Source for java.math.BigDecimal

   1: /* java.math.BigDecimal -- Arbitrary precision decimals.
   2:    Copyright (C) 1999, 2000, 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
   3: 
   4: This file is part of GNU Classpath.
   5: 
   6: GNU Classpath is free software; you can redistribute it and/or modify
   7: it under the terms of the GNU General Public License as published by
   8: the Free Software Foundation; either version 2, or (at your option)
   9: any later version.
  10: 
  11: GNU Classpath is distributed in the hope that it will be useful, but
  12: WITHOUT ANY WARRANTY; without even the implied warranty of
  13: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14: General Public License for more details.
  15: 
  16: You should have received a copy of the GNU General Public License
  17: along with GNU Classpath; see the file COPYING.  If not, write to the
  18: Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  19: 02110-1301 USA.
  20: 
  21: Linking this library statically or dynamically with other modules is
  22: making a combined work based on this library.  Thus, the terms and
  23: conditions of the GNU General Public License cover the whole
  24: combination.
  25: 
  26: As a special exception, the copyright holders of this library give you
  27: permission to link this library with independent modules to produce an
  28: executable, regardless of the license terms of these independent
  29: modules, and to copy and distribute the resulting executable under
  30: terms of your choice, provided that you also meet, for each linked
  31: independent module, the terms and conditions of the license of that
  32: module.  An independent module is a module which is not derived from
  33: or based on this library.  If you modify this library, you may extend
  34: this exception to your version of the library, but you are not
  35: obligated to do so.  If you do not wish to do so, delete this
  36: exception statement from your version. */
  37: 
  38: package java.math;
  39: 
  40: import gnu.java.lang.CPStringBuilder;
  41: 
  42: public class BigDecimal extends Number implements Comparable<BigDecimal>
  43: {
  44:   private BigInteger intVal;
  45:   private int scale;
  46:   private int precision = 0;
  47:   private static final long serialVersionUID = 6108874887143696463L;
  48: 
  49:   /**
  50:    * The constant zero as a BigDecimal with scale zero.
  51:    * @since 1.5
  52:    */
  53:   public static final BigDecimal ZERO =
  54:     new BigDecimal (BigInteger.ZERO, 0);
  55: 
  56:   /**
  57:    * The constant one as a BigDecimal with scale zero.
  58:    * @since 1.5
  59:    */
  60:   public static final BigDecimal ONE =
  61:     new BigDecimal (BigInteger.ONE, 0);
  62: 
  63:   /**
  64:    * The constant ten as a BigDecimal with scale zero.
  65:    * @since 1.5
  66:    */
  67:   public static final BigDecimal TEN =
  68:     new BigDecimal (BigInteger.TEN, 0);
  69: 
  70:   public static final int ROUND_UP = 0;
  71:   public static final int ROUND_DOWN = 1;
  72:   public static final int ROUND_CEILING = 2;
  73:   public static final int ROUND_FLOOR = 3;
  74:   public static final int ROUND_HALF_UP = 4;
  75:   public static final int ROUND_HALF_DOWN = 5;
  76:   public static final int ROUND_HALF_EVEN = 6;
  77:   public static final int ROUND_UNNECESSARY = 7;
  78: 
  79:   /**
  80:    * Constructs a new BigDecimal whose unscaled value is val and whose
  81:    * scale is zero.
  82:    * @param val the value of the new BigDecimal
  83:    * @since 1.5
  84:    */
  85:   public BigDecimal (int val)
  86:   {
  87:     this.intVal = BigInteger.valueOf(val);
  88:     this.scale = 0;
  89:   }
  90: 
  91:   /**
  92:    * Constructs a BigDecimal using the BigDecimal(int) constructor and then
  93:    * rounds according to the MathContext.
  94:    * @param val the value for the initial (unrounded) BigDecimal
  95:    * @param mc the MathContext specifying the rounding
  96:    * @throws ArithmeticException if the result is inexact but the rounding type
  97:    * is RoundingMode.UNNECESSARY
  98:    * @since 1.5
  99:    */
 100:   public BigDecimal (int val, MathContext mc)
 101:   {
 102:     this (val);
 103:     if (mc.getPrecision() != 0)
 104:       {
 105:         BigDecimal result = this.round(mc);
 106:         this.intVal = result.intVal;
 107:         this.scale = result.scale;
 108:         this.precision = result.precision;
 109:       }
 110:   }
 111: 
 112:   /**
 113:    * Constructs a new BigDecimal whose unscaled value is val and whose
 114:    * scale is zero.
 115:    * @param val the value of the new BigDecimal
 116:    */
 117:   public BigDecimal (long val)
 118:   {
 119:     this.intVal = BigInteger.valueOf(val);
 120:     this.scale = 0;
 121:   }
 122: 
 123:   /**
 124:    * Constructs a BigDecimal from the long in the same way as BigDecimal(long)
 125:    * and then rounds according to the MathContext.
 126:    * @param val the long from which we create the initial BigDecimal
 127:    * @param mc the MathContext that specifies the rounding behaviour
 128:    * @throws ArithmeticException if the result is inexact but the rounding type
 129:    * is RoundingMode.UNNECESSARY
 130:    * @since 1.5
 131:    */
 132:   public BigDecimal (long val, MathContext mc)
 133:   {
 134:     this(val);
 135:     if (mc.getPrecision() != 0)
 136:       {
 137:         BigDecimal result = this.round(mc);
 138:         this.intVal = result.intVal;
 139:         this.scale = result.scale;
 140:         this.precision = result.precision;
 141:       }
 142:   }
 143: 
 144:   /**
 145:    * Constructs a BigDecimal whose value is given by num rounded according to
 146:    * mc.  Since num is already a BigInteger, the rounding refers only to the
 147:    * precision setting in mc, if mc.getPrecision() returns an int lower than
 148:    * the number of digits in num, then rounding is necessary.
 149:    * @param num the unscaledValue, before rounding
 150:    * @param mc the MathContext that specifies the precision
 151:    * @throws ArithmeticException if the result is inexact but the rounding type
 152:    * is RoundingMode.UNNECESSARY
 153:    * * @since 1.5
 154:    */
 155:   public BigDecimal (BigInteger num, MathContext mc)
 156:   {
 157:     this (num, 0);
 158:     if (mc.getPrecision() != 0)
 159:       {
 160:         BigDecimal result = this.round(mc);
 161:         this.intVal = result.intVal;
 162:         this.scale = result.scale;
 163:         this.precision = result.precision;
 164:       }
 165:   }
 166: 
 167:   /**
 168:    * Constructs a BigDecimal from the String val according to the same
 169:    * rules as the BigDecimal(String) constructor and then rounds
 170:    * according to the MathContext mc.
 171:    * @param val the String from which we construct the initial BigDecimal
 172:    * @param mc the MathContext that specifies the rounding
 173:    * @throws ArithmeticException if the result is inexact but the rounding type
 174:    * is RoundingMode.UNNECESSARY
 175:    * @since 1.5
 176:    */
 177:   public BigDecimal (String val, MathContext mc)
 178:   {
 179:     this (val);
 180:     if (mc.getPrecision() != 0)
 181:       {
 182:         BigDecimal result = this.round(mc);
 183:         this.intVal = result.intVal;
 184:         this.scale = result.scale;
 185:         this.precision = result.precision;
 186:       }
 187:   }
 188: 
 189:   /**
 190:    * Constructs a BigDecimal whose unscaled value is num and whose
 191:    * scale is zero.
