Source for java.lang.Math

   1: /* java.lang.Math -- common mathematical functions, native allowed
   2:    Copyright (C) 1998, 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
   3: 
   4: This file is part of GNU Classpath.
   5: 
   6: GNU Classpath is free software; you can redistribute it and/or modify
   7: it under the terms of the GNU General Public License as published by
   8: the Free Software Foundation; either version 2, or (at your option)
   9: any later version.
  10: 
  11: GNU Classpath is distributed in the hope that it will be useful, but
  12: WITHOUT ANY WARRANTY; without even the implied warranty of
  13: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14: General Public License for more details.
  15: 
  16: You should have received a copy of the GNU General Public License
  17: along with GNU Classpath; see the file COPYING.  If not, write to the
  18: Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  19: 02110-1301 USA.
  20: 
  21: Linking this library statically or dynamically with other modules is
  22: making a combined work based on this library.  Thus, the terms and
  23: conditions of the GNU General Public License cover the whole
  24: combination.
  25: 
  26: As a special exception, the copyright holders of this library give you
  27: permission to link this library with independent modules to produce an
  28: executable, regardless of the license terms of these independent
  29: modules, and to copy and distribute the resulting executable under
  30: terms of your choice, provided that you also meet, for each linked
  31: independent module, the terms and conditions of the license of that
  32: module.  An independent module is a module which is not derived from
  33: or based on this library.  If you modify this library, you may extend
  34: this exception to your version of the library, but you are not
  35: obligated to do so.  If you do not wish to do so, delete this
  36: exception statement from your version. */
  37: 
  38: 
  39: package java.lang;
  40: 
  41: import gnu.classpath.Configuration;
  42: 
  43: import java.util.Random;
  44: 
  45: /**
  46:  * Helper class containing useful mathematical functions and constants.
  47:  * <P>
  48:  *
  49:  * Note that angles are specified in radians.  Conversion functions are
  50:  * provided for your convenience.
  51:  *
  52:  * @author Paul Fisher
  53:  * @author John Keiser
  54:  * @author Eric Blake (ebb9@email.byu.edu)
  55:  * @since 1.0
  56:  */
  57: public final class Math
  58: {
  59:   /**
  60:    * Math is non-instantiable
  61:    */
  62:   private Math()
  63:   {
  64:   }
  65: 
  66:   static
  67:   {
  68:     if (Configuration.INIT_LOAD_LIBRARY)
  69:       {
  70:     System.loadLibrary("javalang");
  71:       }
  72:   }
  73: 
  74:   /**
  75:    * A random number generator, initialized on first use.
  76:    */
  77:   private static Random rand;
  78: 
  79:   /**
  80:    * The most accurate approximation to the mathematical constant <em>e</em>:
  81:    * <code>2.718281828459045</code>. Used in natural log and exp.
  82:    *
  83:    * @see #log(double)
  84:    * @see #exp(double)
  85:    */
  86:   public static final double E = 2.718281828459045;
  87: 
  88:   /**
  89:    * The most accurate approximation to the mathematical constant <em>pi</em>:
  90:    * <code>3.141592653589793</code>. This is the ratio of a circle's diameter
  91:    * to its circumference.
  92:    */
  93:   public static final double PI = 3.141592653589793;
  94: 
  95:   /**
  96:    * Take the absolute value of the argument.
  97:    * (Absolute value means make it positive.)
  98:    * <P>
  99:    *
 100:    * Note that the the largest negative value (Integer.MIN_VALUE) cannot
 101:    * be made positive.  In this case, because of the rules of negation in
 102:    * a computer, MIN_VALUE is what will be returned.
 103:    * This is a <em>negative</em> value.  You have been warned.
 104:    *
 105:    * @param i the number to take the absolute value of
 106:    * @return the absolute value
 107:    * @see Integer#MIN_VALUE
 108:    */
 109:   public static int abs(int i)
 110:   {
 111:     return (i < 0) ? -i : i;
 112:   }
 113: 
 114:   /**
 115:    * Take the absolute value of the argument.
 116:    * (Absolute value means make it positive.)
 117:    * <P>
 118:    *
 119:    * Note that the the largest negative value (Long.MIN_VALUE) cannot
 120:    * be made positive.  In this case, because of the rules of negation in
 121:    * a computer, MIN_VALUE is what will be returned.
 122:    * This is a <em>negative</em> value.  You have been warned.
 123:    *
 124:    * @param l the number to take the absolute value of
 125:    * @return the absolute value
 126:    * @see Long#MIN_VALUE
 127:    */
 128:   public static long abs(long l)
 129:   {
 130:     return (l < 0) ? -l : l;
 131:   }
 132: 
 133:   /**
 134:    * Take the absolute value of the argument.
 135:    * (Absolute value means make it positive.)
 136:    * <P>
 137:    *
 138:    * This is equivalent, but faster than, calling
 139:    * <code>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</code>.
