Frames | No Frames |
1: /* RSAKeyPairGenerator.java -- 2: Copyright 2001, 2002, 2003, 2006, 2010 Free Software Foundation, Inc. 3: 4: This file is a part of GNU Classpath. 5: 6: GNU Classpath is free software; you can redistribute it and/or modify 7: it under the terms of the GNU General Public License as published by 8: the Free Software Foundation; either version 2 of the License, or (at 9: your option) any later version. 10: 11: GNU Classpath is distributed in the hope that it will be useful, but 12: WITHOUT ANY WARRANTY; without even the implied warranty of 13: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14: General Public License for more details. 15: 16: You should have received a copy of the GNU General Public License 17: along with GNU Classpath; if not, write to the Free Software 18: Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 19: USA 20: 21: Linking this library statically or dynamically with other modules is 22: making a combined work based on this library. Thus, the terms and 23: conditions of the GNU General Public License cover the whole 24: combination. 25: 26: As a special exception, the copyright holders of this library give you 27: permission to link this library with independent modules to produce an 28: executable, regardless of the license terms of these independent 29: modules, and to copy and distribute the resulting executable under 30: terms of your choice, provided that you also meet, for each linked 31: independent module, the terms and conditions of the license of that 32: module. An independent module is a module which is not derived from 33: or based on this library. If you modify this library, you may extend 34: this exception to your version of the library, but you are not 35: obligated to do so. If you do not wish to do so, delete this 36: exception statement from your version. */ 37: 38: 39: package gnu.java.security.key.rsa; 40: 41: import gnu.java.security.Configuration; 42: import gnu.java.security.Registry; 43: import gnu.java.security.key.IKeyPairGenerator; 44: import gnu.java.security.util.PRNG; 45: 46: import java.math.BigInteger; 47: import java.security.KeyPair; 48: import java.security.PrivateKey; 49: import java.security.PublicKey; 50: import java.security.SecureRandom; 51: import java.security.spec.RSAKeyGenParameterSpec; 52: import java.util.Map; 53: import java.util.logging.Logger; 54: 55: /** 56: * A key-pair generator for asymetric keys to use in conjunction with the RSA 57: * scheme. 58: * <p> 59: * Reference: 60: * <ol> 61: * <li><a 62: * href="http://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/rsa-pss.zip"> 63: * RSA-PSS Signature Scheme with Appendix</a>, part B. Primitive specification 64: * and supporting documentation. Jakob Jonsson and Burt Kaliski. </li> 65: * <li><a href="http://www.cacr.math.uwaterloo.ca/hac/">Handbook of Applied 66: * Cryptography</a>, Alfred J. Menezes, Paul C. van Oorschot and Scott A. 67: * Vanstone. Section 11.3 RSA and related signature schemes.</li> 68: * </ol> 69: */ 70: public class RSAKeyPairGenerator 71: implements IKeyPairGenerator 72: { 73: private static final Logger log = Configuration.DEBUG ? 74: Logger.getLogger(RSAKeyPairGenerator.class.getName()) : null; 75: 76: /** The BigInteger constant 1. */ 77: private static final BigInteger ONE = BigInteger.ONE; 78: 79: /** The BigInteger constant 2. */ 80: private static final BigInteger TWO = BigInteger.valueOf(2L); 81: 82: /** Property name of the length (Integer) of the modulus of an RSA key. */ 83: public static final String MODULUS_LENGTH = "gnu.crypto.rsa.L"; 84: 85: /** 86: * Property name of an optional {@link SecureRandom} instance to use. The 87: * default is to use a classloader singleton from {@link PRNG}. 88: */ 89: public static final String SOURCE_OF_RANDOMNESS = "gnu.crypto.rsa.prng"; 90: 91: /** 92: * Property name of an optional {@link RSAKeyGenParameterSpec} instance to use 93: * for this generator's <code>n</code>, and <code>e</code> values. The 94: * default is to generate <code>n</code> and use a fixed value for 95: * <code>e</.code> (Fermat's F4 number). 96: */ 97: public static final String RSA_PARAMETERS = "gnu.crypto.rsa.params"; 98: 99: /** 100: * Property name of the preferred encoding format to use when externalizing 101: * generated instance of key-pairs from this generator. The property is taken 102: * to be an {@link Integer} that encapsulates an encoding format identifier. 