 192:    * @param num the value of the new BigDecimal
 193:    */
 194:   public BigDecimal (BigInteger num)
 195:   {
 196:     this (num, 0);
 197:   }
 198: 
 199:   /**
 200:    * Constructs a BigDecimal whose unscaled value is num and whose
 201:    * scale is scale.
 202:    * @param num
 203:    * @param scale
 204:    */
 205:   public BigDecimal (BigInteger num, int scale)
 206:   {
 207:     this.intVal = num;
 208:     this.scale = scale;
 209:   }
 210: 
 211:   /**
 212:    * Constructs a BigDecimal using the BigDecimal(BigInteger, int)
 213:    * constructor and then rounds according to the MathContext.
 214:    * @param num the unscaled value of the unrounded BigDecimal
 215:    * @param scale the scale of the unrounded BigDecimal
 216:    * @param mc the MathContext specifying the rounding
 217:    * @throws ArithmeticException if the result is inexact but the rounding type
 218:    * is RoundingMode.UNNECESSARY
 219:    * @since 1.5
 220:    */
 221:   public BigDecimal (BigInteger num, int scale, MathContext mc)
 222:   {
 223:     this (num, scale);
 224:     if (mc.getPrecision() != 0)
 225:       {
 226:         BigDecimal result = this.round(mc);
 227:         this.intVal = result.intVal;
 228:         this.scale = result.scale;
 229:         this.precision = result.precision;
 230:       }
 231:   }
 232: 
 233:   /**
 234:    * Constructs a BigDecimal in the same way as BigDecimal(double) and then
 235:    * rounds according to the MathContext.
 236:    * @param num the double from which the initial BigDecimal is created
 237:    * @param mc the MathContext that specifies the rounding behaviour
 238:    * @throws ArithmeticException if the result is inexact but the rounding type
 239:    * is RoundingMode.UNNECESSARY
 240:    * @since 1.5
 241:    */
 242:   public BigDecimal (double num, MathContext mc)
 243:   {
 244:     this (num);
 245:     if (mc.getPrecision() != 0)
 246:       {
 247:         BigDecimal result = this.round(mc);
 248:         this.intVal = result.intVal;
 249:         this.scale = result.scale;
 250:         this.precision = result.precision;
 251:       }
 252:   }
 253: 
 254:   public BigDecimal (double num) throws NumberFormatException
 255:   {
 256:     if (Double.isInfinite (num) || Double.isNaN (num))
 257:       throw new NumberFormatException ("invalid argument: " + num);
 258:     // Note we can't convert NUM to a String and then use the
 259:     // String-based constructor.  The BigDecimal documentation makes
 260:     // it clear that the two constructors work differently.
 261: 
 262:     final int mantissaBits = 52;
 263:     final int exponentBits = 11;
 264:     final long mantMask = (1L << mantissaBits) - 1;
 265:     final long expMask = (1L << exponentBits) - 1;
 266: 
 267:     long bits = Double.doubleToLongBits (num);
 268:     long mantissa = bits & mantMask;
 269:     long exponent = (bits >>> mantissaBits) & expMask;
 270:     boolean denormal = exponent == 0;
 271: 
 272:     // Correct the exponent for the bias.
 273:     exponent -= denormal ? 1022 : 1023;
 274: 
 275:     // Now correct the exponent to account for the bits to the right
 276:     // of the decimal.
 277:     exponent -= mantissaBits;
 278:     // Ordinary numbers have an implied leading `1' bit.
 279:     if (! denormal)
 280:       mantissa |= (1L << mantissaBits);
 281: 
 282:     // Shave off factors of 10.
 283:     while (exponent < 0 && (mantissa & 1) == 0)
 284:       {
 285:         ++exponent;
 286:         mantissa >>= 1;
 287:       }
 288: 
 289:     intVal = BigInteger.valueOf (bits < 0 ? - mantissa : mantissa);
 290:     if (exponent < 0)
 291:       {
 292:         // We have MANTISSA * 2 ^ (EXPONENT).
 293:         // Since (1/2)^N == 5^N * 10^-N we can easily convert this
 294:         // into a power of 10.
 295:         scale = (int) (- exponent);
 296:         BigInteger mult = BigInteger.valueOf (5).pow (scale);
 297:         intVal = intVal.multiply (mult);
 298:       }
 299:     else
 300:       {
 301:         intVal = intVal.shiftLeft ((int) exponent);
 302:         scale = 0;
 303:       }
 304:   }
 305: 
 306:   /**
 307:    * Constructs a BigDecimal from the char subarray and rounding
 308:    * according to the MathContext.
 309:    * @param in the char array
 310:    * @param offset the start of the subarray
 311:    * @param len the length of the subarray
 312:    * @param mc the MathContext for rounding
 313:    * @throws NumberFormatException if the char subarray is not a valid
 314:    * BigDecimal representation
 315:    * @throws ArithmeticException if the result is inexact but the rounding
 316:    * mode is RoundingMode.UNNECESSARY
 317:    * @since 1.5
 318:    */
 319:   public BigDecimal(char[] in, int offset, int len, MathContext mc)
 320:   {
 321:     this(in, offset, len);
 322:     // If mc has precision other than zero then we must round.
 323:     if (mc.getPrecision() != 0)
 324:       {
 325:         BigDecimal temp = this.round(mc);
 326:         this.intVal = temp.intVal;
 327:         this.scale = temp.scale;
 328:         this.precision = temp.precision;
 329:       }
 330:   }
 331: 
 332:   /**
 333:    * Constructs a BigDecimal from the char array and rounding according
 334:    * to the MathContext.
 335:    * @param in the char array
 336:    * @param mc the MathContext
 337:    * @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
 338:    * representation
 339:    * @throws ArithmeticException if the result is inexact but the rounding mode
 340:    * is RoundingMode.UNNECESSARY
 341:    * @since 1.5
 342:    */
 343:   public BigDecimal(char[] in, MathContext mc)
 344:   {
 345:     this(in, 0, in.length);
 346:     // If mc has precision other than zero then we must round.
 347:     if (mc.getPrecision() != 0)
 348:       {
 349:         BigDecimal temp = this.round(mc);
 350:         this.intVal = temp.intVal;
 351:         this.scale = temp.scale;
 352:         this.precision = temp.precision;
 353:       }
 354:   }
 355: 
 356:   /**
 357:    * Constructs a BigDecimal from the given char array, accepting the same
 358:    * sequence of characters as the BigDecimal(String) constructor.
 359:    * @param in the char array
 360:    * @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
 361:    * representation
 362:    * @since 1.5
 363:    */
 364:   public BigDecimal(char[] in)
 365:   {
 366:     this(in, 0, in.length);
 367:   }
 368: 
 369:   /**
 370:    * Constructs a BigDecimal from a char subarray, accepting the same sequence
 371:    * of characters as the BigDecimal(String) constructor.
 372:    * @param in the char array
 373:    * @param offset the start of the subarray
 374:    * @param len the length of the subarray
 375:    * @throws NumberFormatException if <code>in</code> is not a valid
 376:    * BigDecimal representation.
 377:    * @since 1.5
 378:    */
 379:   public BigDecimal(char[] in, int offset, int len)
 380:   {
 381:     //  start is the index into the char array where the significand starts
 382:     int start = offset;
 383:     //  end is one greater than the index of the last character used
 384:     int end = offset + len;
 385:     //  point is the index into the char array where the exponent starts
 386:     //  (or, if there is no exponent, this is equal to end)
 387:     int point = offset;
 388:     //  dot is the index into the char array where the decimal point is
 389:     //  found, or -1 if there is no decimal point
 390:     int dot = -1;
 391: 
 392:     //  The following examples show what these variables mean.  Note that
 393:     //  point and dot don't yet have the correct values, they will be
 394:     //  properly assigned in a loop later on in this method.