 140:    *
 141:    * @param f the number to take the absolute value of
 142:    * @return the absolute value
 143:    */
 144:   public static float abs(float f)
 145:   {
 146:     return (f <= 0) ? 0 - f : f;
 147:   }
 148: 
 149:   /**
 150:    * Take the absolute value of the argument.
 151:    * (Absolute value means make it positive.)
 152:    *
 153:    * This is equivalent, but faster than, calling
 154:    * <code>Double.longBitsToDouble(Double.doubleToLongBits(a)
 155:    *       &lt;&lt; 1) &gt;&gt;&gt; 1);</code>.
 156:    *
 157:    * @param d the number to take the absolute value of
 158:    * @return the absolute value
 159:    */
 160:   public static double abs(double d)
 161:   {
 162:     return (d <= 0) ? 0 - d : d;
 163:   }
 164: 
 165:   /**
 166:    * Return whichever argument is smaller.
 167:    *
 168:    * @param a the first number
 169:    * @param b a second number
 170:    * @return the smaller of the two numbers
 171:    */
 172:   public static int min(int a, int b)
 173:   {
 174:     return (a < b) ? a : b;
 175:   }
 176: 
 177:   /**
 178:    * Return whichever argument is smaller.
 179:    *
 180:    * @param a the first number
 181:    * @param b a second number
 182:    * @return the smaller of the two numbers
 183:    */
 184:   public static long min(long a, long b)
 185:   {
 186:     return (a < b) ? a : b;
 187:   }
 188: 
 189:   /**
 190:    * Return whichever argument is smaller. If either argument is NaN, the
 191:    * result is NaN, and when comparing 0 and -0, -0 is always smaller.
 192:    *
 193:    * @param a the first number
 194:    * @param b a second number
 195:    * @return the smaller of the two numbers
 196:    */
 197:   public static float min(float a, float b)
 198:   {
 199:     // this check for NaN, from JLS 15.21.1, saves a method call
 200:     if (a != a)
 201:       return a;
 202:     // no need to check if b is NaN; < will work correctly
 203:     // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
 204:     if (a == 0 && b == 0)
 205:       return -(-a - b);
 206:     return (a < b) ? a : b;
 207:   }
 208: 
 209:   /**
 210:    * Return whichever argument is smaller. If either argument is NaN, the
 211:    * result is NaN, and when comparing 0 and -0, -0 is always smaller.
 212:    *
 213:    * @param a the first number
 214:    * @param b a second number
 215:    * @return the smaller of the two numbers
 216:    */
 217:   public static double min(double a, double b)
 218:   {
 219:     // this check for NaN, from JLS 15.21.1, saves a method call
 220:     if (a != a)
 221:       return a;
 222:     // no need to check if b is NaN; < will work correctly
 223:     // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
 224:     if (a == 0 && b == 0)
 225:       return -(-a - b);
 226:     return (a < b) ? a : b;
 227:   }
 228: 
 229:   /**
 230:    * Return whichever argument is larger.
 231:    *
 232:    * @param a the first number
 233:    * @param b a second number
 234:    * @return the larger of the two numbers
 235:    */
 236:   public static int max(int a, int b)
 237:   {
 238:     return (a > b) ? a : b;
 239:   }
 240: 
 241:   /**
 242:    * Return whichever argument is larger.
 243:    *
 244:    * @param a the first number
 245:    * @param b a second number
 246:    * @return the larger of the two numbers
 247:    */
 248:   public static long max(long a, long b)
 249:   {
 250:     return (a > b) ? a : b;
 251:   }
 252: 
 253:   /**
 254:    * Return whichever argument is larger. If either argument is NaN, the
 255:    * result is NaN, and when comparing 0 and -0, 0 is always larger.
 256:    *
 257:    * @param a the first number
 258:    * @param b a second number
 259:    * @return the larger of the two numbers
 260:    */
 261:   public static float max(float a, float b)
 262:   {
 263:     // this check for NaN, from JLS 15.21.1, saves a method call
 264:     if (a != a)
 265:       return a;
 266:     // no need to check if b is NaN; > will work correctly
 267:     // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
 268:     if (a == 0 && b == 0)
 269:       return a - -b;
 270:     return (a > b) ? a : b;
 271:   }
 272: 
 273:   /**
 274:    * Return whichever argument is larger. If either argument is NaN, the
 275:    * result is NaN, and when comparing 0 and -0, 0 is always larger.
 276:    *
 277:    * @param a the first number
 278:    * @param b a second number
 279:    * @return the larger of the two numbers
 280:    */
 281:   public static double max(double a, double b)
 282:   {
 283:     // this check for NaN, from JLS 15.21.1, saves a method call
 284:     if (a != a)
 285:       return a;
 286:     // no need to check if b is NaN; > will work correctly
 287:     // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
 288:     if (a == 0 && b == 0)
 289:       return a - -b;
 290:     return (a > b) ? a : b;
 291:   }
 292: 
 293:   /**
 294:    * The trigonometric function <em>sin</em>. The sine of NaN or infinity is
 295:    * NaN, and the sine of 0 retains its sign. This is accurate within 1 ulp,
 296:    * and is semi-monotonic.
