GEN03

GEN03 — Generates a stored function table by evaluating a polynomial.

Description

This subroutine generates a stored function table by evaluating a polynomial in x over a fixed interval and with specified coefficients.

Syntax

f  #  time  size  3  xval1  xval2  c0  c1  c2  ...  cn

Initialization

size -- number of points in the table. Must be a power of 2 or a power-of-2 plus 1.

xval1, xval2 -- left and right values of the x interval over which the polynomial is defined (xval1 < xval2). These will produce the 1st stored value and the (power-of-2 plus l)th stored value respectively in the generated function table.

c0, c1, c2, ..., cn -- coefficients of the nth-order polynomial

C0 + C1x + C2x2 + . . . + Cnxn

Coefficients may be positive or negative real numbers; a zero denotes a missing term in the polynomial. The coefficient list begins in p7, providing a current upper limit of 144 terms.

[Note] Note

  • The defined segment [fn(xval1), fn(xval2)] is evenly distributed. Thus a 512-point table over the interval [-1,1] will have its origin at location 257 (at the start of the 2nd half). Provided the extended guard point is requested, both fn(-1) and fn(1) will exist in the table.

  • GEN03 is useful in conjunction with table or tablei for audio waveshaping (sound modification by non-linear distortion). Coefficients to produce a particular formant from a sinusoidal lookup index of known amplitude can be determined at preprocessing time using algorithms such as Chebyshev formulae. See also GEN13.

Examples

Here is an example of the GEN03 generator. It uses the file gen03.csd.

Example 1268. Example of the GEN03 generator.

See the sections Real-time Audio and Command Line Flags for more information on using command line flags.

<CsoundSynthesizer>
<CsOptions>
; Select audio/midi flags here according to platform
-odac  ;;;realtime audio out
;-iadc    ;;;uncomment -iadc if realtime audio input is needed too
; For Non-realtime ouput leave only the line below:
; -o gen03.wav -W ;;; for file output any platform
</CsOptions>
<CsInstruments>

sr = 44100 
ksmps = 32 
nchnls = 2 
0dbfs  = 1
;example by Russell Pinkston - Univ. of Texas  (but slightly modified)

gisine   ftgen 1, 0, 16384, 10, 1						;sine wave

instr   1

ihertz = cpspch(p4)
ipkamp = p5
iwsfn  = p6									;waveshaping function
inmfn  = p7									;normalization function
aenv    linen  1, .01, p3, .1        						;overall amp envelope
actrl   linen  1, 2, p3, 2							;waveshaping index control
aindex  poscil actrl/2, ihertz, gisine						;sine wave to be distorted
asignal tablei .5+aindex, iwsfn, 1						;waveshaping
anormal tablei actrl, inmfn,1							;amplitude normalization
asig    =      asignal*anormal*ipkamp*aenv	
asig    dcblock2  asig								;get rid of possible DC						
        outs   asig, asig
           
endin
</CsInstruments>
<CsScore>
; first four notes are specific Chebyshev polynomials using gen03. The values were obtained from Dodge page 147

f4 0 513 3 -1 1 0 1			; First-order Chebyshev: x
f5 0 257 4 4 1				; Normalizing function for fn4

f6 0 513 3 -1 1 -1 0 2			; Second-order Chebyshev: 2x2 - 1
f7 0 257 4 6 1				; Normalizing function for fn6

f8 0 513 3 -1 1 0 -3 0 4		; Third-order Chebyshev: 4x3 - 3x
f9 0 257 4 8 1				; Normalizing function for fn8

f10 0 513 3 -1 10 0 -7 0 56 0 -112 0 64	; Seventh-order Chebyshev: 64x7 - 112x5 + 56x3 - 7x
f11 0 257 4 10 1			; Normalizing function for fn10

f12 0 513 3 -1 1 5 4 3 2 2 1		; a 4th order polynomial function over the x-interval -1 to 1
f13 0 257 4 12 1			; Normalizing function for fn12

; five notes with same fundamental, different waveshape & normalizing functions
;        pch	 amp	wsfn	nmfn
i1 0  3 8.00     .7      4	 5
i1 +  .  .	 .	 6	 7    
i1 +  .  .	 .	 8	 9     
i1 +  .  .       .	 10	 11   
i1 +  .  .       .	 12	 13 

e
</CsScore>
</CsoundSynthesizer>


These are the diagrams of the waveforms of the GEN03 routines, as used in the example:

f4 0 513 3 1 1 0 1 - first-order Chebyshev: x

f4 0 513 3 1 1 0 1 - first-order Chebyshev: x

f6 0 513 3 -1 1 -1 0 2 - second-order Chebyshev: 2x2 - 1

f6 0 513 3 -1 1 -1 0 2 - second-order Chebyshev: 2x2 - 1

f8 0 513 3 -1 1 0 -3 0 4 - third-order Chebyshev: 4x3 - 3x

f8 0 513 3 -1 1 0 -3 0 4 - third-order Chebyshev: 4x3 - 3x

f10 0 513 3 -1 10 0 -7 0 56 0 -112 0 64 - seventh-order Chebyshev: 64x7 - 112x5 + 56x3 - 7x

f10 0 513 3 -1 10 0 -7 0 56 0 -112 0 64 - seventh-order Chebyshev: 64x7 - 112x5 + 56x3 - 7x

f12 0 513 3 -1 1 5 4 3 2 2 1 - a 4th order polynomial function over the x-interval -1 to 1

f12 0 513 3 -1 1 5 4 3 2 2 1 - a 4th order polynomial function over the x-interval -1 to 1

See Also

GEN13, GEN14, and GEN15.

Information about the Chebyshev polynomials on Wikipedia: http://en.wikipedia.org/wiki/Chebyshev_polynomials