My Project
programmer's documentation
Functions/Subroutines
atmcls.f90 File Reference

Compute friction velocity u* and surface sensible heat flux q0 for a non neutral atmospheric surface layer using the explicit formula developed for the ECMWF by Louis (1982) More...

Functions/Subroutines

subroutine atmcls (ifac, utau, yplus, uet, gredu, cfnnu, cfnns, cfnnk, cfnne, temp, totwt, liqwt, icodcl, rcodcl)
 

Detailed Description

Compute friction velocity u* and surface sensible heat flux q0 for a non neutral atmospheric surface layer using the explicit formula developed for the ECMWF by Louis (1982)

Function/Subroutine Documentation

◆ atmcls()

subroutine atmcls ( integer  ifac,
double precision  utau,
double precision  yplus,
double precision  uet,
double precision  gredu,
double precision  cfnnu,
double precision  cfnns,
double precision  cfnnk,
double precision  cfnne,
double precision  temp,
double precision  totwt,
double precision  liqwt,
integer, dimension(nfabor,nvar icodcl,
double precision, dimension(nfabor,nvar,3)  rcodcl 
)
Parameters
[in]ifactreated boundary face
[in]utautangential mean
[in]yplusadim distance to he boundary faces
[out]uetfriction velocity
[out]gredureduced gravity for non horizontal wall
[out]cfnnunon neutral correction coefficients for profiles of wind
[out]cfnnsnon neutral correction coefficients for profiles of scalar
[out]cfnnknon neutral correction coefficients for profiles of k
[out]cfnnenon neutral correction coefficients for profiles of eps
[in]temppotential temperature in boundary cell
[in]totwttotal water content in boundary cell
[in]liqwtliquid water content in boundary cell
[in]icodclface boundary condition code:
  • 1 Dirichlet
  • 2 Radiative outlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rough wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)
  • 11 Boundary value related to the next cell value by an affine function
  • 13 Dirichlet for the advection operator and Neumann for the diffusion operator
[in]rcodclboundary condition values:
  • rcodcl(1) value of the dirichlet
  • rcodcl(2) value of the exterior exchange coefficient (infinite if no exchange)
  • rcodcl(3) value flux density (negative if gain) in w/m2 or roughness in m if icodcl=6
    1. for the velocity $ (\mu+\mu_T) \gradv \vect{u} \cdot \vect{n} $
    2. for the pressure $ \Delta t \grad P \cdot \vect{n} $
    3. for a scalar $ cp \left( K + \dfrac{K_T}{\sigma_T} \right) \grad T \cdot \vect{n} $