 297:    *
 298:    * @param a the angle (in radians)
 299:    * @return sin(a)
 300:    */
 301:   public static native double sin(double a);
 302: 
 303:   /**
 304:    * The trigonometric function <em>cos</em>. The cosine of NaN or infinity is
 305:    * NaN. This is accurate within 1 ulp, and is semi-monotonic.
 306:    *
 307:    * @param a the angle (in radians)
 308:    * @return cos(a)
 309:    */
 310:   public static native double cos(double a);
 311: 
 312:   /**
 313:    * The trigonometric function <em>tan</em>. The tangent of NaN or infinity
 314:    * is NaN, and the tangent of 0 retains its sign. This is accurate within 1
 315:    * ulp, and is semi-monotonic.
 316:    *
 317:    * @param a the angle (in radians)
 318:    * @return tan(a)
 319:    */
 320:   public static native double tan(double a);
 321: 
 322:   /**
 323:    * The trigonometric function <em>arcsin</em>. The range of angles returned
 324:    * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or
 325:    * its absolute value is beyond 1, the result is NaN; and the arcsine of
 326:    * 0 retains its sign. This is accurate within 1 ulp, and is semi-monotonic.
 327:    *
 328:    * @param a the sin to turn back into an angle
 329:    * @return arcsin(a)
 330:    */
 331:   public static native double asin(double a);
 332: 
 333:   /**
 334:    * The trigonometric function <em>arccos</em>. The range of angles returned
 335:    * is 0 to pi radians (0 to 180 degrees). If the argument is NaN or
 336:    * its absolute value is beyond 1, the result is NaN. This is accurate
 337:    * within 1 ulp, and is semi-monotonic.
 338:    *
 339:    * @param a the cos to turn back into an angle
 340:    * @return arccos(a)
 341:    */
 342:   public static native double acos(double a);
 343: 
 344:   /**
 345:    * The trigonometric function <em>arcsin</em>. The range of angles returned
 346:    * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the
 347:    * result is NaN; and the arctangent of 0 retains its sign. This is accurate
 348:    * within 1 ulp, and is semi-monotonic.
 349:    *
 350:    * @param a the tan to turn back into an angle
 351:    * @return arcsin(a)
 352:    * @see #atan2(double, double)
 353:    */
 354:   public static native double atan(double a);
 355: 
 356:   /**
 357:    * A special version of the trigonometric function <em>arctan</em>, for
 358:    * converting rectangular coordinates <em>(x, y)</em> to polar
 359:    * <em>(r, theta)</em>. This computes the arctangent of x/y in the range
 360:    * of -pi to pi radians (-180 to 180 degrees). Special cases:<ul>
 361:    * <li>If either argument is NaN, the result is NaN.</li>
 362:    * <li>If the first argument is positive zero and the second argument is
 363:    * positive, or the first argument is positive and finite and the second
 364:    * argument is positive infinity, then the result is positive zero.</li>
 365:    * <li>If the first argument is negative zero and the second argument is
 366:    * positive, or the first argument is negative and finite and the second
 367:    * argument is positive infinity, then the result is negative zero.</li>
 368:    * <li>If the first argument is positive zero and the second argument is
 369:    * negative, or the first argument is positive and finite and the second
 370:    * argument is negative infinity, then the result is the double value
 371:    * closest to pi.</li>
 372:    * <li>If the first argument is negative zero and the second argument is
 373:    * negative, or the first argument is negative and finite and the second
 374:    * argument is negative infinity, then the result is the double value
 375:    * closest to -pi.</li>
 376:    * <li>If the first argument is positive and the second argument is
 377:    * positive zero or negative zero, or the first argument is positive
 378:    * infinity and the second argument is finite, then the result is the
 379:    * double value closest to pi/2.</li>
 380:    * <li>If the first argument is negative and the second argument is
 381:    * positive zero or negative zero, or the first argument is negative
 382:    * infinity and the second argument is finite, then the result is the
 383:    * double value closest to -pi/2.</li>
 384:    * <li>If both arguments are positive infinity, then the result is the
 385:    * double value closest to pi/4.</li>
 386:    * <li>If the first argument is positive infinity and the second argument
 387:    * is negative infinity, then the result is the double value closest to
 388:    * 3*pi/4.</li>
 389:    * <li>If the first argument is negative infinity and the second argument
 390:    * is positive infinity, then the result is the double value closest to
 391:    * -pi/4.</li>
 392:    * <li>If both arguments are negative infinity, then the result is the
 393:    * double value closest to -3*pi/4.</li>
 394:    *
 395:    * </ul><p>This is accurate within 2 ulps, and is semi-monotonic. To get r,
 396:    * use sqrt(x*x+y*y).
