My Project
programmer's documentation
Public Member Functions
turbulence_bc_ke_hyd_diam Interface Reference

Calculation of $ u^\star $, $ k $ and $\varepsilon $ from a diameter $ D_H $ and the reference velocity $ U_{ref} $ for a circular duct flow with smooth wall (use for inlet boundary conditions). More...

Collaboration diagram for turbulence_bc_ke_hyd_diam:
Collaboration graph

Public Member Functions

subroutine turbulence_bc_ke_hyd_diam (uref2, dh, rho, mu, ustar2, k, eps)
 

Detailed Description

Calculation of $ u^\star $, $ k $ and $\varepsilon $ from a diameter $ D_H $ and the reference velocity $ U_{ref} $ for a circular duct flow with smooth wall (use for inlet boundary conditions).

Both $ u^\star $ and $ (k,\varepsilon )$ are returned, so that the user may compute other values of $ k $ and $ \varepsilon $ with $ u^\star $.

We use the laws from Idel'Cik, i.e. the head loss coefficient $ \lambda $ is defined by:

\[ |\dfrac{\Delta P}{\Delta x}| = \dfrac{\lambda}{D_H} \frac{1}{2} \rho U_{ref}^2 \]

then the relation reads $u^\star = U_{ref} \sqrt{\dfrac{\lambda}{8}}$. $\lambda $ depends on the hydraulic Reynolds number $ Re = \dfrac{U_{ref} D_H}{ \nu} $ and is given by:

From $ u^\star $, we can estimate $ k $ and $ \varepsilon$ from the well known formulae of developped turbulence

\[ k = \dfrac{u^{\star 2}}{\sqrt{C_\mu}} \]

\[ \varepsilon = \dfrac{ u^{\star 3}}{(\kappa D_H /10)} \]

Parameters
[in]uref2square of the reference flow velocity
[in]dhhydraulic diameter $ D_H $
[in]rhomass density $ \rho $
[in]mudynamic viscosity $ \nu $
[out]ustar2square of friction speed
[out]kcalculated turbulent intensity $ k $
[out]epscalculated turbulent dissipation $ \varepsilon $

Constructor & Destructor Documentation

◆ turbulence_bc_ke_hyd_diam()

subroutine turbulence_bc_ke_hyd_diam ( real(c_double), value  uref2,
real(c_double), value  dh,
real(c_double), value  rho,
real(c_double), value  mu,
real(c_double)  ustar2,
real(c_double)  k,
real(c_double)  eps 
)

The documentation for this interface was generated from the following file: