Source for gnu.javax.crypto.mac.UMac32

   1: /* UMac32.java --
   2:    Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
   3: 
   4: This file is a part of GNU Classpath.
   5: 
   6: GNU Classpath is free software; you can redistribute it and/or modify
   7: it under the terms of the GNU General Public License as published by
   8: the Free Software Foundation; either version 2 of the License, or (at
   9: your option) any later version.
  10: 
  11: GNU Classpath is distributed in the hope that it will be useful, but
  12: WITHOUT ANY WARRANTY; without even the implied warranty of
  13: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14: General Public License for more details.
  15: 
  16: You should have received a copy of the GNU General Public License
  17: along with GNU Classpath; if not, write to the Free Software
  18: Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
  19: USA
  20: 
  21: Linking this library statically or dynamically with other modules is
  22: making a combined work based on this library.  Thus, the terms and
  23: conditions of the GNU General Public License cover the whole
  24: combination.
  25: 
  26: As a special exception, the copyright holders of this library give you
  27: permission to link this library with independent modules to produce an
  28: executable, regardless of the license terms of these independent
  29: modules, and to copy and distribute the resulting executable under
  30: terms of your choice, provided that you also meet, for each linked
  31: independent module, the terms and conditions of the license of that
  32: module.  An independent module is a module which is not derived from
  33: or based on this library.  If you modify this library, you may extend
  34: this exception to your version of the library, but you are not
  35: obligated to do so.  If you do not wish to do so, delete this
  36: exception statement from your version.  */
  37: 
  38: 
  39: package gnu.javax.crypto.mac;
  40: 
  41: import gnu.java.security.Registry;
  42: import gnu.java.security.prng.IRandom;
  43: import gnu.java.security.prng.LimitReachedException;
  44: import gnu.java.security.util.Util;
  45: import gnu.javax.crypto.cipher.CipherFactory;
  46: import gnu.javax.crypto.cipher.IBlockCipher;
  47: import gnu.javax.crypto.prng.UMacGenerator;
  48: 
  49: import java.io.UnsupportedEncodingException;
  50: import java.math.BigInteger;
  51: import java.security.InvalidKeyException;
  52: import java.util.HashMap;
  53: import java.util.Map;
  54: 
  55: /**
  56:  * The implementation of the <i>UMAC</i> (Universal Message Authentication
  57:  * Code).
  58:  * <p>
  59:  * The <i>UMAC</i> algorithms described are <i>parameterized</i>. This means
  60:  * that various low-level choices, like the endian convention and the underlying
  61:  * cryptographic primitive, have not been fixed. One must choose values for
  62:  * these parameters before the authentication tag generated by <i>UMAC</i> (for
  63:  * a given message, key, and nonce) becomes fully-defined. In this document we
  64:  * provide two collections of parameter settings, and have named the sets
  65:  * <i>UMAC16</i> and <i>UMAC32</i>. The parameter sets have been chosen based
  66:  * on experimentation and provide good performance on a wide variety of
  67:  * processors. <i>UMAC16</i> is designed to excel on processors which provide
  68:  * small-scale SIMD parallelism of the type found in Intel's MMX and Motorola's
  69:  * AltiVec instruction sets, while <i>UMAC32</i> is designed to do well on
  70:  * processors with good 32- and 64- bit support. <i>UMAC32</i> may take
  71:  * advantage of SIMD parallelism in future processors.
  72:  * <p>
  73:  * <i>UMAC</i> has been designed to allow implementations which accommodate
  74:  * <i>on-line</i> authentication. This means that pieces of the message may be
  75:  * presented to <i>UMAC</i> at different times (but in correct order) and an
  76:  * on-line implementation will be able to process the message correctly without
  77:  * the need to buffer more than a few dozen bytes of the message. For
  78:  * simplicity, the algorithms in this specification are presented as if the
  79:  * entire message being authenticated were available at once.
  80:  * <p>
  81:  * To authenticate a message, <code>Msg</code>, one first applies the
  82:  * universal hash function, resulting in a string which is typically much
  83:  * shorter than the original message. The pseudorandom function is applied to a
  84:  * nonce, and the result is used in the manner of a Vernam cipher: the
  85:  * authentication tag is the xor of the output from the hash function and the
  86:  * output from the pseudorandom function. Thus, an authentication tag is
  87:  * generated as
  88:  * <pre>
  89:  *     AuthTag = f(Nonce) xor h(Msg)
  90:  * </pre>
  91:  * <p>
  92:  * Here <code>f</code> is the pseudorandom function shared between the sender
  93:  * and the receiver, and h is a universal hash function shared by the sender and
  94:  * the receiver. In <i>UMAC</i>, a shared key is used to key the pseudorandom
  95:  * function <code>f</code>, and then <code>f</code> is used for both tag
  96:  * generation and internally to generate all of the bits needed by the universal
  97:  * hash function.