 397:    *
 398:    * @param y the y position
 399:    * @param x the x position
 400:    * @return <em>theta</em> in the conversion of (x, y) to (r, theta)
 401:    * @see #atan(double)
 402:    */
 403:   public static native double atan2(double y, double x);
 404: 
 405:   /**
 406:    * Take <em>e</em><sup>a</sup>.  The opposite of <code>log()</code>. If the
 407:    * argument is NaN, the result is NaN; if the argument is positive infinity,
 408:    * the result is positive infinity; and if the argument is negative
 409:    * infinity, the result is positive zero. This is accurate within 1 ulp,
 410:    * and is semi-monotonic.
 411:    *
 412:    * @param a the number to raise to the power
 413:    * @return the number raised to the power of <em>e</em>
 414:    * @see #log(double)
 415:    * @see #pow(double, double)
 416:    */
 417:   public static native double exp(double a);
 418: 
 419:   /**
 420:    * Take ln(a) (the natural log).  The opposite of <code>exp()</code>. If the
 421:    * argument is NaN or negative, the result is NaN; if the argument is
 422:    * positive infinity, the result is positive infinity; and if the argument
 423:    * is either zero, the result is negative infinity. This is accurate within
 424:    * 1 ulp, and is semi-monotonic.
 425:    *
 426:    * <p>Note that the way to get log<sub>b</sub>(a) is to do this:
 427:    * <code>ln(a) / ln(b)</code>.
 428:    *
 429:    * @param a the number to take the natural log of
 430:    * @return the natural log of <code>a</code>
 431:    * @see #exp(double)
 432:    */
 433:   public static native double log(double a);
 434: 
 435:   /**
 436:    * Take a square root. If the argument is NaN or negative, the result is
 437:    * NaN; if the argument is positive infinity, the result is positive
 438:    * infinity; and if the result is either zero, the result is the same.
 439:    * This is accurate within the limits of doubles.
 440:    *
 441:    * <p>For other roots, use pow(a, 1 / rootNumber).
 442:    *
 443:    * @param a the numeric argument
 444:    * @return the square root of the argument
 445:    * @see #pow(double, double)
 446:    */
 447:   public static native double sqrt(double a);
 448: 
 449:   /**
 450:    * Raise a number to a power. Special cases:<ul>
 451:    * <li>If the second argument is positive or negative zero, then the result
 452:    * is 1.0.</li>
 453:    * <li>If the second argument is 1.0, then the result is the same as the
 454:    * first argument.</li>
 455:    * <li>If the second argument is NaN, then the result is NaN.</li>
 456:    * <li>If the first argument is NaN and the second argument is nonzero,
 457:    * then the result is NaN.</li>
 458:    * <li>If the absolute value of the first argument is greater than 1 and
 459:    * the second argument is positive infinity, or the absolute value of the
 460:    * first argument is less than 1 and the second argument is negative
 461:    * infinity, then the result is positive infinity.</li>
 462:    * <li>If the absolute value of the first argument is greater than 1 and
 463:    * the second argument is negative infinity, or the absolute value of the
 464:    * first argument is less than 1 and the second argument is positive
 465:    * infinity, then the result is positive zero.</li>
 466:    * <li>If the absolute value of the first argument equals 1 and the second
 467:    * argument is infinite, then the result is NaN.</li>
 468:    * <li>If the first argument is positive zero and the second argument is
 469:    * greater than zero, or the first argument is positive infinity and the
 470:    * second argument is less than zero, then the result is positive zero.</li>
 471:    * <li>If the first argument is positive zero and the second argument is
 472:    * less than zero, or the first argument is positive infinity and the
 473:    * second argument is greater than zero, then the result is positive
 474:    * infinity.</li>
 475:    * <li>If the first argument is negative zero and the second argument is
 476:    * greater than zero but not a finite odd integer, or the first argument is
 477:    * negative infinity and the second argument is less than zero but not a
 478:    * finite odd integer, then the result is positive zero.</li>
 479:    * <li>If the first argument is negative zero and the second argument is a
 480:    * positive finite odd integer, or the first argument is negative infinity
 481:    * and the second argument is a negative finite odd integer, then the result
 482:    * is negative zero.</li>
 483:    * <li>If the first argument is negative zero and the second argument is
 484:    * less than zero but not a finite odd integer, or the first argument is
 485:    * negative infinity and the second argument is greater than zero but not a
 486:    * finite odd integer, then the result is positive infinity.</li>
 487:    * <li>If the first argument is negative zero and the second argument is a
 488:    * negative finite odd integer, or the first argument is negative infinity
 489:    * and the second argument is a positive finite odd integer, then the result
 490:    * is negative infinity.</li>
 491:    * <li>If the first argument is less than zero and the second argument is a
 492:    * finite even integer, then the result is equal to the result of raising
 493:    * the absolute value of the first argument to the power of the second
 494:    * argument.</li>
 495:    * <li>If the first argument is less than zero and the second argument is a
 496:    * finite odd integer, then the result is equal to the negative of the
 497:    * result of raising the absolute value of the first argument to the power
 498:    * of the second argument.</li>
 499:    * <li>If the first argument is finite and less than zero and the second
 500:    * argument is finite and not an integer, then the result is NaN.</li>
 501:    * <li>If both arguments are integers, then the result is exactly equal to
 502:    * the mathematical result of raising the first argument to the power of
 503:    * the second argument if that result can in fact be represented exactly as
 504:    * a double value.</li>
 505:    *
 506:    * </ul><p>(In the foregoing descriptions, a floating-point value is
 507:    * considered to be an integer if and only if it is a fixed point of the
 508:    * method {@link #ceil(double)} or, equivalently, a fixed point of the
 509:    * method {@link #floor(double)}. A value is a fixed point of a one-argument
 510:    * method if and only if the result of applying the method to the value is
 511:    * equal to the value.) This is accurate within 1 ulp, and is semi-monotonic.
 512:    *
 513:    * @param a the number to raise
 514:    * @param b the power to raise it to
 515:    * @return a<sup>b</sup>
 516:    */
 517:   public static native double pow(double a, double b);
 518: 
 519:   /**
 520:    * Get the IEEE 754 floating point remainder on two numbers. This is the
 521:    * value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest
 522:    * double to <code>x / y</code> (ties go to the even n); for a zero
 523:    * remainder, the sign is that of <code>x</code>. If either argument is NaN,
 524:    * the first argument is infinite, or the second argument is zero, the result
 525:    * is NaN; if x is finite but y is infinite, the result is x. This is
 526:    * accurate within the limits of doubles.
 527:    *
 528:    * @param x the dividend (the top half)
 529:    * @param y the divisor (the bottom half)
 530:    * @return the IEEE 754-defined floating point remainder of x/y
 531:    * @see #rint(double)
 532:    */
 533:   public static native double IEEEremainder(double x, double y);
 534: 
 535:   /**
 536:    * Take the nearest integer that is that is greater than or equal to the
 537:    * argument. If the argument is NaN, infinite, or zero, the result is the
 538:    * same; if the argument is between -1 and 0, the result is negative zero.
 539:    * Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
 540:    *
 541:    * @param a the value to act upon
 542:    * @return the nearest integer &gt;= <code>a</code>
 543:    */
 544:   public static native double ceil(double a);
 545: 
 546:   /**
 547:    * Take the nearest integer that is that is less than or equal to the
 548:    * argument. If the argument is NaN, infinite, or zero, the result is the
 549:    * same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
 550:    *
 551:    * @param a the value to act upon
 552:    * @return the nearest integer &lt;= <code>a</code>
 553:    */
 554:   public static native double floor(double a);
 555: 
 556:   /**
 557:    * Take the nearest integer to the argument.  If it is exactly between
 558:    * two integers, the even integer is taken. If the argument is NaN,
 559:    * infinite, or zero, the result is the same.
 560:    *
 561:    * @param a the value to act upon
 562:    * @return the nearest integer to <code>a</code>
 563:    */
 564:   public static native double rint(double a);
 565: 
 566:   /**
 567:    * Take the nearest integer to the argument.  This is equivalent to
 568:    * <code>(int) Math.floor(a + 0.5f)</code>. If the argument is NaN, the result
 569:    * is 0; otherwise if the argument is outside the range of int, the result
 570:    * will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.
 571:    *
 572:    * @param a the argument to round
 573:    * @return the nearest integer to the argument
 574:    * @see Integer#MIN_VALUE
 575:    * @see Integer#MAX_VALUE
 576:    */
 577:   public static int round(float a)
 578:   {
 579:     // this check for NaN, from JLS 15.21.1, saves a method call
 580:     if (a != a)
 581:       return 0;
 582:     return (int) floor(a + 0.5f);
 583:   }
 584: 
 585:   /**
 586:    * Take the nearest long to the argument.  This is equivalent to
 587:    * <code>(long) Math.floor(a + 0.5)</code>. If the argument is NaN, the
 588:    * result is 0; otherwise if the argument is outside the range of long, the
 589:    * result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.
 590:    *
 591:    * @param a the argument to round
 592:    * @return the nearest long to the argument
 593:    * @see Long#MIN_VALUE
 594:    * @see Long#MAX_VALUE
 595:    */
 596:   public static long round(double a)
 597:   {
 598:     // this check for NaN, from JLS 15.21.1, saves a method call
 599:     if (a != a)
 600:       return 0;
 601:     return (long) floor(a + 0.5d);
 602:   }
 603: 
 604:   /**
 605:    * Get a random number.  This behaves like Random.nextDouble(), seeded by
 606:    * System.currentTimeMillis() when first called. In other words, the number
 607:    * is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).
 608:    * This random sequence is only used by this method, and is threadsafe,
 609:    * although you may want your own random number generator if it is shared
 610:    * among threads.
