My Project
programmer's documentation
Functions/Subroutines
clsyvt.f90 File Reference

Symmetry boundary conditions for vectors and tensors. More...

Functions/Subroutines

subroutine clsyvt (nscal, icodcl, rcodcl, velipb, rijipb)
 
subroutine clsyvt_scalar (iscal, icodcl)
 
subroutine clsyvt_vector (iscal, icodcl)
 

Detailed Description

Symmetry boundary conditions for vectors and tensors.

Correspond to the code icodcl(ivar) = 4.

Please refer to the clsyvt section of the theory guide for more informations.

Function/Subroutine Documentation

◆ clsyvt()

subroutine clsyvt ( integer  nscal,
integer, dimension(:,:), pointer  icodcl,
double precision, dimension(:,:,:), pointer  rcodcl,
double precision, dimension(:,:)  velipb,
double precision, dimension(:,:), pointer  rijipb 
)
Parameters
[in]nscaltotal number of scalars
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rough wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)
[in,out]rcodclboundary condition values:
  • rcodcl(1) value of the dirichlet
  • rcodcl(2) value of the exterior exchange coefficient (infinite if no exchange)
  • rcodcl(3) value flux density (negative if gain) in w/m2 or roughness in m if icodcl=6
    1. for the velocity $ (\mu+\mu_T) \gradv \vect{u} \cdot \vect{n} $
    2. for the pressure $ \Delta t \grad P \cdot \vect{n} $
    3. for a scalar $ cp \left( K + \dfrac{K_T}{\sigma_T} \right) \grad T \cdot \vect{n} $
[in]velipbvalue of the velocity at $ \centip $ of boundary cells
[in]rijipbvalue of $ R_{ij} $ at $ \centip $ of boundary cells

◆ clsyvt_scalar()

subroutine clsyvt_scalar ( integer  iscal,
integer, dimension(nfabor,nvar icodcl 
)
Parameters
[in]iscalscalar id
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rough wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)

◆ clsyvt_vector()

subroutine clsyvt_vector ( integer  iscal,
integer, dimension(nfabor,nvar icodcl 
)
Parameters
[in]iscalscalar id
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rough wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)