Source for gnu.java.security.sig.rsa.RSA

   1: /* RSA.java --
   2:    Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
   3: 
   4: This file is a part of GNU Classpath.
   5: 
   6: GNU Classpath is free software; you can redistribute it and/or modify
   7: it under the terms of the GNU General Public License as published by
   8: the Free Software Foundation; either version 2 of the License, or (at
   9: your option) any later version.
  10: 
  11: GNU Classpath is distributed in the hope that it will be useful, but
  12: WITHOUT ANY WARRANTY; without even the implied warranty of
  13: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14: General Public License for more details.
  15: 
  16: You should have received a copy of the GNU General Public License
  17: along with GNU Classpath; if not, write to the Free Software
  18: Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
  19: USA
  20: 
  21: Linking this library statically or dynamically with other modules is
  22: making a combined work based on this library.  Thus, the terms and
  23: conditions of the GNU General Public License cover the whole
  24: combination.
  25: 
  26: As a special exception, the copyright holders of this library give you
  27: permission to link this library with independent modules to produce an
  28: executable, regardless of the license terms of these independent
  29: modules, and to copy and distribute the resulting executable under
  30: terms of your choice, provided that you also meet, for each linked
  31: independent module, the terms and conditions of the license of that
  32: module.  An independent module is a module which is not derived from
  33: or based on this library.  If you modify this library, you may extend
  34: this exception to your version of the library, but you are not
  35: obligated to do so.  If you do not wish to do so, delete this
  36: exception statement from your version.  */
  37: 
  38: 
  39: package gnu.java.security.sig.rsa;
  40: 
  41: import gnu.java.security.Properties;
  42: import gnu.java.security.util.PRNG;
  43: 
  44: import java.math.BigInteger;
  45: import java.security.PrivateKey;
  46: import java.security.PublicKey;
  47: import java.security.interfaces.RSAPrivateCrtKey;
  48: import java.security.interfaces.RSAPrivateKey;
  49: import java.security.interfaces.RSAPublicKey;
  50: 
  51: /**
  52:  * Utility methods related to the RSA algorithm.
  53:  * <p>
  54:  * References:
  55:  * <ol>
  56:  * <li><a
  57:  * href="http://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/rsa-pss.zip">
  58:  * RSA-PSS Signature Scheme with Appendix, part B.</a><br>
  59:  * Primitive specification and supporting documentation.<br>
  60:  * Jakob Jonsson and Burt Kaliski.</li>
  61:  * <li><a href="http://www.ietf.org/rfc/rfc3447.txt">Public-Key Cryptography
  62:  * Standards (PKCS) #1:</a><br>
  63:  * RSA Cryptography Specifications Version 2.1.<br>
  64:  * Jakob Jonsson and Burt Kaliski.</li>
  65:  * <li><a href="http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html">
  66:  * Remote timing attacks are practical</a><br>
  67:  * D. Boneh and D. Brumley.</li>
  68:  * </ol>
  69:  */
  70: public class RSA
  71: {
  72:   private static final BigInteger ZERO = BigInteger.ZERO;
  73: 
  74:   private static final BigInteger ONE = BigInteger.ONE;
  75: 
  76:   /** Our default source of randomness. */
  77:   private static final PRNG prng = PRNG.getInstance();
  78: 
  79:   /** Trivial private constructor to enforce Singleton pattern. */
  80:   private RSA()
  81:   {
  82:     super();
  83:   }
  84: 
  85:   /**
  86:    * An implementation of the <b>RSASP</b> method: Assuming that the designated
  87:    * RSA private key is a valid one, this method computes a <i>signature
  88:    * representative</i> for a designated <i>message representative</i> signed
  89:    * by the holder of the designated RSA private key.
  90:    *
  91:    * @param K the RSA private key.
  92:    * @param m the <i>message representative</i>: an integer between
  93:    *          <code>0</code> and <code>n - 1</code>, where <code>n</code>
  94:    *          is the RSA <i>modulus</i>.
  95:    * @return the <i>signature representative</i>, an integer between
  96:    *         <code>0</code> and <code>n - 1</code>, where <code>n</code>
  97:    *         is the RSA <i>modulus</i>.
  98:    * @throws ClassCastException if <code>K</code> is not an RSA one.
  99:    * @throws IllegalArgumentException if <code>m</code> (the <i>message
 100:    *           representative</i>) is out of range.
 101:    */
 102:   public static final BigInteger sign(final PrivateKey K, final BigInteger m)
 103:   {
 104:     try
 105:       {
 106:         return RSADP((RSAPrivateKey) K, m);
 107:       }
 108:     catch (IllegalArgumentException x)
 109:       {
 110:         throw new IllegalArgumentException("message representative out of range");
 111:       }
 112:   }
 113: 
 114:   /**
 115:    * An implementation of the <b>RSAVP</b> method: Assuming that the designated
 116:    * RSA public key is a valid one, this method computes a <i>message
 117:    * representative</i> for the designated <i>signature representative</i>
 118:    * generated by an RSA private key, for a message intended for the holder of
 119:    * the designated RSA public key.