 611:    *
 612:    * @return a random number
 613:    * @see Random#nextDouble()
 614:    * @see System#currentTimeMillis()
 615:    */
 616:   public static synchronized double random()
 617:   {
 618:     if (rand == null)
 619:       rand = new Random();
 620:     return rand.nextDouble();
 621:   }
 622: 
 623:   /**
 624:    * Convert from degrees to radians. The formula for this is
 625:    * radians = degrees * (pi/180); however it is not always exact given the
 626:    * limitations of floating point numbers.
 627:    *
 628:    * @param degrees an angle in degrees
 629:    * @return the angle in radians
 630:    * @since 1.2
 631:    */
 632:   public static double toRadians(double degrees)
 633:   {
 634:     return (degrees * PI) / 180;
 635:   }
 636: 
 637:   /**
 638:    * Convert from radians to degrees. The formula for this is
 639:    * degrees = radians * (180/pi); however it is not always exact given the
 640:    * limitations of floating point numbers.
 641:    *
 642:    * @param rads an angle in radians
 643:    * @return the angle in degrees
 644:    * @since 1.2
 645:    */
 646:   public static double toDegrees(double rads)
 647:   {
 648:     return (rads * 180) / PI;
 649:   }
 650: 
 651:   /**
 652:    * <p>
 653:    * Take a cube root. If the argument is <code>NaN</code>, an infinity or
 654:    * zero, then the original value is returned.  The returned result is
 655:    * within 1 ulp of the exact result.  For a finite value, <code>x</code>,
 656:    * the cube root of <code>-x</code> is equal to the negation of the cube root
 657:    * of <code>x</code>. 
 658:    * </p>
 659:    * <p>
 660:    * For a square root, use <code>sqrt</code>.  For other roots, use
 661:    * <code>pow(a, 1 / rootNumber)</code>.
 662:    * </p>
 663:    *
 664:    * @param a the numeric argument
 665:    * @return the cube root of the argument
 666:    * @see #sqrt(double)
 667:    * @see #pow(double, double)
 668:    * @since 1.5
 669:    */
 670:   public static native double cbrt(double a);
 671: 
 672:   /**
 673:    * <p>
 674:    * Returns the hyperbolic cosine of the given value.  For a value,
 675:    * <code>x</code>, the hyperbolic cosine is <code>(e<sup>x</sup> + 
 676:    * e<sup>-x</sup>)/2</code>
 677:    * with <code>e</code> being <a href="#E">Euler's number</a>.  The returned
 678:    * result is within 2.5 ulps of the exact result.
 679:    * </p>
 680:    * <p>
 681:    * If the supplied value is <code>NaN</code>, then the original value is
 682:    * returned.  For either infinity, positive infinity is returned.
 683:    * The hyperbolic cosine of zero is 1.0.
 684:    * </p>
 685:    * 
 686:    * @param a the numeric argument
 687:    * @return the hyperbolic cosine of <code>a</code>.
 688:    * @since 1.5
 689:    */
 690:   public static native double cosh(double a);
 691: 
 692:   /**
 693:    * <p>
 694:    * Returns <code>e<sup>a</sup> - 1.  For values close to 0, the
 695:    * result of <code>expm1(a) + 1</code> tend to be much closer to the
 696:    * exact result than simply <code>exp(x)</code>.  The result is within
 697:    * 1 ulp of the exact result, and results are semi-monotonic.  For finite
 698:    * inputs, the returned value is greater than or equal to -1.0.  Once
 699:    * a result enters within half a ulp of this limit, the limit is returned.
 700:    * </p>   
 701:    * <p>
 702:    * For <code>NaN</code>, positive infinity and zero, the original value
 703:    * is returned.  Negative infinity returns a result of -1.0 (the limit).
 704:    * </p>
 705:    * 
 706:    * @param a the numeric argument
 707:    * @return <code>e<sup>a</sup> - 1</code>
 708:    * @since 1.5
 709:    */
 710:   public static native double expm1(double a);
 711: 
 712:   /**
 713:    * <p>
 714:    * Returns the hypotenuse, <code>a<sup>2</sup> + b<sup>2</sup></code>,
 715:    * without intermediate overflow or underflow.  The returned result is
 716:    * within 1 ulp of the exact result.  If one parameter is held constant,
 717:    * then the result in the other parameter is semi-monotonic.
 718:    * </p>
 719:    * <p>
 720:    * If either of the arguments is an infinity, then the returned result
 721:    * is positive infinity.  Otherwise, if either argument is <code>NaN</code>,
 722:    * then <code>NaN</code> is returned.
 723:    * </p>
 724:    * 
 725:    * @param a the first parameter.
 726:    * @param b the second parameter.
 727:    * @return the hypotenuse matching the supplied parameters.
 728:    * @since 1.5
 729:    */
 730:   public static native double hypot(double a, double b);
 731: 
 732:   /**
 733:    * <p>
 734:    * Returns the base 10 logarithm of the supplied value.  The returned
 735:    * result is within 1 ulp of the exact result, and the results are
 736:    * semi-monotonic.