  98:  * <p>
  99:  * The universal hash function that we use is called <code>UHASH</code>. It
 100:  * combines several software-optimized algorithms into a multi-layered
 101:  * structure. The algorithm is moderately complex. Some of this complexity comes
 102:  * from extensive speed optimizations.
 103:  * <p>
 104:  * For the pseudorandom function we use the block cipher of the <i>Advanced
 105:  * Encryption Standard</i> (AES).
 106:  * <p>
 107:  * The UMAC32 parameters, considered in this implementation are:
 108:  * <pre>
 109:  *                                    UMAC32
 110:  *                                    ------
 111:  *         WORD-LEN                        4
 112:  *         UMAC-OUTPUT-LEN                 8
 113:  *         L1-KEY-LEN                   1024
 114:  *         UMAC-KEY-LEN                   16
 115:  *         ENDIAN-FAVORITE               BIG *
 116:  *         L1-OPERATIONS-SIGN       UNSIGNED
 117:  * </pre>
 118:  * <p>
 119:  * Please note that this UMAC32 differs from the one described in the paper by
 120:  * the <i>ENDIAN-FAVORITE</i> value.
 121:  * <p>
 122:  * References:
 123:  * <ol>
 124:  * <li><a href="http://www.ietf.org/internet-drafts/draft-krovetz-umac-01.txt">
 125:  * UMAC</a>: Message Authentication Code using Universal Hashing.<br>
 126:  * T. Krovetz, J. Black, S. Halevi, A. Hevia, H. Krawczyk, and P. Rogaway.</li>
 127:  * </ol>
 128:  */
 129: public class UMac32
 130:     extends BaseMac
 131: {
 132:   /**
 133:    * Property name of the user-supplied <i>Nonce</i>. The value associated to
 134:    * this property name is taken to be a byte array.
 135:    */
 136:   public static final String NONCE_MATERIAL = "gnu.crypto.umac.nonce.material";
 137:   /** Known test vector. */
 138:   // private static final String TV1 = "3E5A0E09198B0F94";
 139:   // private static final String TV1 = "5FD764A6D3A9FD9D";
 140:   // private static final String TV1 = "48658DE1D9A70304";
 141:   private static final String TV1 = "455ED214A6909F20";
 142:   private static final BigInteger MAX_NONCE_ITERATIONS = BigInteger.ONE.shiftLeft(16 * 8);
 143:   // UMAC32 parameters
 144:   static final int OUTPUT_LEN = 8;
 145:   static final int L1_KEY_LEN = 1024;
 146:   static final int KEY_LEN = 16;
 147:   /** caches the result of the correctness test, once executed. */
 148:   private static Boolean valid;
 149:   private byte[] nonce;
 150:   private UHash32 uhash32;
 151:   private BigInteger nonceReuseCount;
 152:   /** The authentication key for this instance. */
 153:   private transient byte[] K;
 154: 
 155:   /** Trivial 0-arguments constructor. */
 156:   public UMac32()
 157:   {
 158:     super("umac32");
 159:   }
 160: 
 161:   /**
 162:    * Private constructor for cloning purposes.
 163:    *
 164:    * @param that the instance to clone.
 165:    */
 166:   private UMac32(UMac32 that)
 167:   {
 168:     this();
 169: 
 170:     if (that.K != null)
 171:       this.K = (byte[]) that.K.clone();
 172:     if (that.nonce != null)
 173:       this.nonce = (byte[]) that.nonce.clone();
 174:     if (that.uhash32 != null)
 175:       this.uhash32 = (UHash32) that.uhash32.clone();
 176:     this.nonceReuseCount = that.nonceReuseCount;
 177:   }
 178: 
 179:   public Object clone()
 180:   {
 181:     return new UMac32(this);
 182:   }
 183: 
 184:   public int macSize()
 185:   {
 186:     return OUTPUT_LEN;
 187:   }
 188: 
 189:   /**
 190:    * Initialising a <i>UMAC</i> instance consists of defining values for the
 191:    * following parameters:
 192:    * <ol>
 193:    * <li>Key Material: as the value of the attribute entry keyed by
 194:    * {@link #MAC_KEY_MATERIAL}. The value is taken to be a byte array
 195:    * containing the user-specified key material. The length of this array,
 196:    * if/when defined SHOULD be exactly equal to {@link #KEY_LEN}.</li>
 197:    * <li>Nonce Material: as the value of the attribute entry keyed by
 198:    * {@link #NONCE_MATERIAL}. The value is taken to be a byte array containing
 199:    * the user-specified nonce material. The length of this array, if/when
 200:    * defined SHOULD be (a) greater than zero, and (b) less or equal to 16 (the
 201:    * size of the AES block).</li>
 202:    * </ol>
 203:    * <p>
 204:    * For convenience, this implementation accepts that not both parameters be
 205:    * always specified.
