [supnE]
⫋︀ => [vsubnE]
⊊︀ => [vsubne]
⊋︀ => [vsupne]
⫌︀ => [vsupnE]
↶ => [cularr]
↷ => [curarr]
⇓ => ⇓
&darr2; => [darr2]
⇃ => [dharl]
⇂ => [dharr]
⇚ => [lAarr]
↞ => [Larr]
&larr2; => [larr2]
↩ => [larrhk]
↫ => [larrlp]
↢ => [larrtl]
↽ => [lhard]
↼ => [lharu]
⇔ => ⇔
↔ => ↔
&lrarr2; => [lrarr2]
&rlarr2; => [rlarr2]
↭ => [harrw]
&rlhar2; => [rlhar2]
&lrhar2; => [lrhar2]
↰ => [lsh]
↦ => [map]
⊸ => [mumap]
↗ => [nearr]
⇍ => [nlArr]
↚ => [nlarr]
⇎ => [nhArr]
↮ => [nharr]
↛ => [nrarr]
⇏ => [nrArr]
↖ => [nwarr]
↺ => [olarr]
↻ => [orarr]
⇛ => [rAarr]
↠ => [Rarr]
&rarr2; => [rarr2]
↪ => [rarrhk]
↬ => [rarrlp]
↣ => [rarrtl]
↝ => [rarrw]
⇁ => [rhard]
⇀ => [rharu]
↱ => [rsh]
&drarr; => [drarr]
&dlarr; => [dlarr]
⇑ => ⇑
&uarr2; => [uarr2]
⇕ => [vArr]
↕ => [varr]
↿ => [uharl]
↾ => [uharr]
⟸ => [xlArr]
⟺ => [xhArr]
⟷ => [xharr]
⟹ => [xrArr]
⌉ => ⌉
⌋ => ⌋
⦔ => [rpargt]
⌝ => [urcorn]
⌟ => [drcorn]
⌈ => ⌈
⌊ => ⌊
&lpargt; => [lpargt]
⌜ => [ulcorn]
⌞ => [dlcorn]
[ previous ] [ Contents ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] [ 7 ] [ 8 ] [ A ] [ B ] [ next ]
DebianDoc-SGML Manual
2021-01-16mailto:ardo@debian.org
mailto:ijackson@gnu.ai.mit.edu