 395:     //
 396:     //  Example 1
 397:     //
 398:     //         +  1  0  2  .  4  6  9
 399:     //  __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 400:     //
 401:     //  offset = 2, len = 8, start = 3, dot = 6, point = end = 10
 402:     //
 403:     //  Example 2
 404:     //
 405:     //         +  2  3  4  .  6  1  3  E  -  1
 406:     //  __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 407:     //
 408:     //  offset = 2, len = 11, start = 3, dot = 6, point = 10, end = 13
 409:     //
 410:     //  Example 3
 411:     //
 412:     //         -  1  2  3  4  5  e  7
 413:     //  __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 414:     //
 415:     //  offset = 2, len = 8, start = 3, dot = -1, point = 8, end = 10
 416: 
 417:     //  Determine the sign of the number.
 418:     boolean negative = false;
 419:     if (in[offset] == '+')
 420:       {
 421:         ++start;
 422:         ++point;
 423:       }
 424:     else if (in[offset] == '-')
 425:       {
 426:         ++start;
 427:         ++point;
 428:         negative = true;
 429:       }
 430: 
 431:     //  Check each character looking for the decimal point and the
 432:     //  start of the exponent.
 433:     while (point < end)
 434:       {
 435:         char c = in[point];
 436:         if (c == '.')
 437:           {
 438:             // If dot != -1 then we've seen more than one decimal point.
 439:             if (dot != -1)
 440:               throw new NumberFormatException("multiple `.'s in number");
 441:             dot = point;
 442:           }
 443:         // Break when we reach the start of the exponent.
 444:         else if (c == 'e' || c == 'E')
 445:           break;
 446:         // Throw an exception if the character was not a decimal or an
 447:         // exponent and is not a digit.
 448:         else if (!Character.isDigit(c))
 449:           throw new NumberFormatException("unrecognized character at " + point
 450:                                           + ": " + c);
 451:         ++point;
 452:       }
 453: 
 454:     // val is a StringBuilder from which we'll create a BigInteger
 455:     // which will be the unscaled value for this BigDecimal
 456:     CPStringBuilder val = new CPStringBuilder(point - start - 1);
 457:     if (dot != -1)
 458:       {
 459:         // If there was a decimal we must combine the two parts that
 460:         // contain only digits and we must set the scale properly.
 461:         val.append(in, start, dot - start);
 462:         val.append(in, dot + 1, point - dot - 1);
 463:         scale = point - 1 - dot;
 464:       }
 465:     else
 466:       {
 467:         // If there was no decimal then the unscaled value is just the number
 468:         // formed from all the digits and the scale is zero.
 469:         val.append(in, start, point - start);
 470:         scale = 0;
 471:       }
 472:     if (val.length() == 0)
 473:       throw new NumberFormatException("no digits seen");
 474: 
 475:     // Prepend a negative sign if necessary.
 476:     if (negative)
 477:       val.insert(0, '-');
 478:     intVal = new BigInteger(val.toString());
 479: 
 480:     // Now parse exponent.
 481:     // If point < end that means we broke out of the previous loop when we
 482:     // saw an 'e' or an 'E'.
 483:     if (point < end)
 484:       {
 485:         point++;
 486:         // Ignore a '+' sign.
 487:         if (in[point] == '+')
 488:           point++;
 489: 
 490:         // Throw an exception if there were no digits found after the 'e'
 491:         // or 'E'.
 492:         if (point >= end)
 493:           throw new NumberFormatException("no exponent following e or E");
 494: 
 495:         try
 496:           {
 497:             // Adjust the scale according to the exponent.
 498:             // Remember that the value of a BigDecimal is
 499:             // unscaledValue x Math.pow(10, -scale)
 500:             scale -= Integer.parseInt(new String(in, point, end - point));
 501:           }
 502:         catch (NumberFormatException ex)
 503:           {
 504:             throw new NumberFormatException("malformed exponent");
 505:           }
 506:       }
 507:   }
 508: 
 509:   public BigDecimal (String num) throws NumberFormatException
 510:   {
 511:     int len = num.length();
 512:     int start = 0, point = 0;
 513:     int dot = -1;
 514:     boolean negative = false;
 515:     if (num.charAt(0) == '+')
 516:       {
 517:         ++start;
 518:         ++point;
 519:       }
 520:     else if (num.charAt(0) == '-')
 521:       {
 522:         ++start;
 523:         ++point;
 524:         negative = true;
 525:       }
 526: 
 527:     while (point < len)
 528:       {
 529:         char c = num.charAt (point);
 530:         if (c == '.')
 531:           {
 532:             if (dot >= 0)
 533:               throw new NumberFormatException ("multiple `.'s in number");
 534:             dot = point;
 535:           }
 536:         else if (c == 'e' || c == 'E')
 537:           break;
 538:         else if (Character.digit (c, 10) < 0)
 539:           throw new NumberFormatException ("unrecognized character: " + c);
 540:         ++point;
 541:       }
 542: 
 543:     String val;
 544:     if (dot >= 0)
 545:       {
 546:         val = num.substring (start, dot) + num.substring (dot + 1, point);
 547:         scale = point - 1 - dot;
 548:       }
 549:     else
 550:       {
 551:         val = num.substring (start, point);
 552:         scale = 0;
 553:       }
 554:     if (val.length () == 0)
 555:       throw new NumberFormatException ("no digits seen");
 556: 
 557:     if (negative)
 558:       val = "-" + val;
 559:     intVal = new BigInteger (val);
 560: 
 561:     // Now parse exponent.
 562:     if (point < len)
 563:       {
 564:         point++;
 565:         if (num.charAt(point) == '+')
 566:           point++;
 567: 
 568:         if (point >= len )
 569:           throw new NumberFormatException ("no exponent following e or E");
 570: 
 571:         try
 572:           {
 573:         scale -= Integer.parseInt (num.substring (point));
 574:           }
 575:         catch (NumberFormatException ex)
 576:           {
 577:             throw new NumberFormatException ("malformed exponent");
 578:           }
 579:       }
 580:   }
 581: 
 582:   public static BigDecimal valueOf (long val)
 583:   {
 584:     return valueOf (val, 0);
 585:   }
 586: 
 587:   public static BigDecimal valueOf (long val, int scale)
 588:     throws NumberFormatException
 589:   {
 590:     if ((scale == 0) && ((int)val == val))
 591:       switch ((int) val)
 592:         {
 593:         case 0:
 594:           return ZERO;
 595:         case 1:
 596:           return ONE;
 597:         }
 598: 
 599:     return new BigDecimal (BigInteger.valueOf (val), scale);
 600:   }
 601: 
 602:   public BigDecimal add (BigDecimal val)
 603:   {
 604:     // For addition, need to line up decimals.  Note that the movePointRight
 605:     // method cannot be used for this as it might return a BigDecimal with
 606:     // scale == 0 instead of the scale we need.