103: */ 104: public static final String PREFERRED_ENCODING_FORMAT = "gnu.crypto.rsa.encoding"; 105: 106: /** Default value for the modulus length. */ 107: private static final int DEFAULT_MODULUS_LENGTH = 1024; 108: 109: /** Default encoding format to use when none was specified. */ 110: private static final int DEFAULT_ENCODING_FORMAT = Registry.RAW_ENCODING_ID; 111: 112: /** The desired bit length of the modulus. */ 113: private int L; 114: 115: /** 116: * This implementation uses, by default, Fermat's F4 number as the public 117: * exponent. 118: */ 119: private BigInteger e = BigInteger.valueOf(65537L); 120: 121: /** The optional {@link SecureRandom} instance to use. */ 122: private SecureRandom rnd = null; 123: 124: /** Our default source of randomness. */ 125: private PRNG prng = null; 126: 127: /** Preferred encoding format of generated keys. */ 128: private int preferredFormat; 129: 130: // implicit 0-arguments constructor 131: 132: public String name() 133: { 134: return Registry.RSA_KPG; 135: } 136: 137: /** 138: * Configures this instance. 139: * 140: * @param attributes the map of name/value pairs to use. 141: * @exception IllegalArgumentException if the designated MODULUS_LENGTH value 142: * is less than 1024. 143: */ 144: public void setup(Map attributes) 145: { 146: if (Configuration.DEBUG) 147: log.entering(this.getClass().getName(), "setup", attributes); 148: // do we have a SecureRandom, or should we use our own? 149: rnd = (SecureRandom) attributes.get(SOURCE_OF_RANDOMNESS); 150: // are we given a set of RSA params or we shall use our own? 151: RSAKeyGenParameterSpec params = (RSAKeyGenParameterSpec) attributes.get(RSA_PARAMETERS); 152: // find out the modulus length 153: if (params != null) 154: { 155: L = params.getKeysize(); 156: e = params.getPublicExponent(); 157: } 158: else 159: { 160: Integer l = (Integer) attributes.get(MODULUS_LENGTH); 161: L = (l == null ? DEFAULT_MODULUS_LENGTH : l.intValue()); 162: } 163: if (L < 1024) 164: throw new IllegalArgumentException(MODULUS_LENGTH); 165: 166: // what is the preferred encoding format 167: Integer formatID = (Integer) attributes.get(PREFERRED_ENCODING_FORMAT); 168: preferredFormat = formatID == null ? DEFAULT_ENCODING_FORMAT 169: : formatID.intValue(); 170: if (Configuration.DEBUG) 171: log.exiting(this.getClass().getName(), "setup"); 172: } 173: 174: /** 175: * <p> 176: * The algorithm used here is described in <i>nessie-pss-B.pdf</i> document 177: * which is part of the RSA-PSS submission to NESSIE. 178: * </p> 179: * 180: * @return an RSA keypair. 181: */ 182: public KeyPair generate() 183: { 184: if (Configuration.DEBUG) 185: log.entering(this.getClass().getName(), "generate"); 186: BigInteger p, q, n, d; 187: // 1. Generate a prime p in the interval [2**(M-1), 2**M - 1], where 188: // M = CEILING(L/2), and such that GCD(p, e) = 1 189: int M = (L + 1) / 2; 190: BigInteger lower = TWO.pow(M - 1); 191: BigInteger upper = TWO.pow(M).subtract(ONE); 192: byte[] kb = new byte[(M + 7) / 8]; // enough bytes to frame M bits 193: step1: while (true) 194: { 195: nextRandomBytes(kb); 196: p = new BigInteger(1, kb).setBit(0); 197: if (p.compareTo(lower) >= 0 && p.compareTo(upper) <= 0 198: && p.isProbablePrime(80) && p.gcd(e).equals(ONE)) 199: break step1; 200: } 201: // 2. Generate a prime q such that the product of p and q is an L-bit 202: // number, and such that GCD(q, e) = 1 203: step2: while (true) 204: { 205: nextRandomBytes(kb); 206: q = new BigInteger(1, kb).setBit(0); 207: n = p.multiply(q); 208: if (n.bitLength() == L && q.isProbablePrime(80) && q.gcd(e).equals(ONE)) 209: break step2; 210: // TODO: test for p != q 211: } 212: // TODO: ensure p < q 213: // 3. Put n = pq. The public key is (n, e). 214: // 4. Compute the parameters necessary for the private key K (see 215: // Section 2.2). 216: BigInteger phi = p.subtract(ONE).multiply(q.subtract(ONE)); 217: d = e.modInverse(phi); 218: // 5. Output the public key and the private key. 219: PublicKey pubK = new GnuRSAPublicKey(preferredFormat, n, e); 220: PrivateKey secK = new GnuRSAPrivateKey(preferredFormat, p, q, e, d); 221: KeyPair result = new KeyPair(pubK, secK); 222: if (Configuration.DEBUG) 223: log.exiting(this.getClass().getName(), "generate", result); 224: return result; 225: } 226: 227: /** 228: * Fills the designated byte array with random data. 229: * 230: * @param buffer the byte array to fill with random data. 231: */ 232: private void nextRandomBytes(byte[] buffer) 233: { 234: if (rnd != null) 235: rnd.nextBytes(buffer); 236: else 237: getDefaultPRNG().nextBytes(buffer); 238: } 239: 240: private PRNG getDefaultPRNG() 241: { 242: if (prng == null) 243: prng = PRNG.getInstance(); 244: 245: return prng; 246: } 247: }