Source for java.lang.Double

   1: /* Double.java -- object wrapper for double
   2:    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
   3:    Free Software Foundation, Inc.
   4: 
   5: This file is part of GNU Classpath.
   6: 
   7: GNU Classpath is free software; you can redistribute it and/or modify
   8: it under the terms of the GNU General Public License as published by
   9: the Free Software Foundation; either version 2, or (at your option)
  10: any later version.
  11: 
  12: GNU Classpath is distributed in the hope that it will be useful, but
  13: WITHOUT ANY WARRANTY; without even the implied warranty of
  14: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15: General Public License for more details.
  16: 
  17: You should have received a copy of the GNU General Public License
  18: along with GNU Classpath; see the file COPYING.  If not, write to the
  19: Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20: 02110-1301 USA.
  21: 
  22: Linking this library statically or dynamically with other modules is
  23: making a combined work based on this library.  Thus, the terms and
  24: conditions of the GNU General Public License cover the whole
  25: combination.
  26: 
  27: As a special exception, the copyright holders of this library give you
  28: permission to link this library with independent modules to produce an
  29: executable, regardless of the license terms of these independent
  30: modules, and to copy and distribute the resulting executable under
  31: terms of your choice, provided that you also meet, for each linked
  32: independent module, the terms and conditions of the license of that
  33: module.  An independent module is a module which is not derived from
  34: or based on this library.  If you modify this library, you may extend
  35: this exception to your version of the library, but you are not
  36: obligated to do so.  If you do not wish to do so, delete this
  37: exception statement from your version. */
  38: 
  39: package java.lang;
  40: 
  41: import gnu.java.lang.CPStringBuilder;
  42: 
  43: /**
  44:  * Instances of class <code>Double</code> represent primitive
  45:  * <code>double</code> values.
  46:  *
  47:  * Additionally, this class provides various helper functions and variables
  48:  * related to doubles.
  49:  *
  50:  * @author Paul Fisher
  51:  * @author Andrew Haley (aph@cygnus.com)
  52:  * @author Eric Blake (ebb9@email.byu.edu)
  53:  * @author Tom Tromey (tromey@redhat.com)
  54:  * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
  55:  * @since 1.0
  56:  * @status partly updated to 1.5
  57:  */
  58: public final class Double extends Number implements Comparable<Double>
  59: {
  60:   /**
  61:    * Compatible with JDK 1.0+.
  62:    */
  63:   private static final long serialVersionUID = -9172774392245257468L;
  64: 
  65:   /**
  66:    * The maximum positive value a <code>double</code> may represent
  67:    * is 1.7976931348623157e+308.
  68:    */
  69:   public static final double MAX_VALUE = 1.7976931348623157e+308;
  70: 
  71:   /**
  72:    * The minimum positive value a <code>double</code> may represent
  73:    * is 5e-324.
  74:    */
  75:   public static final double MIN_VALUE = 5e-324;
  76: 
  77:   /**
  78:    * The value of a double representation -1.0/0.0, negative
  79:    * infinity.
  80:    */
  81:   public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
  82: 
  83:   /**
  84:    * The value of a double representing 1.0/0.0, positive infinity.
  85:    */
  86:   public static final double POSITIVE_INFINITY = 1.0 / 0.0;
  87: 
  88:   /**
  89:    * All IEEE 754 values of NaN have the same value in Java.
  90:    */
  91:   public static final double NaN = 0.0 / 0.0;
  92: 
  93:   /**
  94:    * The number of bits needed to represent a <code>double</code>.
  95:    * @since 1.5
  96:    */
  97:   public static final int SIZE = 64;
  98: 
  99:  /**
 100:    * The primitive type <code>double</code> is represented by this
 101:    * <code>Class</code> object.