 607:     BigInteger op1 = intVal;
 608:     BigInteger op2 = val.intVal;
 609:     if (scale < val.scale)
 610:       op1 = op1.multiply (BigInteger.TEN.pow (val.scale - scale));
 611:     else if (scale > val.scale)
 612:       op2 = op2.multiply (BigInteger.TEN.pow (scale - val.scale));
 613: 
 614:     return new BigDecimal (op1.add (op2), Math.max (scale, val.scale));
 615:   }
 616: 
 617:   /**
 618:    * Returns a BigDecimal whose value is found first by calling the
 619:    * method add(val) and then by rounding according to the MathContext mc.
 620:    * @param val the augend
 621:    * @param mc the MathContext for rounding
 622:    * @throws ArithmeticException if the value is inexact but the rounding is
 623:    * RoundingMode.UNNECESSARY
 624:    * @return <code>this</code> + <code>val</code>, rounded if need be
 625:    * @since 1.5
 626:    */
 627:   public BigDecimal add (BigDecimal val, MathContext mc)
 628:   {
 629:     return add(val).round(mc);
 630:   }
 631: 
 632:   public BigDecimal subtract (BigDecimal val)
 633:   {
 634:     return this.add(val.negate());
 635:   }
 636: 
 637:   /**
 638:    * Returns a BigDecimal whose value is found first by calling the
 639:    * method subtract(val) and then by rounding according to the MathContext mc.
 640:    * @param val the subtrahend
 641:    * @param mc the MathContext for rounding
 642:    * @throws ArithmeticException if the value is inexact but the rounding is
 643:    * RoundingMode.UNNECESSARY
 644:    * @return <code>this</code> - <code>val</code>, rounded if need be
 645:    * @since 1.5
 646:    */
 647:   public BigDecimal subtract (BigDecimal val, MathContext mc)
 648:   {
 649:     return subtract(val).round(mc);
 650:   }
 651: 
 652:   public BigDecimal multiply (BigDecimal val)
 653:   {
 654:     return new BigDecimal (intVal.multiply (val.intVal), scale + val.scale);
 655:   }
 656: 
 657:   /**
 658:    * Returns a BigDecimal whose value is (this x val) before it is rounded
 659:    * according to the MathContext mc.
 660:    * @param val the multiplicand
 661:    * @param mc the MathContext for rounding
 662:    * @return a new BigDecimal with value approximately (this x val)
 663:    * @throws ArithmeticException if the value is inexact but the rounding mode
 664:    * is RoundingMode.UNNECESSARY
 665:    * @since 1.5
 666:    */
 667:   public BigDecimal multiply (BigDecimal val, MathContext mc)
 668:   {
 669:     return multiply(val).round(mc);
 670:   }
 671: 
 672:   public BigDecimal divide (BigDecimal val, int roundingMode)
 673:     throws ArithmeticException, IllegalArgumentException
 674:   {
 675:     return divide (val, scale, roundingMode);
 676:   }
 677: 
 678:   /**
 679:    * Returns a BigDecimal whose value is (this / val), with the specified scale
 680:    * and rounding according to the RoundingMode
 681:    * @param val the divisor
 682:    * @param scale the scale of the BigDecimal returned
 683:    * @param roundingMode the rounding mode to use
 684:    * @return a BigDecimal whose value is approximately (this / val)
 685:    * @throws ArithmeticException if divisor is zero or the rounding mode is
 686:    * UNNECESSARY but the specified scale cannot represent the value exactly
 687:    * @since 1.5
 688:    */
 689:   public BigDecimal divide(BigDecimal val,
 690:                            int scale, RoundingMode roundingMode)
 691:   {
 692:     return divide (val, scale, roundingMode.ordinal());
 693:   }
 694: 
 695:   /**
 696:    * Returns a BigDecimal whose value is (this / val) rounded according to the
 697:    * RoundingMode
 698:    * @param val the divisor
 699:    * @param roundingMode the rounding mode to use
 700:    * @return a BigDecimal whose value is approximately (this / val)
 701:    * @throws ArithmeticException if divisor is zero or the rounding mode is
 702:    * UNNECESSARY but the specified scale cannot represent the value exactly
 703:    */
 704:   public BigDecimal divide (BigDecimal val, RoundingMode roundingMode)
 705:   {
 706:     return divide (val, scale, roundingMode.ordinal());
 707:   }
 708: 
 709:   public BigDecimal divide(BigDecimal val, int newScale, int roundingMode)
 710:     throws ArithmeticException, IllegalArgumentException
 711:   {
 712:     if (roundingMode < 0 || roundingMode > 7)
 713:       throw
 714:         new IllegalArgumentException("illegal rounding mode: " + roundingMode);
 715: 
 716:     if (intVal.signum () == 0)  // handle special case of 0.0/0.0
 717:       return newScale == 0 ? ZERO : new BigDecimal (ZERO.intVal, newScale);
 718: 
 719:     // Ensure that pow gets a non-negative value.
 720:     BigInteger valIntVal = val.intVal;
 721:     int power = newScale - (scale - val.scale);
 722:     if (power < 0)
 723:       {
 724:         // Effectively increase the scale of val to avoid an
 725:         // ArithmeticException for a negative power.
 726:         valIntVal = valIntVal.multiply (BigInteger.TEN.pow (-power));
 727:         power = 0;
 728:       }
 729: 
 730:     BigInteger dividend = intVal.multiply (BigInteger.TEN.pow (power));
 731: 
 732:     BigInteger parts[] = dividend.divideAndRemainder (valIntVal);
 733: 
 734:     BigInteger unrounded = parts[0];
 735:     if (parts[1].signum () == 0) // no remainder, no rounding necessary
 736:       return new BigDecimal (unrounded, newScale);
 737: 
 738:     if (roundingMode == ROUND_UNNECESSARY)
 739:       throw new ArithmeticException ("Rounding necessary");
 740: 
 741:     int sign = intVal.signum () * valIntVal.signum ();
 742: 
 743:     if (roundingMode == ROUND_CEILING)
 744:       roundingMode = (sign > 0) ? ROUND_UP : ROUND_DOWN;
 745:     else if (roundingMode == ROUND_FLOOR)
 746:       roundingMode = (sign < 0) ? ROUND_UP : ROUND_DOWN;
 747:     else
 748:       {
 749:         // half is -1 if remainder*2 < positive intValue (*power), 0 if equal,
 750:         // 1 if >. This implies that the remainder to round is less than,
 751:         // equal to, or greater than half way to the next digit.
 752:         BigInteger posRemainder
 753:           = parts[1].signum () < 0 ? parts[1].negate() : parts[1];
 754:         valIntVal = valIntVal.signum () < 0 ? valIntVal.negate () : valIntVal;
 755:         int half = posRemainder.shiftLeft(1).compareTo(valIntVal);
 756: 
 757:         switch(roundingMode)
 758:           {
 759:           case ROUND_HALF_UP:
 760:             roundingMode = (half < 0) ? ROUND_DOWN : ROUND_UP;
 761:             break;
 762:           case ROUND_HALF_DOWN:
 763:             roundingMode = (half > 0) ? ROUND_UP : ROUND_DOWN;
 764:             break;
 765:           case ROUND_HALF_EVEN:
 766:             if (half < 0)
 767:               roundingMode = ROUND_DOWN;
 768:             else if (half > 0)
 769:               roundingMode = ROUND_UP;
 770:             else if (unrounded.testBit(0)) // odd, then ROUND_HALF_UP
 771:               roundingMode = ROUND_UP;
 772:             else                           // even, ROUND_HALF_DOWN
 773:               roundingMode = ROUND_DOWN;
 774:             break;
 775:           }
 776:       }
 777: 
 778:     if (roundingMode == ROUND_UP)
 779:       unrounded = unrounded.add (BigInteger.valueOf (sign > 0 ? 1 : -1));
 780: 
 781:     // roundingMode == ROUND_DOWN
 782:     return new BigDecimal (unrounded, newScale);
 783:   }
 784: 
 785:   /**
 786:    * Performs division, if the resulting quotient requires rounding
 787:    * (has a nonterminating decimal expansion),
 788:    * an ArithmeticException is thrown.
 789:    * #see divide(BigDecimal, int, int)
 790:    * @since 1.5
 791:    */
 792:   public BigDecimal divide(BigDecimal divisor)
 793:     throws ArithmeticException, IllegalArgumentException
 794:   {
 795:     return divide(divisor, scale, ROUND_UNNECESSARY);
 796:   }
 797: 
 798:   /**
 799:    * Returns a BigDecimal whose value is the remainder in the quotient
 800:    * this / val.  This is obtained by
 801:    * subtract(divideToIntegralValue(val).multiply(val)).
 802:    * @param val the divisor
 803:    * @return a BigDecimal whose value is the remainder
 804:    * @throws ArithmeticException if val == 0
 805:    * @since 1.5
 806:    */
 807:   public BigDecimal remainder(BigDecimal val)
 808:   {
 809:     return subtract(divideToIntegralValue(val).multiply(val));
 810:   }
 811: 
 812:   /**
 813:    * Returns a BigDecimal array, the first element of which is the integer part
 814:    * of this / val, and the second element of which is the remainder of
 815:    * that quotient.
 816:    * @param val the divisor
 817:    * @return the above described BigDecimal array
 818:    * @throws ArithmeticException if val == 0
 819:    * @since 1.5
 820:    */
 821:   public BigDecimal[] divideAndRemainder(BigDecimal val)
 822:   {
 823:     BigDecimal[] result = new BigDecimal[2];
 824:     result[0] = divideToIntegralValue(val);
 825:     result[1] = subtract(result[0].multiply(val));
 826:     return result;
 827:   }
 828: 
 829:   /**
 830:    * Returns a BigDecimal whose value is the integer part of the quotient
 831:    * this / val.  The preferred scale is this.scale - val.scale.
 832:    * @param val the divisor
 833:    * @return a BigDecimal whose value is the integer part of this / val.
 834:    * @throws ArithmeticException if val == 0
 835:    * @since 1.5
 836:    */
 837:   public BigDecimal divideToIntegralValue(BigDecimal val)
 838:   {
 839:     return divide(val, ROUND_DOWN).floor().setScale(scale - val.scale, ROUND_DOWN);
 840:   }
 841: 
 842:   /**
 843:    * Mutates this BigDecimal into one with no fractional part, whose value is
 844:    * equal to the largest integer that is <= to this BigDecimal.  Note that
 845:    * since this method is private it is okay to mutate this BigDecimal.
 846:    * @return the BigDecimal obtained through the floor operation on this
 847:    * BigDecimal.
 848:    */
 849:   private BigDecimal floor()
 850:   {
 851:     if (scale <= 0)
 852:       return this;
 853:     String intValStr = intVal.toString();
 854:     intValStr = intValStr.substring(0, intValStr.length() - scale);
 855:     intVal = new BigInteger(intValStr).multiply(BigInteger.TEN.pow(scale));
 856:     return this;
 857:   }
 858: 
 859:   public int compareTo (BigDecimal val)
 860:   {
 861:     if (scale == val.scale)
 862:       return intVal.compareTo (val.intVal);
 863: 
 864:     BigInteger thisParts[] =
 865:       intVal.divideAndRemainder (BigInteger.TEN.pow (scale));
 866:     BigInteger valParts[] =
 867:       val.intVal.divideAndRemainder (BigInteger.TEN.pow (val.scale));
 868: 
 869:     int compare;
 870:     if ((compare = thisParts[0].compareTo (valParts[0])) != 0)
 871:       return compare;
 872: 
 873:     // quotients are the same, so compare remainders
 874: 
 875:     // Add some trailing zeros to the remainder with the smallest scale
 876:     if (scale < val.scale)
 877:       thisParts[1] = thisParts[1].multiply
 878:                         (BigInteger.valueOf (10).pow (val.scale - scale));
 879:     else if (scale > val.scale)
 880:       valParts[1] = valParts[1].multiply
 881:                         (BigInteger.valueOf (10).pow (scale - val.scale));
 882: 
 883:     // and compare them
 884:     return thisParts[1].compareTo (valParts[1]);
 885:   }
 886: 
 887:   public boolean equals (Object o)
 888:   {
 889:     return (o instanceof BigDecimal
 890:             && scale == ((BigDecimal) o).scale
 891:             && compareTo ((BigDecimal) o) == 0);
 892:   }
 893: 
 894:   public int hashCode()
 895:   {
 896:     return intValue() ^ scale;
 897:   }
 898: 
 899:   public BigDecimal max (BigDecimal val)
 900:   {
 901:     switch (compareTo (val))
 902:       {
 903:       case 1:
 904:         return this;
 905:       default:
 906:         return val;
 907:       }
 908:   }
 909: 
 910:   public BigDecimal min (BigDecimal val)
 911:   {
 912:     switch (compareTo (val))
 913:       {
 914:       case -1:
 915:         return this;
 916:       default:
 917:         return val;
 918:       }
 919:   }
 920: 
 921:   public BigDecimal movePointLeft (int n)
 922:   {
 923:     return (n < 0) ? movePointRight (-n) : new BigDecimal (intVal, scale + n);
 924:   }
 925: 
 926:   public BigDecimal movePointRight (int n)
 927:   {
 928:     if (n < 0)
 929:       return movePointLeft (-n);
 930: 
 931:     if (scale >= n)
 932:       return new BigDecimal (intVal, scale - n);
 933: 
 934:     return new BigDecimal (intVal.multiply
 935:                            (BigInteger.TEN.pow (n - scale)), 0);
 936:   }
 937: 
 938:   public int signum ()
 939:   {
 940:     return intVal.signum ();
 941:   }
 942: 
 943:   public int scale ()
 944:   {
 945:     return scale;
 946:   }
 947: 
 948:   public BigInteger unscaledValue()
 949:   {
 950:     return intVal;
 951:   }
 952: 
 953:   public BigDecimal abs ()
 954:   {
 955:     return new BigDecimal (intVal.abs (), scale);
 956:   }
 957: 
 958:   public BigDecimal negate ()
 959:   {
 960:     return new BigDecimal (intVal.negate (), scale);
 961:   }
 962: 
 963:   /**
 964:    * Returns a BigDecimal whose value is found first by negating this via
 965:    * the negate() method, then by rounding according to the MathContext mc.
 966:    * @param mc the MathContext for rounding
 967:    * @return a BigDecimal whose value is approximately (-this)
 968:    * @throws ArithmeticException if the value is inexact but the rounding mode
 969:    * is RoundingMode.UNNECESSARY
 970:    * @since 1.5
 971:    */
 972:   public BigDecimal negate(MathContext mc)
 973:   {
 974:     BigDecimal result = negate();
 975:     if (mc.getPrecision() != 0)
 976:       result = result.round(mc);
 977:     return result;
 978:   }
 979: 
 980:   /**
 981:    * Returns this BigDecimal.  This is included for symmetry with the
 982:    * method negate().