 206:    * <ul>
 207:    * <li>If the <i>Key Material</i> is specified, but the <i>Nonce Material</i>
 208:    * is not, then this implementation, re-uses the previously set <i>Nonce
 209:    * Material</i> after (a) converting the bytes to an unsigned integer, (b)
 210:    * incrementing the number by one, and (c) converting it back to 16 bytes.</li>
 211:    * <li>If the <i>Nonce Material</i> is specified, but the <i>Key Material</i>
 212:    * is not, then this implementation re-uses the previously set <i>Key Material</i>.
 213:    * </li>
 214:    * </ul>
 215:    * <p>
 216:    * This method throws an exception if no <i>Key Material</i> is specified in
 217:    * the input map, and there is no previously set/defined <i>Key Material</i>
 218:    * (from an earlier invocation of this method). If a <i>Key Material</i> can
 219:    * be used, but no <i>Nonce Material</i> is defined or previously
 220:    * set/defined, then a default value of all-zeroes shall be used.
 221:    *
 222:    * @param attributes one or both of required parameters.
 223:    * @throws InvalidKeyException the key material specified is not of the
 224:    *           correct length.
 225:    */
 226:   public void init(Map attributes) throws InvalidKeyException,
 227:       IllegalStateException
 228:   {
 229:     byte[] key = (byte[]) attributes.get(MAC_KEY_MATERIAL);
 230:     byte[] n = (byte[]) attributes.get(NONCE_MATERIAL);
 231:     boolean newKey = (key != null);
 232:     boolean newNonce = (n != null);
 233:     if (newKey)
 234:       {
 235:         if (key.length != KEY_LEN)
 236:           throw new InvalidKeyException("Key length: "
 237:                                         + String.valueOf(key.length));
 238:         K = key;
 239:       }
 240:     else
 241:       {
 242:         if (K == null)
 243:           throw new InvalidKeyException("Null Key");
 244:       }
 245:     if (newNonce)
 246:       {
 247:         if (n.length < 1 || n.length > 16)
 248:           throw new IllegalArgumentException("Invalid Nonce length: "
 249:                                              + String.valueOf(n.length));
 250:         if (n.length < 16) // pad with zeroes
 251:           {
 252:             byte[] newN = new byte[16];
 253:             System.arraycopy(n, 0, newN, 0, n.length);
 254:             nonce = newN;
 255:           }
 256:         else
 257:           nonce = n;
 258: 
 259:         nonceReuseCount = BigInteger.ZERO;
 260:       }
 261:     else if (nonce == null) // use all-0 nonce if 1st time
 262:       {
 263:         nonce = new byte[16];
 264:         nonceReuseCount = BigInteger.ZERO;
 265:       }
 266:     else if (! newKey) // increment nonce if still below max count
 267:       {
 268:         nonceReuseCount = nonceReuseCount.add(BigInteger.ONE);
 269:         if (nonceReuseCount.compareTo(MAX_NONCE_ITERATIONS) >= 0)
 270:           {
 271:             // limit reached. we SHOULD have a key
 272:             throw new InvalidKeyException("Null Key and unusable old Nonce");
 273:           }
 274:         BigInteger N = new BigInteger(1, nonce);
 275:         N = N.add(BigInteger.ONE).mod(MAX_NONCE_ITERATIONS);
 276:         n = N.toByteArray();
 277:         if (n.length == 16)
 278:           nonce = n;
 279:         else if (n.length < 16)
 280:           {
 281:             nonce = new byte[16];
 282:             System.arraycopy(n, 0, nonce, 16 - n.length, n.length);
 283:           }
 284:         else
 285:           {
 286:             nonce = new byte[16];
 287:             System.arraycopy(n, n.length - 16, nonce, 0, 16);
 288:           }
 289:       }
 290:     else // do nothing, re-use old nonce value
 291:       nonceReuseCount = BigInteger.ZERO;
 292: 
 293:     if (uhash32 == null)
 294:       uhash32 = new UHash32();
 295: 
 296:     Map map = new HashMap();
 297:     map.put(MAC_KEY_MATERIAL, K);
 298:     uhash32.init(map);