 102:    * @since 1.1
 103:    */
 104:   public static final Class<Double> TYPE = (Class<Double>) VMClassLoader.getPrimitiveClass('D');
 105: 
 106:   /**
 107:    * Cache representation of 0
 108:    */
 109:   private static final Double ZERO = new Double(0.0d);
 110: 
 111:   /**
 112:    * Cache representation of 1
 113:    */
 114:   private static final Double ONE = new Double(1.0d);
 115: 
 116:   /**
 117:    * The immutable value of this Double.
 118:    *
 119:    * @serial the wrapped double
 120:    */
 121:   private final double value;
 122: 
 123:   /**
 124:    * Create a <code>Double</code> from the primitive <code>double</code>
 125:    * specified.
 126:    *
 127:    * @param value the <code>double</code> argument
 128:    */
 129:   public Double(double value)
 130:   {
 131:     this.value = value;
 132:   }
 133: 
 134:   /**
 135:    * Create a <code>Double</code> from the specified <code>String</code>.
 136:    * This method calls <code>Double.parseDouble()</code>.
 137:    *
 138:    * @param s the <code>String</code> to convert
 139:    * @throws NumberFormatException if <code>s</code> cannot be parsed as a
 140:    *         <code>double</code>
 141:    * @throws NullPointerException if <code>s</code> is null
 142:    * @see #parseDouble(String)
 143:    */
 144:   public Double(String s)
 145:   {
 146:     value = parseDouble(s);
 147:   }
 148: 
 149:   /**
 150:    * Convert the <code>double</code> to a <code>String</code>.
 151:    * Floating-point string representation is fairly complex: here is a
 152:    * rundown of the possible values.  "<code>[-]</code>" indicates that a
 153:    * negative sign will be printed if the value (or exponent) is negative.
 154:    * "<code>&lt;number&gt;</code>" means a string of digits ('0' to '9').
 155:    * "<code>&lt;digit&gt;</code>" means a single digit ('0' to '9').<br>
 156:    *
 157:    * <table border=1>
 158:    * <tr><th>Value of Double</th><th>String Representation</th></tr>
 159:    * <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
 160:    * <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
 161:    *     <td><code>[-]number.number</code></td></tr>
 162:    * <tr><td>Other numeric value</td>
 163:    *     <td><code>[-]&lt;digit&gt;.&lt;number&gt;
 164:    *          E[-]&lt;number&gt;</code></td></tr>
 165:    * <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
 166:    * <tr><td>NaN</td> <td><code>NaN</code></td></tr>
 167:    * </table>
 168:    *
 169:    * Yes, negative zero <em>is</em> a possible value.  Note that there is
 170:    * <em>always</em> a <code>.</code> and at least one digit printed after
 171:    * it: even if the number is 3, it will be printed as <code>3.0</code>.
 172:    * After the ".", all digits will be printed except trailing zeros. The
 173:    * result is rounded to the shortest decimal number which will parse back
 174:    * to the same double.
 175:    *
 176:    * <p>To create other output formats, use {@link java.text.NumberFormat}.
 177:    *
 178:    * @XXX specify where we are not in accord with the spec.
 179:    *
 180:    * @param d the <code>double</code> to convert
 181:    * @return the <code>String</code> representing the <code>double</code>
 182:    */
 183:   public static String toString(double d)
 184:   {
 185:     return VMDouble.toString(d, false);
 186:   }
 187: 
 188:   /**
 189:    * Convert a double value to a hexadecimal string.  This converts as
 190:    * follows:
 191:    * <ul>
 192:    * <li> A NaN value is converted to the string "NaN".
 193:    * <li> Positive infinity is converted to the string "Infinity".
 194:    * <li> Negative infinity is converted to the string "-Infinity".
 195:    * <li> For all other values, the first character of the result is '-'
 196:    * if the value is negative.  This is followed by '0x1.' if the
 197:    * value is normal, and '0x0.' if the value is denormal.  This is
 198:    * then followed by a (lower-case) hexadecimal representation of the
 199:    * mantissa, with leading zeros as required for denormal values.
 200:    * The next character is a 'p', and this is followed by a decimal
 201:    * representation of the unbiased exponent.