 983:    * @return this
 984:    * @since 1.5
 985:    */
 986:   public BigDecimal plus()
 987:   {
 988:     return this;
 989:   }
 990: 
 991:   /**
 992:    * Returns a BigDecimal whose value is found by rounding <code>this</code>
 993:    * according to the MathContext.  This is the same as round(MathContext).
 994:    * @param mc the MathContext for rounding
 995:    * @return a BigDecimal whose value is <code>this</code> before being rounded
 996:    * @throws ArithmeticException if the value is inexact but the rounding mode
 997:    * is RoundingMode.UNNECESSARY
 998:    * @since 1.5
 999:    */
1000:   public BigDecimal plus(MathContext mc)
1001:   {
1002:     return round(mc);
1003:   }
1004: 
1005:   /**
1006:    * Returns a BigDecimal which is this BigDecimal rounded according to the
1007:    * MathContext rounding settings.
1008:    * @param mc the MathContext that tells us how to round
1009:    * @return the rounded BigDecimal
1010:    */
1011:   public BigDecimal round(MathContext mc)
1012:   {
1013:     int mcPrecision = mc.getPrecision();
1014:     int numToChop = precision() - mcPrecision;
1015:     // If mc specifies not to chop any digits or if we've already chopped
1016:     // enough digits (say by using a MathContext in the constructor for this
1017:     // BigDecimal) then just return this.
1018:     if (mcPrecision == 0 || numToChop <= 0)
1019:       return this;
1020: 
1021:     // Make a new BigDecimal which is the correct power of 10 to chop off
1022:     // the required number of digits and then call divide.
1023:     BigDecimal div = new BigDecimal(BigInteger.TEN.pow(numToChop));
1024:     BigDecimal rounded = divide(div, scale, mc.getRoundingMode().ordinal());
1025:     rounded.scale -= numToChop;
1026:     rounded.precision = mcPrecision;
1027:     return rounded;
1028:   }
1029: 
1030:   /**
1031:    * Returns the precision of this BigDecimal (the number of digits in the
1032:    * unscaled value).  The precision of a zero value is 1.
1033:    * @return the number of digits in the unscaled value, or 1 if the value
1034:    * is zero.
1035:    */
1036:   public int precision()
1037:   {
1038:     if (precision == 0)
1039:       {
1040:         String s = intVal.toString();
1041:         precision = s.length() - (( s.charAt(0) == '-' ) ? 1 : 0);
1042:       }
1043:     return precision;
1044:   }
1045: 
1046:   /**
1047:    * Returns the String representation of this BigDecimal, using scientific
1048:    * notation if necessary.  The following steps are taken to generate
1049:    * the result:
1050:    *
1051:    * 1. the BigInteger unscaledValue's toString method is called and if
1052:    * <code>scale == 0<code> is returned.
1053:    * 2. an <code>int adjExp</code> is created which is equal to the negation
1054:    * of <code>scale</code> plus the number of digits in the unscaled value,
1055:    * minus one.
1056:    * 3. if <code>scale >= 0 && adjExp >= -6</code> then we represent this
1057:    * BigDecimal without scientific notation.  A decimal is added if the
1058:    * scale is positive and zeros are prepended as necessary.
1059:    * 4. if scale is negative or adjExp is less than -6 we use scientific
1060:    * notation.  If the unscaled value has more than one digit, a decimal
1061:    * as inserted after the first digit, the character 'E' is appended
1062:    * and adjExp is appended.
1063:    */
1064:   public String toString()
1065:   {
1066:     // bigStr is the String representation of the unscaled value.  If
1067:     // scale is zero we simply return this.
1068:     String bigStr = intVal.toString();
1069:     if (scale == 0)
1070:       return bigStr;
1071: 
1072:     boolean negative = (bigStr.charAt(0) == '-');
1073:     int point = bigStr.length() - scale - (negative ? 1 : 0);
1074: 
1075:     CPStringBuilder val = new CPStringBuilder();
1076: 
1077:     if (scale >= 0 && (point - 1) >= -6)
1078:       {
1079:         // Convert to character form without scientific notation.
1080:         if (point <= 0)
1081:           {
1082:             // Zeros need to be prepended to the StringBuilder.
1083:             if (negative)
1084:               val.append('-');
1085:             // Prepend a '0' and a '.' and then as many more '0's as necessary.
1086:             val.append('0').append('.');
1087:             while (point < 0)
1088:               {
1089:                 val.append('0');
1090:                 point++;
1091:               }
1092:             // Append the unscaled value.
1093:             val.append(bigStr.substring(negative ? 1 : 0));
1094:           }
1095:         else
1096:           {
1097:             // No zeros need to be prepended so the String is simply the
1098:             // unscaled value with the decimal point inserted.
1099:             val.append(bigStr);
1100:             val.insert(point + (negative ? 1 : 0), '.');
1101:           }
1102:       }
1103:     else
1104:       {
1105:         // We must use scientific notation to represent this BigDecimal.
1106:         val.append(bigStr);
1107:         // If there is more than one digit in the unscaled value we put a
1108:         // decimal after the first digit.
1109:         if (bigStr.length() > 1)
1110:           val.insert( ( negative ? 2 : 1 ), '.');
1111:         // And then append 'E' and the exponent = (point - 1).
1112:         val.append('E');
1113:         if (point - 1 >= 0)
1114:           val.append('+');
1115:         val.append( point - 1 );
1116:       }
1117:     return val.toString();
1118:   }
1119: 
1120:   /**
1121:    * Returns the String representation of this BigDecimal, using engineering
1122:    * notation if necessary.  This is similar to toString() but when exponents
1123:    * are used the exponent is made to be a multiple of 3 such that the integer
1124:    * part is between 1 and 999.
1125:    *
1126:    * @return a String representation of this BigDecimal in engineering notation
1127:    * @since 1.5
1128:    */
1129:   public String toEngineeringString()
1130:   {
1131:     // bigStr is the String representation of the unscaled value.  If
1132:     // scale is zero we simply return this.
1133:     String bigStr = intVal.toString();
1134:     if (scale == 0)
1135:       return bigStr;
1136: 
1137:     boolean negative = (bigStr.charAt(0) == '-');
1138:     int point = bigStr.length() - scale - (negative ? 1 : 0);
1139: 
1140:     // This is the adjusted exponent described above.
1141:     int adjExp = point - 1;
1142:     CPStringBuilder val = new CPStringBuilder();
1143: 
1144:     if (scale >= 0 && adjExp >= -6)
1145:       {
1146:         // Convert to character form without scientific notation.
1147:         if (point <= 0)
1148:           {
1149:             // Zeros need to be prepended to the StringBuilder.
1150:             if (negative)
1151:               val.append('-');
1152:             // Prepend a '0' and a '.' and then as many more '0's as necessary.
1153:             val.append('0').append('.');
1154:             while (point < 0)
1155:               {
1156:                 val.append('0');
1157:                 point++;
1158:               }
1159:             // Append the unscaled value.
1160:             val.append(bigStr.substring(negative ? 1 : 0));
1161:           }
1162:         else
1163:           {
1164:             // No zeros need to be prepended so the String is simply the
1165:             // unscaled value with the decimal point inserted.
1166:             val.append(bigStr);
1167:             val.insert(point + (negative ? 1 : 0), '.');
1168:           }
1169:       }
1170:     else
1171:       {
1172:         // We must use scientific notation to represent this BigDecimal.
1173:         // The exponent must be a multiple of 3 and the integer part
1174:         // must be between 1 and 999.