 299:   }
 300: 
 301:   public void update(byte b)
 302:   {
 303:     uhash32.update(b);
 304:   }
 305: 
 306:   public void update(byte[] b, int offset, int len)
 307:   {
 308:     uhash32.update(b, offset, len);
 309:   }
 310: 
 311:   public byte[] digest()
 312:   {
 313:     byte[] result = uhash32.digest();
 314:     byte[] pad = pdf(); // pdf(K, nonce);
 315:     for (int i = 0; i < OUTPUT_LEN; i++)
 316:       result[i] = (byte)(result[i] ^ pad[i]);
 317: 
 318:     return result;
 319:   }
 320: 
 321:   public void reset()
 322:   {
 323:     if (uhash32 != null)
 324:       uhash32.reset();
 325:   }
 326: 
 327:   public boolean selfTest()
 328:   {
 329:     if (valid == null)
 330:       {
 331:         byte[] key;
 332:         try
 333:           {
 334:             key = "abcdefghijklmnop".getBytes("ASCII");
 335:           }
 336:         catch (UnsupportedEncodingException x)
 337:           {
 338:             throw new RuntimeException("ASCII not supported");
 339:           }
 340:         byte[] nonce = new byte[] { 0, 1, 2, 3, 4, 5, 6, 7 };
 341:         UMac32 mac = new UMac32();
 342:         Map attributes = new HashMap();
 343:         attributes.put(MAC_KEY_MATERIAL, key);
 344:         attributes.put(NONCE_MATERIAL, nonce);
 345:         try
 346:           {
 347:             mac.init(attributes);
 348:           }
 349:         catch (InvalidKeyException x)
 350:           {
 351:             x.printStackTrace(System.err);
 352:             return false;
 353:           }
 354:         byte[] data = new byte[128];
 355:         data[0] = (byte) 0x80;
 356:         mac.update(data, 0, 128);
 357:         byte[] result = mac.digest();
 358:         valid = Boolean.valueOf(TV1.equals(Util.toString(result)));
 359:       }
 360:     return valid.booleanValue();
 361:   }
 362: 
 363:   /**
 364:    * @return byte array of length 8 (or OUTPUT_LEN) bytes.
 365:    */
 366:   private byte[] pdf()
 367:   {
 368:     // Make Nonce 16 bytes by prepending zeroes. done (see init())
 369:     // one AES invocation is enough for more than one PDF invocation
 370:     // number of index bits needed = 1
 371:     // Extract index bits and zero low bits of Nonce
 372:     BigInteger Nonce = new BigInteger(1, nonce);
 373:     int nlowbitsnum = Nonce.testBit(0) ? 1 : 0;
 374:     Nonce = Nonce.clearBit(0);
 375:     // Generate subkey, AES and extract indexed substring
 376:     IRandom kdf = new UMacGenerator();
 377:     Map map = new HashMap();
 378:     map.put(IBlockCipher.KEY_MATERIAL, K);
 379:     map.put(UMacGenerator.INDEX, Integer.valueOf(128));
 380:     kdf.init(map);
 381:     byte[] Kp = new byte[KEY_LEN];
 382:     try
 383:       {
 384:         kdf.nextBytes(Kp, 0, KEY_LEN);
 385:       }
 386:     catch (IllegalStateException x)
 387:       {
 388:         x.printStackTrace(System.err);
 389:         throw new RuntimeException(String.valueOf(x));
 390:       }
 391:     catch (LimitReachedException x)
 392:       {
 393:         x.printStackTrace(System.err);
 394:         throw new RuntimeException(String.valueOf(x));
 395:       }
 396:     IBlockCipher aes = CipherFactory.getInstance(Registry.AES_CIPHER);
 397:     map.put(IBlockCipher.KEY_MATERIAL, Kp);
 398:     try
 399:       {
 400:         aes.init(map);
 401:       }
 402:     catch (InvalidKeyException x)
 403:       {
 404:         x.printStackTrace(System.err);
 405:         throw new RuntimeException(String.valueOf(x));
 406:       }
 407:     catch (IllegalStateException x)
 408:       {
 409:         x.printStackTrace(System.err);
 410:         throw new RuntimeException(String.valueOf(x));
 411:       }
 412:     byte[] T = new byte[16];
 413:     aes.encryptBlock(nonce, 0, T, 0);
 414:     byte[] result = new byte[OUTPUT_LEN];
 415:     System.arraycopy(T, nlowbitsnum, result, 0, OUTPUT_LEN);
 416:     return result;
 417:   }
 418: }