 202:    * </ul>
 203:    * @param d the double value
 204:    * @return the hexadecimal string representation
 205:    * @since 1.5
 206:    */
 207:   public static String toHexString(double d)
 208:   {
 209:     if (isNaN(d))
 210:       return "NaN";
 211:     if (isInfinite(d))
 212:       return d < 0 ? "-Infinity" : "Infinity";
 213: 
 214:     long bits = doubleToLongBits(d);
 215:     CPStringBuilder result = new CPStringBuilder();
 216: 
 217:     if (bits < 0)
 218:       result.append('-');
 219:     result.append("0x");
 220: 
 221:     final int mantissaBits = 52;
 222:     final int exponentBits = 11;
 223:     long mantMask = (1L << mantissaBits) - 1;
 224:     long mantissa = bits & mantMask;
 225:     long expMask = (1L << exponentBits) - 1;
 226:     long exponent = (bits >>> mantissaBits) & expMask;
 227: 
 228:     result.append(exponent == 0 ? '0' : '1');
 229:     result.append('.');
 230:     result.append(Long.toHexString(mantissa));
 231:     if (exponent == 0 && mantissa != 0)
 232:       {
 233:         // Treat denormal specially by inserting '0's to make
 234:         // the length come out right.  The constants here are
 235:         // to account for things like the '0x'.
 236:         int offset = 4 + ((bits < 0) ? 1 : 0);
 237:         // The silly +3 is here to keep the code the same between
 238:         // the Float and Double cases.  In Float the value is
 239:         // not a multiple of 4.
 240:         int desiredLength = offset + (mantissaBits + 3) / 4;
 241:         while (result.length() < desiredLength)
 242:           result.insert(offset, '0');
 243:       }
 244:     result.append('p');
 245:     if (exponent == 0 && mantissa == 0)
 246:       {
 247:         // Zero, so do nothing special.
 248:       }
 249:     else
 250:       {
 251:         // Apply bias.
 252:         boolean denormal = exponent == 0;
 253:         exponent -= (1 << (exponentBits - 1)) - 1;
 254:         // Handle denormal.
 255:         if (denormal)
 256:           ++exponent;
 257:       }
 258: 
 259:     result.append(Long.toString(exponent));
 260:     return result.toString();
 261:   }
 262: 
 263:   /**
 264:    * Returns a <code>Double</code> object wrapping the value.
 265:    * In contrast to the <code>Double</code> constructor, this method
 266:    * may cache some values.  It is used by boxing conversion.
 267:    *
 268:    * @param val the value to wrap
 269:    * @return the <code>Double</code>
 270:    * @since 1.5
 271:    */
 272:   public static Double valueOf(double val)
 273:   {
 274:     if ((val == 0.0) && (doubleToRawLongBits(val) == 0L))
 275:       return ZERO;
 276:     else if (val == 1.0)
 277:       return ONE;
 278:     else
 279:       return new Double(val);
 280:   }
 281: 
 282:  /**
 283:    * Create a new <code>Double</code> object using the <code>String</code>.
 284:    *
 285:    * @param s the <code>String</code> to convert
 286:    * @return the new <code>Double</code>
 287:    * @throws NumberFormatException if <code>s</code> cannot be parsed as a
 288:    *         <code>double</code>
 289:    * @throws NullPointerException if <code>s</code> is null.
 290:    * @see #parseDouble(String)
 291:    */
 292:   public static Double valueOf(String s)
 293:   {
 294:     return valueOf(parseDouble(s));
 295:   }
 296: 
 297:   /**
 298:    * Parse the specified <code>String</code> as a <code>double</code>. The
 299:    * extended BNF grammar is as follows:<br>
 300:    * <pre>
 301:    * <em>DecodableString</em>:
 302:    *      ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
 303:    *    | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
 304:    *    | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
 305:    *              [ <code>f</code> | <code>F</code> | <code>d</code>
 306:    *                | <code>D</code>] )
 307:    * <em>FloatingPoint</em>:
 308:    *      ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
 309:    *              [ <em>Exponent</em> ] )
 310:    *    | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
 311:    * <em>Exponent</em>:
 312:    *      ( ( <code>e</code> | <code>E</code> )
 313:    *              [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
 314:    * <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
 315:    * </pre>
 316:    *
 317:    * <p>NaN and infinity are special cases, to allow parsing of the output
 318:    * of toString.  Otherwise, the result is determined by calculating
 319:    * <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
 320:    * to the nearest double. Remember that many numbers cannot be precisely
 321:    * represented in floating point. In case of overflow, infinity is used,
 322:    * and in case of underflow, signed zero is used. Unlike Integer.parseInt,
 323:    * this does not accept Unicode digits outside the ASCII range.