 120:    *
 121:    * @param K the RSA public key.
 122:    * @param s the <i>signature representative</i>, an integer between
 123:    *          <code>0</code> and <code>n - 1</code>, where <code>n</code>
 124:    *          is the RSA <i>modulus</i>.
 125:    * @return a <i>message representative</i>: an integer between <code>0</code>
 126:    *         and <code>n - 1</code>, where <code>n</code> is the RSA
 127:    *         <i>modulus</i>.
 128:    * @throws ClassCastException if <code>K</code> is not an RSA one.
 129:    * @throws IllegalArgumentException if <code>s</code> (the <i>signature
 130:    *           representative</i>) is out of range.
 131:    */
 132:   public static final BigInteger verify(final PublicKey K, final BigInteger s)
 133:   {
 134:     try
 135:       {
 136:         return RSAEP((RSAPublicKey) K, s);
 137:       }
 138:     catch (IllegalArgumentException x)
 139:       {
 140:         throw new IllegalArgumentException("signature representative out of range");
 141:       }
 142:   }
 143: 
 144:   /**
 145:    * An implementation of the <code>RSAEP</code> algorithm.
 146:    *
 147:    * @param K the recipient's RSA public key.
 148:    * @param m the message representative as an MPI.
 149:    * @return the resulting MPI --an MPI between <code>0</code> and
 150:    *         <code>n - 1</code> (<code>n</code> being the public shared
 151:    *         modulus)-- that will eventually be padded with an appropriate
 152:    *         framing/padding scheme.
 153:    * @throws ClassCastException if <code>K</code> is not an RSA one.
 154:    * @throws IllegalArgumentException if <code>m</code>, the message
 155:    *           representative is not between <code>0</code> and
 156:    *           <code>n - 1</code> (<code>n</code> being the public shared
 157:    *           modulus).
 158:    */
 159:   public static final BigInteger encrypt(final PublicKey K, final BigInteger m)
 160:   {
 161:     try
 162:       {
 163:         return RSAEP((RSAPublicKey) K, m);
 164:       }
 165:     catch (IllegalArgumentException x)
 166:       {
 167:         throw new IllegalArgumentException("message representative out of range");
 168:       }
 169:   }
 170: 
 171:   /**
 172:    * An implementation of the <code>RSADP</code> algorithm.
 173:    *
 174:    * @param K the recipient's RSA private key.
 175:    * @param c the ciphertext representative as an MPI.
 176:    * @return the message representative, an MPI between <code>0</code> and
 177:    *         <code>n - 1</code> (<code>n</code> being the shared public
 178:    *         modulus).
 179:    * @throws ClassCastException if <code>K</code> is not an RSA one.
 180:    * @throws IllegalArgumentException if <code>c</code>, the ciphertext
 181:    *           representative is not between <code>0</code> and
 182:    *           <code>n - 1</code> (<code>n</code> being the shared public
 183:    *           modulus).
 184:    */
 185:   public static final BigInteger decrypt(final PrivateKey K, final BigInteger c)
 186:   {
 187:     try
 188:       {
 189:         return RSADP((RSAPrivateKey) K, c);
 190:       }
 191:     catch (IllegalArgumentException x)
 192:       {
 193:         throw new IllegalArgumentException("ciphertext representative out of range");
 194:       }
 195:   }
 196: 
 197:   /**
 198:    * Converts a <i>multi-precision integer</i> (MPI) <code>s</code> into an
 199:    * octet sequence of length <code>k</code>.
 200:    *
 201:    * @param s the multi-precision integer to convert.
 202:    * @param k the length of the output.
 203:    * @return the result of the transform.
 204:    * @exception IllegalArgumentException if the length in octets of meaningful
 205:    *              bytes of <code>s</code> is greater than <code>k</code>.
 206:    */
 207:   public static final byte[] I2OSP(final BigInteger s, final int k)
 208:   {
 209:     byte[] result = s.toByteArray();
 210:     if (result.length < k)
 211:       {
 212:         final byte[] newResult = new byte[k];
 213:         System.arraycopy(result, 0, newResult, k - result.length, result.length);
 214:         result = newResult;
 215:       }
 216:     else if (result.length > k)
 217:       { // leftmost extra bytes should all be 0
 218:         final int limit = result.length - k;
 219:         for (int i = 0; i < limit; i++)
 220:           {
 221:             if (result[i] != 0x00)
 222:               throw new IllegalArgumentException("integer too large");
 223:           }
 224:         final byte[] newResult = new byte[k];
 225:         System.arraycopy(result, limit, newResult, 0, k);
 226:         result = newResult;
 227:       }
 228:     return result;
 229:   }
 230: 
 231:   private static final BigInteger RSAEP(final RSAPublicKey K, final BigInteger m)
 232:   {
 233:     // 1. If the representative m is not between 0 and n - 1, output
 234:     // "representative out of range" and stop.