1175:         val.append(bigStr);
1176:         int zeros = adjExp % 3;
1177:         int dot = 1;
1178:         if (adjExp > 0)
1179:           {
1180:             // If the exponent is positive we just move the decimal to the
1181:             // right and decrease the exponent until it is a multiple of 3.
1182:             dot += zeros;
1183:             adjExp -= zeros;
1184:           }
1185:         else
1186:           {
1187:             // If the exponent is negative then we move the dot to the right
1188:             // and decrease the exponent (increase its magnitude) until
1189:             // it is a multiple of 3.  Note that this is not adjExp -= zeros
1190:             // because the mod operator doesn't give us the distance to the
1191:             // correct multiple of 3.  (-5 mod 3) is -2 but the distance from
1192:             // -5 to the correct multiple of 3 (-6) is 1, not 2.
1193:             if (zeros == -2)
1194:               {
1195:                 dot += 1;
1196:                 adjExp -= 1;
1197:               }
1198:             else if (zeros == -1)
1199:               {
1200:                 dot += 2;
1201:                 adjExp -= 2;
1202:               }
1203:           }
1204: 
1205:         // Either we have to append zeros because, for example, 1.1E+5 should
1206:         // be 110E+3, or we just have to put the decimal in the right place.
1207:         if (dot > val.length())
1208:           {
1209:             while (dot > val.length())
1210:               val.append('0');
1211:           }
1212:         else if (bigStr.length() > dot)
1213:           val.insert(dot + (negative ? 1 : 0), '.');
1214: 
1215:         // And then append 'E' and the exponent (adjExp).
1216:         val.append('E');
1217:         if (adjExp >= 0)
1218:           val.append('+');
1219:         val.append(adjExp);
1220:       }
1221:     return val.toString();
1222:   }
1223: 
1224:   /**
1225:    * Returns a String representation of this BigDecimal without using
1226:    * scientific notation.  This is how toString() worked for releases 1.4
1227:    * and previous.  Zeros may be added to the end of the String.  For
1228:    * example, an unscaled value of 1234 and a scale of -3 would result in
1229:    * the String 1234000, but the toString() method would return
1230:    * 1.234E+6.
1231:    * @return a String representation of this BigDecimal
1232:    * @since 1.5
1233:    */
1234:   public String toPlainString()
1235:   {
1236:     // If the scale is zero we simply return the String representation of the
1237:     // unscaled value.
1238:     String bigStr = intVal.toString();
1239:     if (scale == 0)
1240:       return bigStr;
1241: 
1242:     // Remember if we have to put a negative sign at the start.
1243:     boolean negative = (bigStr.charAt(0) == '-');
1244: 
1245:     int point = bigStr.length() - scale - (negative ? 1 : 0);
1246: 
1247:     CPStringBuilder sb = new CPStringBuilder(bigStr.length() + 2
1248:                                              + (point <= 0 ? (-point + 1) : 0));
1249:     if (point <= 0)
1250:       {
1251:         // We have to prepend zeros and a decimal point.
1252:         if (negative)
1253:           sb.append('-');
1254:         sb.append('0').append('.');
1255:         while (point < 0)
1256:           {
1257:             sb.append('0');
1258:             point++;
1259:           }
1260:         sb.append(bigStr.substring(negative ? 1 : 0));
1261:       }
1262:     else if (point < bigStr.length())
1263:       {
1264:         // No zeros need to be prepended or appended, just put the decimal
1265:         // in the right place.
1266:         sb.append(bigStr);
1267:         sb.insert(point + (negative ? 1 : 0), '.');
1268:       }
1269:     else
1270:       {
1271:         // We must append zeros instead of using scientific notation.
1272:         sb.append(bigStr);
1273:         for (int i = bigStr.length(); i < point; i++)
1274:           sb.append('0');
1275:       }
1276:     return sb.toString();
1277:   }
1278: 
1279:   /**
1280:    * Converts this BigDecimal to a BigInteger.  Any fractional part will
1281:    * be discarded.
1282:    * @return a BigDecimal whose value is equal to floor[this]
1283:    */
1284:   public BigInteger toBigInteger ()
1285:   {
1286:     // If scale > 0 then we must divide, if scale > 0 then we must multiply,
1287:     // and if scale is zero then we just return intVal;
1288:     if (scale > 0)
1289:       return intVal.divide (BigInteger.TEN.pow (scale));
1290:     else if (scale < 0)
1291:       return intVal.multiply(BigInteger.TEN.pow(-scale));
1292:     return intVal;
1293:   }
1294: 
1295:   /**
1296:    * Converts this BigDecimal into a BigInteger, throwing an
1297:    * ArithmeticException if the conversion is not exact.
1298:    * @return a BigInteger whose value is equal to the value of this BigDecimal
1299:    * @since 1.5
1300:    */
1301:   public BigInteger toBigIntegerExact()
1302:   {
1303:     if (scale > 0)
1304:       {
1305:         // If we have to divide, we must check if the result is exact.
1306:         BigInteger[] result =
1307:           intVal.divideAndRemainder(BigInteger.TEN.pow(scale));
1308:         if (result[1].equals(BigInteger.ZERO))
1309:           return result[0];
1310:         throw new ArithmeticException("No exact BigInteger representation");
1311:       }
1312:     else if (scale < 0)
1313:       // If we're multiplying instead, then we needn't check for exactness.
1314:       return intVal.multiply(BigInteger.TEN.pow(-scale));
1315:     // If the scale is zero we can simply return intVal.
1316:     return intVal;
1317:   }
1318: 
1319:   public int intValue ()
1320:   {
1321:     return toBigInteger ().intValue ();
1322:   }
1323: 
1324:   /**
1325:    * Returns a BigDecimal which is numerically equal to this BigDecimal but
1326:    * with no trailing zeros in the representation.  For example, if this
1327:    * BigDecimal has [unscaledValue, scale] = [6313000, 4] this method returns
1328:    * a BigDecimal with [unscaledValue, scale] = [6313, 1].  As another
1329:    * example, [12400, -2] would become [124, -4].
1330:    * @return a numerically equal BigDecimal with no trailing zeros
1331:    */
1332:   public BigDecimal stripTrailingZeros()
1333:   {
1334:     String intValStr = intVal.toString();
1335:     int newScale = scale;
1336:     int pointer = intValStr.length() - 1;
1337:     // This loop adjusts pointer which will be used to give us the substring
1338:     // of intValStr to use in our new BigDecimal, and also accordingly
1339:     // adjusts the scale of our new BigDecimal.
1340:     while (intValStr.charAt(pointer) == '0')
1341:       {
1342:         pointer --;
1343:         newScale --;
1344:       }
1345:     // Create a new BigDecimal with the appropriate substring and then
1346:     // set its scale.
1347:     BigDecimal result = new BigDecimal(intValStr.substring(0, pointer + 1));
1348:     result.scale = newScale;
1349:     return result;
1350:   }
1351: 
1352:   public long longValue ()
1353:   {
1354:     return toBigInteger().longValue();
1355:   }
1356: 
1357:   public float floatValue()
1358:   {
1359:     return Float.valueOf(toString()).floatValue();
1360:   }
1361: 
1362:   public double doubleValue()
1363:   {
1364:     return Double.valueOf(toString()).doubleValue();
1365:   }
1366: 
1367:   public BigDecimal setScale (int scale) throws ArithmeticException
1368:   {
1369:     return setScale (scale, ROUND_UNNECESSARY);
1370:   }
1371: 
1372:   public BigDecimal setScale (int scale, int roundingMode)
1373:     throws ArithmeticException, IllegalArgumentException
1374:   {
1375:     // NOTE: The 1.5 JRE doesn't throw this, ones prior to it do and
1376:     // the spec says it should. Nevertheless, if 1.6 doesn't fix this
1377:     // we should consider removing it.