 324:    *
 325:    * <p>If an unexpected character is found in the <code>String</code>, a
 326:    * <code>NumberFormatException</code> will be thrown.  Leading and trailing
 327:    * 'whitespace' is ignored via <code>String.trim()</code>, but spaces
 328:    * internal to the actual number are not allowed.
 329:    *
 330:    * <p>To parse numbers according to another format, consider using
 331:    * {@link java.text.NumberFormat}.
 332:    *
 333:    * @XXX specify where/how we are not in accord with the spec.
 334:    *
 335:    * @param str the <code>String</code> to convert
 336:    * @return the <code>double</code> value of <code>s</code>
 337:    * @throws NumberFormatException if <code>s</code> cannot be parsed as a
 338:    *         <code>double</code>
 339:    * @throws NullPointerException if <code>s</code> is null
 340:    * @see #MIN_VALUE
 341:    * @see #MAX_VALUE
 342:    * @see #POSITIVE_INFINITY
 343:    * @see #NEGATIVE_INFINITY
 344:    * @since 1.2
 345:    */
 346:   public static double parseDouble(String str)
 347:   {
 348:     return VMDouble.parseDouble(str);
 349:   }
 350: 
 351:   /**
 352:    * Return <code>true</code> if the <code>double</code> has the same
 353:    * value as <code>NaN</code>, otherwise return <code>false</code>.
 354:    *
 355:    * @param v the <code>double</code> to compare
 356:    * @return whether the argument is <code>NaN</code>.
 357:    */
 358:   public static boolean isNaN(double v)
 359:   {
 360:     // This works since NaN != NaN is the only reflexive inequality
 361:     // comparison which returns true.
 362:     return v != v;
 363:   }
 364: 
 365:   /**
 366:    * Return <code>true</code> if the <code>double</code> has a value
 367:    * equal to either <code>NEGATIVE_INFINITY</code> or
 368:    * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
 369:    *
 370:    * @param v the <code>double</code> to compare
 371:    * @return whether the argument is (-/+) infinity.
 372:    */
 373:   public static boolean isInfinite(double v)
 374:   {
 375:     return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
 376:   }
 377: 
 378:   /**
 379:    * Return <code>true</code> if the value of this <code>Double</code>
 380:    * is the same as <code>NaN</code>, otherwise return <code>false</code>.
 381:    *
 382:    * @return whether this <code>Double</code> is <code>NaN</code>
 383:    */
 384:   public boolean isNaN()
 385:   {
 386:     return isNaN(value);
 387:   }
 388: 
 389:   /**
 390:    * Return <code>true</code> if the value of this <code>Double</code>
 391:    * is the same as <code>NEGATIVE_INFINITY</code> or
 392:    * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
 393:    *
 394:    * @return whether this <code>Double</code> is (-/+) infinity
 395:    */
 396:   public boolean isInfinite()
 397:   {
 398:     return isInfinite(value);
 399:   }
 400: 
 401:   /**
 402:    * Convert the <code>double</code> value of this <code>Double</code>
 403:    * to a <code>String</code>.  This method calls
 404:    * <code>Double.toString(double)</code> to do its dirty work.
 405:    *
 406:    * @return the <code>String</code> representation
 407:    * @see #toString(double)
 408:    */
 409:   public String toString()
 410:   {
 411:     return toString(value);
 412:   }
 413: 
 414:   /**
 415:    * Return the value of this <code>Double</code> as a <code>byte</code>.