 235:     final BigInteger n = K.getModulus();
 236:     if (m.compareTo(ZERO) < 0 || m.compareTo(n.subtract(ONE)) > 0)
 237:       throw new IllegalArgumentException();
 238:     // 2. Let c = m^e mod n.
 239:     final BigInteger e = K.getPublicExponent();
 240:     final BigInteger result = m.modPow(e, n);
 241:     // 3. Output c.
 242:     return result;
 243:   }
 244: 
 245:   private static final BigInteger RSADP(final RSAPrivateKey K, BigInteger c)
 246:   {
 247:     // 1. If the representative c is not between 0 and n - 1, output
 248:     // "representative out of range" and stop.
 249:     final BigInteger n = K.getModulus();
 250:     if (c.compareTo(ZERO) < 0 || c.compareTo(n.subtract(ONE)) > 0)
 251:       throw new IllegalArgumentException();
 252:     // 2. The representative m is computed as follows.
 253:     BigInteger result;
 254:     if (! (K instanceof RSAPrivateCrtKey))
 255:       {
 256:         // a. If the first form (n, d) of K is used, let m = c^d mod n.
 257:         final BigInteger d = K.getPrivateExponent();
 258:         result = c.modPow(d, n);
 259:       }
 260:     else
 261:       {
 262:         // from [3] p.13 --see class docs:
 263:         // The RSA blinding operation calculates x = (r^e) * g mod n before
 264:         // decryption, where r is random, e is the RSA encryption exponent, and
 265:         // g is the ciphertext to be decrypted. x is then decrypted as normal,
 266:         // followed by division by r, i.e. (x^e) / r mod n. Since r is random,
 267:         // x is random and timing the decryption should not reveal information
 268:         // about the key. Note that r should be a new random number for every
 269:         // decryption.
 270:         final boolean rsaBlinding = Properties.doRSABlinding();
 271:         BigInteger r = null;
 272:         BigInteger e = null;
 273:         if (rsaBlinding)
 274:           { // pre-decryption
 275:             r = newR(n);
 276:             e = ((RSAPrivateCrtKey) K).getPublicExponent();
 277:             final BigInteger x = r.modPow(e, n).multiply(c).mod(n);
 278:             c = x;
 279:           }
 280:         // b. If the second form (p, q, dP, dQ, qInv) and (r_i, d_i, t_i)
 281:         // of K is used, proceed as follows:
 282:         final BigInteger p = ((RSAPrivateCrtKey) K).getPrimeP();
 283:         final BigInteger q = ((RSAPrivateCrtKey) K).getPrimeQ();
 284:         final BigInteger dP = ((RSAPrivateCrtKey) K).getPrimeExponentP();
 285:         final BigInteger dQ = ((RSAPrivateCrtKey) K).getPrimeExponentQ();
 286:         final BigInteger qInv = ((RSAPrivateCrtKey) K).getCrtCoefficient();
 287:         // i. Let m_1 = c^dP mod p and m_2 = c^dQ mod q.
 288:         final BigInteger m_1 = c.modPow(dP, p);
 289:         final BigInteger m_2 = c.modPow(dQ, q);
 290:         // ii. If u > 2, let m_i = c^(d_i) mod r_i, i = 3, ..., u.
 291:         // iii. Let h = (m_1 - m_2) * qInv mod p.
 292:         final BigInteger h = m_1.subtract(m_2).multiply(qInv).mod(p);
 293:         // iv. Let m = m_2 + q * h.
 294:         result = m_2.add(q.multiply(h));
 295:         if (rsaBlinding) // post-decryption
 296:           result = result.multiply(r.modInverse(n)).mod(n);
 297:       }
 298:     // 3. Output m
 299:     return result;
 300:   }
 301: 
 302:   /**
 303:    * Returns a random MPI with a random bit-length of the form <code>8b</code>,
 304:    * where <code>b</code> is in the range <code>[32..64]</code>.
 305:    *
 306:    * @return a random MPI whose length in bytes is between 32 and 64 inclusive.
 307:    */
 308:   private static final BigInteger newR(final BigInteger N)
 309:   {
 310:     final int upper = (N.bitLength() + 7) / 8;
 311:     final int lower = upper / 2;
 312:     final byte[] bl = new byte[1];
 313:     int b;
 314:     do
 315:       {
 316:         prng.nextBytes(bl);
 317:         b = bl[0] & 0xFF;
 318:       }
 319:     while (b < lower || b > upper);
 320:     final byte[] buffer = new byte[b]; // 256-bit MPI
 321:     prng.nextBytes(buffer);
 322:     return new BigInteger(1, buffer);
 323:   }
 324: }