 737:    * </p>
 738:    * <p>
 739:    * Arguments of either <code>NaN</code> or less than zero return
 740:    * <code>NaN</code>.  An argument of positive infinity returns positive
 741:    * infinity.  Negative infinity is returned if either positive or negative
 742:    * zero is supplied.  Where the argument is the result of
 743:    * <code>10<sup>n</sup</code>, then <code>n</code> is returned.
 744:    * </p>
 745:    *
 746:    * @param a the numeric argument.
 747:    * @return the base 10 logarithm of <code>a</code>.
 748:    * @since 1.5
 749:    */
 750:   public static native double log10(double a);
 751: 
 752:   /**
 753:    * <p>
 754:    * Returns the natural logarithm resulting from the sum of the argument,
 755:    * <code>a</code> and 1.  For values close to 0, the
 756:    * result of <code>log1p(a)</code> tend to be much closer to the
 757:    * exact result than simply <code>log(1.0+a)</code>.  The returned
 758:    * result is within 1 ulp of the exact result, and the results are
 759:    * semi-monotonic.
 760:    * </p>
 761:    * <p>
 762:    * Arguments of either <code>NaN</code> or less than -1 return
 763:    * <code>NaN</code>.  An argument of positive infinity or zero
 764:    * returns the original argument.  Negative infinity is returned from an
 765:    * argument of -1.
 766:    * </p>
 767:    *
 768:    * @param a the numeric argument.
 769:    * @return the natural logarithm of <code>a</code> + 1.
 770:    * @since 1.5
 771:    */
 772:   public static native double log1p(double a);
 773: 
 774:   /**
 775:    * <p>
 776:    * Returns the sign of the argument as follows:
 777:    * </p>
 778:    * <ul>
 779:    * <li>If <code>a</code> is greater than zero, the result is 1.0.</li>
 780:    * <li>If <code>a</code> is less than zero, the result is -1.0.</li>
 781:    * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
 782:    * <li>If <code>a</code> is positive or negative zero, the result is the
 783:    * same.</li>
 784:    * </ul>
 785:    *
 786:    * @param a the numeric argument.
 787:    * @return the sign of the argument.
 788:    * @since 1.5.
 789:    */
 790:   public static double signum(double a)
 791:   {
 792:     if (Double.isNaN(a))
 793:       return Double.NaN;
 794:     if (a > 0)
 795:       return 1.0;
 796:     if (a < 0)
 797:       return -1.0;
 798:     return a;
 799:   }
 800: 
 801:   /**
 802:    * <p>
 803:    * Returns the sign of the argument as follows:
 804:    * </p>
 805:    * <ul>
 806:    * <li>If <code>a</code> is greater than zero, the result is 1.0f.</li>
 807:    * <li>If <code>a</code> is less than zero, the result is -1.0f.</li>
 808:    * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
 809:    * <li>If <code>a</code> is positive or negative zero, the result is the
 810:    * same.</li>
 811:    * </ul>
 812:    *
 813:    * @param a the numeric argument.
 814:    * @return the sign of the argument.
 815:    * @since 1.5.
 816:    */
 817:   public static float signum(float a)
 818:   {
 819:     if (Float.isNaN(a))
 820:       return Float.NaN;
 821:     if (a > 0)
 822:       return 1.0f;
 823:     if (a < 0)
 824:       return -1.0f;
 825:     return a;
 826:   }
 827: 
 828:   /**
 829:    * <p>
 830:    * Returns the hyperbolic sine of the given value.  For a value,
 831:    * <code>x</code>, the hyperbolic sine is <code>(e<sup>x</sup> - 
 832:    * e<sup>-x</sup>)/2</code>
 833:    * with <code>e</code> being <a href="#E">Euler's number</a>.  The returned
 834:    * result is within 2.5 ulps of the exact result.
 835:    * </p>
 836:    * <p>
 837:    * If the supplied value is <code>NaN</code>, an infinity or a zero, then the
 838:    * original value is returned.
 839:    * </p>
 840:    * 
 841:    * @param a the numeric argument
 842:    * @return the hyperbolic sine of <code>a</code>.
 843:    * @since 1.5
 844:    */
 845:   public static native double sinh(double a);
 846: 
 847:   /**
 848:    * <p>
 849:    * Returns the hyperbolic tangent of the given value.  For a value,
 850:    * <code>x</code>, the hyperbolic tangent is <code>(e<sup>x</sup> - 
 851:    * e<sup>-x</sup>)/(e<sup>x</sup> + e<sup>-x</sup>)</code>
 852:    * (i.e. <code>sinh(a)/cosh(a)</code>)
 853:    * with <code>e</code> being <a href="#E">Euler's number</a>.  The returned
 854:    * result is within 2.5 ulps of the exact result.  The absolute value
 855:    * of the exact result is always less than 1.  Computed results are thus
 856:    * less than or equal to 1 for finite arguments, with results within
 857:    * half a ulp of either positive or negative 1 returning the appropriate
 858:    * limit value (i.e. as if the argument was an infinity).
 859:    * </p>
 860:    * <p>
 861:    * If the supplied value is <code>NaN</code> or zero, then the original
 862:    * value is returned.  Positive infinity returns +1.0 and negative infinity
 863:    * returns -1.0.
 864:    * </p>
 865:    * 
 866:    * @param a the numeric argument
 867:    * @return the hyperbolic tangent of <code>a</code>.
 868:    * @since 1.5
 869:    */
 870:   public static native double tanh(double a);
 871: 
 872:   /**
 873:    * Return the ulp for the given double argument.  The ulp is the
 874:    * difference between the argument and the next larger double.  Note
 875:    * that the sign of the double argument is ignored, that is,
 876:    * ulp(x) == ulp(-x).  If the argument is a NaN, then NaN is returned.
 877:    * If the argument is an infinity, then +Inf is returned.  If the
 878:    * argument is zero (either positive or negative), then
 879:    * {@link Double#MIN_VALUE} is returned.
 880:    * @param d the double whose ulp should be returned
 881:    * @return the difference between the argument and the next larger double
 882:    * @since 1.5
 883:    */
 884:   public static double ulp(double d)
 885:   {
 886:     if (Double.isNaN(d))
 887:       return d;
 888:     if (Double.isInfinite(d))
 889:       return Double.POSITIVE_INFINITY;
 890:     // This handles both +0.0 and -0.0.
 891:     if (d == 0.0)
 892:       return Double.MIN_VALUE;
 893:     long bits = Double.doubleToLongBits(d);
 894:     final int mantissaBits = 52;
 895:     final int exponentBits = 11;
 896:     final long mantMask = (1L << mantissaBits) - 1;
 897:     long mantissa = bits & mantMask;
 898:     final long expMask = (1L << exponentBits) - 1;
 899:     long exponent = (bits >>> mantissaBits) & expMask;
 900: 
 901:     // Denormal number, so the answer is easy.
 902:     if (exponent == 0)
 903:       {
 904:         long result = (exponent << mantissaBits) | 1L;
 905:         return Double.longBitsToDouble(result);
 906:       }
 907: 
 908:     // Conceptually we want to have '1' as the mantissa.  Then we would
 909:     // shift the mantissa over to make a normal number.  If this underflows
 910:     // the exponent, we will make a denormal result.
 911:     long newExponent = exponent - mantissaBits;
 912:     long newMantissa;
 913:     if (newExponent > 0)
 914:       newMantissa = 0;
 915:     else
 916:       {
 917:         newMantissa = 1L << -(newExponent - 1);
 918:         newExponent = 0;
 919:       }
 920:     return Double.longBitsToDouble((newExponent << mantissaBits) | newMantissa);
 921:   }
 922: 
 923:   /**
 924:    * Return the ulp for the given float argument.  The ulp is the
 925:    * difference between the argument and the next larger float.  Note
 926:    * that the sign of the float argument is ignored, that is,
 927:    * ulp(x) == ulp(-x).  If the argument is a NaN, then NaN is returned.
 928:    * If the argument is an infinity, then +Inf is returned.  If the
 929:    * argument is zero (either positive or negative), then
 930:    * {@link Float#MIN_VALUE} is returned.
 931:    * @param f the float whose ulp should be returned
 932:    * @return the difference between the argument and the next larger float
 933:    * @since 1.5
 934:    */
 935:   public static float ulp(float f)
 936:   {
 937:     if (Float.isNaN(f))
 938:       return f;
 939:     if (Float.isInfinite(f))
 940:       return Float.POSITIVE_INFINITY;
 941:     // This handles both +0.0 and -0.0.
 942:     if (f == 0.0)
 943:       return Float.MIN_VALUE;
 944:     int bits = Float.floatToIntBits(f);
 945:     final int mantissaBits = 23;
 946:     final int exponentBits = 8;
 947:     final int mantMask = (1 << mantissaBits) - 1;
 948:     int mantissa = bits & mantMask;
 949:     final int expMask = (1 << exponentBits) - 1;
 950:     int exponent = (bits >>> mantissaBits) & expMask;
 951: 
 952:     // Denormal number, so the answer is easy.
 953:     if (exponent == 0)
 954:       {
 955:         int result = (exponent << mantissaBits) | 1;
 956:         return Float.intBitsToFloat(result);
 957:       }
 958: 
 959:     // Conceptually we want to have '1' as the mantissa.  Then we would
 960:     // shift the mantissa over to make a normal number.  If this underflows
 961:     // the exponent, we will make a denormal result.
 962:     int newExponent = exponent - mantissaBits;
 963:     int newMantissa;
 964:     if (newExponent > 0)
 965:       newMantissa = 0;
 966:     else
 967:       {
 968:         newMantissa = 1 << -(newExponent - 1);
 969:         newExponent = 0;
 970:       }
 971:     return Float.intBitsToFloat((newExponent << mantissaBits) | newMantissa);
 972:   }
 973: }