 416:    *
 417:    * @return the byte value
 418:    * @since 1.1
 419:    */
 420:   public byte byteValue()
 421:   {
 422:     return (byte) value;
 423:   }
 424: 
 425:   /**
 426:    * Return the value of this <code>Double</code> as a <code>short</code>.
 427:    *
 428:    * @return the short value
 429:    * @since 1.1
 430:    */
 431:   public short shortValue()
 432:   {
 433:     return (short) value;
 434:   }
 435: 
 436:   /**
 437:    * Return the value of this <code>Double</code> as an <code>int</code>.
 438:    *
 439:    * @return the int value
 440:    */
 441:   public int intValue()
 442:   {
 443:     return (int) value;
 444:   }
 445: 
 446:   /**
 447:    * Return the value of this <code>Double</code> as a <code>long</code>.
 448:    *
 449:    * @return the long value
 450:    */
 451:   public long longValue()
 452:   {
 453:     return (long) value;
 454:   }
 455: 
 456:   /**
 457:    * Return the value of this <code>Double</code> as a <code>float</code>.
 458:    *
 459:    * @return the float value
 460:    */
 461:   public float floatValue()
 462:   {
 463:     return (float) value;
 464:   }
 465: 
 466:   /**
 467:    * Return the value of this <code>Double</code>.
 468:    *
 469:    * @return the double value
 470:    */
 471:   public double doubleValue()
 472:   {
 473:     return value;
 474:   }
 475: 
 476:   /**
 477:    * Return a hashcode representing this Object. <code>Double</code>'s hash
 478:    * code is calculated by:<br>
 479:    * <code>long v = Double.doubleToLongBits(doubleValue());<br>
 480:    *    int hash = (int)(v^(v&gt;&gt;32))</code>.
 481:    *
 482:    * @return this Object's hash code
 483:    * @see #doubleToLongBits(double)
 484:    */
 485:   public int hashCode()
 486:   {
 487:     long v = doubleToLongBits(value);
 488:     return (int) (v ^ (v >>> 32));
 489:   }
 490: 
 491:   /**
 492:    * Returns <code>true</code> if <code>obj</code> is an instance of
 493:    * <code>Double</code> and represents the same double value. Unlike comparing
 494:    * two doubles with <code>==</code>, this treats two instances of
 495:    * <code>Double.NaN</code> as equal, but treats <code>0.0</code> and
 496:    * <code>-0.0</code> as unequal.
 497:    *
 498:    * <p>Note that <code>d1.equals(d2)</code> is identical to
 499:    * <code>doubleToLongBits(d1.doubleValue()) ==
 500:    *    doubleToLongBits(d2.doubleValue())</code>.
 501:    *
 502:    * @param obj the object to compare
 503:    * @return whether the objects are semantically equal
 504:    */
 505:   public boolean equals(Object obj)
 506:   {
 507:     if (obj instanceof Double)
 508:       {
 509:         double d = ((Double) obj).value;
 510:         return (doubleToRawLongBits(value) == doubleToRawLongBits(d)) ||
 511:           (isNaN(value) && isNaN(d));
 512:       }
 513:     return false;
 514:   }
 515: 
 516:   /**
 517:    * Convert the double to the IEEE 754 floating-point "double format" bit
 518:    * layout. Bit 63 (the most significant) is the sign bit, bits 62-52
 519:    * (masked by 0x7ff0000000000000L) represent the exponent, and bits 51-0
 520:    * (masked by 0x000fffffffffffffL) are the mantissa. This function
 521:    * collapses all versions of NaN to 0x7ff8000000000000L. The result of this
 522:    * function can be used as the argument to
 523:    * <code>Double.longBitsToDouble(long)</code> to obtain the original
 524:    * <code>double</code> value.