1378:     if( scale < 0 ) throw new ArithmeticException("Scale parameter < 0.");
1379:     return divide (ONE, scale, roundingMode);
1380:   }
1381: 
1382:   /**
1383:    * Returns a BigDecimal whose value is the same as this BigDecimal but whose
1384:    * representation has a scale of <code>newScale</code>.  If the scale is
1385:    * reduced then rounding may occur, according to the RoundingMode.
1386:    * @param newScale
1387:    * @param roundingMode
1388:    * @return a BigDecimal whose scale is as given, whose value is
1389:    * <code>this</code> with possible rounding
1390:    * @throws ArithmeticException if the rounding mode is UNNECESSARY but
1391:    * rounding is required
1392:    * @since 1.5
1393:    */
1394:   public BigDecimal setScale(int newScale, RoundingMode roundingMode)
1395:   {
1396:     return setScale(newScale, roundingMode.ordinal());
1397:   }
1398: 
1399:   /**
1400:    * Returns a new BigDecimal constructed from the BigDecimal(String)
1401:    * constructor using the Double.toString(double) method to obtain
1402:    * the String.
1403:    * @param val the double value used in Double.toString(double)
1404:    * @return a BigDecimal representation of val
1405:    * @throws NumberFormatException if val is NaN or infinite
1406:    * @since 1.5
1407:    */
1408:   public static BigDecimal valueOf(double val)
1409:   {
1410:     if (Double.isInfinite(val) || Double.isNaN(val))
1411:       throw new NumberFormatException("argument cannot be NaN or infinite.");
1412:     return new BigDecimal(Double.toString(val));
1413:   }
1414: 
1415:   /**
1416:    * Returns a BigDecimal whose numerical value is the numerical value
1417:    * of this BigDecimal multiplied by 10 to the power of <code>n</code>.
1418:    * @param n the power of ten
1419:    * @return the new BigDecimal
1420:    * @since 1.5
1421:    */
1422:   public BigDecimal scaleByPowerOfTen(int n)
1423:   {
1424:     BigDecimal result = new BigDecimal(intVal, scale - n);
1425:     result.precision = precision;
1426:     return result;
1427:   }
1428: 
1429:   /**
1430:    * Returns a BigDecimal whose value is <code>this</code> to the power of
1431:    * <code>n</code>.
1432:    * @param n the power
1433:    * @return the new BigDecimal
1434:    * @since 1.5
1435:    */
1436:   public BigDecimal pow(int n)
1437:   {
1438:     if (n < 0 || n > 999999999)
1439:       throw new ArithmeticException("n must be between 0 and 999999999");
1440:     BigDecimal result = new BigDecimal(intVal.pow(n), scale * n);
1441:     return result;
1442:   }
1443: 
1444:   /**
1445:    * Returns a BigDecimal whose value is determined by first calling pow(n)
1446:    * and then by rounding according to the MathContext mc.
1447:    * @param n the power
1448:    * @param mc the MathContext
1449:    * @return the new BigDecimal
1450:    * @throws ArithmeticException if n < 0 or n > 999999999 or if the result is
1451:    * inexact but the rounding is RoundingMode.UNNECESSARY
1452:    * @since 1.5
1453:    */
1454:   public BigDecimal pow(int n, MathContext mc)
1455:   {
1456:     // FIXME: The specs claim to use the X3.274-1996 algorithm.  We
1457:     // currently do not.
1458:     return pow(n).round(mc);
1459:   }
1460: 
1461:   /**
1462:    * Returns a BigDecimal whose value is the absolute value of this BigDecimal
1463:    * with rounding according to the given MathContext.
1464:    * @param mc the MathContext
1465:    * @return the new BigDecimal
1466:    */
1467:   public BigDecimal abs(MathContext mc)
1468:   {
1469:     BigDecimal result = abs();
1470:     result = result.round(mc);
1471:     return result;
1472:   }
1473: 
1474:   /**
1475:    * Returns the size of a unit in the last place of this BigDecimal.  This
1476:    * returns a BigDecimal with [unscaledValue, scale] = [1, this.scale()].
1477:    * @return the size of a unit in the last place of <code>this</code>.
1478:    * @since 1.5
1479:    */
1480:   public BigDecimal ulp()
1481:   {
1482:     return new BigDecimal(BigInteger.ONE, scale);
1483:   }
1484: 
1485:   /**
1486:    * Converts this BigDecimal to a long value.
1487:    * @return the long value
1488:    * @throws ArithmeticException if rounding occurs or if overflow occurs
1489:    * @since 1.5
1490:    */
1491:   public long longValueExact()
1492:   {
1493:     // Set scale will throw an exception if rounding occurs.
1494:     BigDecimal temp = setScale(0, ROUND_UNNECESSARY);
1495:     BigInteger tempVal = temp.intVal;
1496:     // Check for overflow.
1497:     long result = intVal.longValue();
1498:     if (tempVal.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 1
1499:         || (result < 0 && signum() == 1) || (result > 0 && signum() == -1))
1500:       throw new ArithmeticException("this BigDecimal is too " +
1501:             "large to fit into the return type");
1502: 
1503:     return intVal.longValue();
1504:   }
1505: 
1506:   /**
1507:    * Converts this BigDecimal into an int by first calling longValueExact
1508:    * and then checking that the <code>long</code> returned from that
1509:    * method fits into an <code>int</code>.
1510:    * @return an int whose value is <code>this</code>
1511:    * @throws ArithmeticException if this BigDecimal has a fractional part
1512:    * or is too large to fit into an int.
1513:    * @since 1.5
1514:    */
1515:   public int intValueExact()
1516:   {
1517:     long temp = longValueExact();
1518:     int result = (int)temp;
1519:     if (result != temp)
1520:       throw new ArithmeticException ("this BigDecimal cannot fit into an int");
1521:     return result;
1522:   }
1523: 
1524:   /**
1525:    * Converts this BigDecimal into a byte by first calling longValueExact
1526:    * and then checking that the <code>long</code> returned from that
1527:    * method fits into a <code>byte</code>.
1528:    * @return a byte whose value is <code>this</code>
1529:    * @throws ArithmeticException if this BigDecimal has a fractional part
1530:    * or is too large to fit into a byte.
1531:    * @since 1.5
1532:    */
1533:   public byte byteValueExact()
1534:   {
1535:     long temp = longValueExact();
1536:     byte result = (byte)temp;
1537:     if (result != temp)
1538:       throw new ArithmeticException ("this BigDecimal cannot fit into a byte");
1539:     return result;
1540:   }
1541: 
1542:   /**
1543:    * Converts this BigDecimal into a short by first calling longValueExact
1544:    * and then checking that the <code>long</code> returned from that
1545:    * method fits into a <code>short</code>.
1546:    * @return a short whose value is <code>this</code>
1547:    * @throws ArithmeticException if this BigDecimal has a fractional part
1548:    * or is too large to fit into a short.
1549:    * @since 1.5
1550:    */
1551:   public short shortValueExact()
1552:   {
1553:     long temp = longValueExact();
1554:     short result = (short)temp;
1555:     if (result != temp)
1556:       throw new ArithmeticException ("this BigDecimal cannot fit into a short");
1557:     return result;
1558:   }
1559: }