 525:    *
 526:    * @param value the <code>double</code> to convert
 527:    * @return the bits of the <code>double</code>
 528:    * @see #longBitsToDouble(long)
 529:    */
 530:   public static long doubleToLongBits(double value)
 531:   {
 532:     if (isNaN(value))
 533:       return 0x7ff8000000000000L;
 534:     else
 535:       return VMDouble.doubleToRawLongBits(value);
 536:   }
 537: 
 538:   /**
 539:    * Convert the double to the IEEE 754 floating-point "double format" bit
 540:    * layout. Bit 63 (the most significant) is the sign bit, bits 62-52
 541:    * (masked by 0x7ff0000000000000L) represent the exponent, and bits 51-0
 542:    * (masked by 0x000fffffffffffffL) are the mantissa. This function
 543:    * leaves NaN alone, rather than collapsing to a canonical value. The
 544:    * result of this function can be used as the argument to
 545:    * <code>Double.longBitsToDouble(long)</code> to obtain the original
 546:    * <code>double</code> value.
 547:    *
 548:    * @param value the <code>double</code> to convert
 549:    * @return the bits of the <code>double</code>
 550:    * @see #longBitsToDouble(long)
 551:    */
 552:   public static long doubleToRawLongBits(double value)
 553:   {
 554:     return VMDouble.doubleToRawLongBits(value);
 555:   }
 556: 
 557:   /**
 558:    * Convert the argument in IEEE 754 floating-point "double format" bit
 559:    * layout to the corresponding float. Bit 63 (the most significant) is the
 560:    * sign bit, bits 62-52 (masked by 0x7ff0000000000000L) represent the
 561:    * exponent, and bits 51-0 (masked by 0x000fffffffffffffL) are the mantissa.
 562:    * This function leaves NaN alone, so that you can recover the bit pattern
 563:    * with <code>Double.doubleToRawLongBits(double)</code>.
 564:    *
 565:    * @param bits the bits to convert
 566:    * @return the <code>double</code> represented by the bits
 567:    * @see #doubleToLongBits(double)
 568:    * @see #doubleToRawLongBits(double)
 569:    */
 570:   public static double longBitsToDouble(long bits)
 571:   {
 572:     return VMDouble.longBitsToDouble(bits);
 573:   }
 574: 
 575:   /**
 576:    * Compare two Doubles numerically by comparing their <code>double</code>
 577:    * values. The result is positive if the first is greater, negative if the
 578:    * second is greater, and 0 if the two are equal. However, this special
 579:    * cases NaN and signed zero as follows: NaN is considered greater than
 580:    * all other doubles, including <code>POSITIVE_INFINITY</code>, and positive
 581:    * zero is considered greater than negative zero.
 582:    *
 583:    * @param d the Double to compare
 584:    * @return the comparison
 585:    * @since 1.2
 586:    */
 587:   public int compareTo(Double d)
 588:   {
 589:     return compare(value, d.value);
 590:   }
 591: 
 592:   /**
 593:    * Behaves like <code>new Double(x).compareTo(new Double(y))</code>; in
 594:    * other words this compares two doubles, special casing NaN and zero,
 595:    * without the overhead of objects.
 596:    *
 597:    * @param x the first double to compare
 598:    * @param y the second double to compare
 599:    * @return the comparison
 600:    * @since 1.4
 601:    */
 602:   public static int compare(double x, double y)
 603:   {
 604:       // handle the easy cases:
 605:       if (x < y)
 606:           return -1;
 607:       if (x > y)
 608:           return 1;
 609: 
 610:       // handle equality respecting that 0.0 != -0.0 (hence not using x == y):
 611:       long lx = doubleToRawLongBits(x);
 612:       long ly = doubleToRawLongBits(y);
 613:       if (lx == ly)
 614:           return 0;
 615: 
 616:       // handle NaNs:
 617:       if (x != x)
 618:           return (y != y) ? 0 : 1;
 619:       else if (y != y)
 620:           return -1;
 621: 
 622:       // handle +/- 0.0
 623:       return (lx < ly) ? -1 : 1;
 624:   }
 625: }