My Project
programmer's documentation
Functions/Subroutines
clptur.f90 File Reference

Boundary conditions for smooth walls (icodcl = 5). More...

Functions/Subroutines

subroutine clptur (nscal, isvhb, icodcl, rcodcl, velipb, rijipb, visvdr, hbord, theipb)
 
subroutine clptur_scalar (iscal, isvhb, icodcl, rcodcl, byplus, bdplus, buk, hbord, theipb, tetmax, tetmin, tplumx, tplumn)
 
subroutine clptur_vector (iscal, isvhb, icodcl, rcodcl, byplus, bdplus, buk)
 

Detailed Description

Boundary conditions for smooth walls (icodcl = 5).

The wall functions may change the value of the diffusive flux.

The values at a boundary face $ \fib $ stored in the face center $ \centf $ of the variable $ P $ and its diffusive flux $ Q $ are written as:

\[ P_\centf = A_P^g + B_P^g P_\centi \]

and

\[ Q_\centf = A_P^f + B_P^f P_\centi \]

where $ P_\centi $ is the value of the variable $ P $ at the neighboring cell.

Warning:

Please refer to the wall boundary conditions section of the theory guide for more informations, as well as the clptur section.

Function/Subroutine Documentation

◆ clptur()

subroutine clptur ( integer  nscal,
integer  isvhb,
integer, dimension(:,:), pointer  icodcl,
double precision, dimension(:,:,:), pointer  rcodcl,
double precision, dimension(:,:)  velipb,
double precision, dimension(:,:), pointer  rijipb,
double precision, dimension(:), pointer  visvdr,
double precision, dimension(:), pointer  hbord,
double precision, dimension(:), pointer  theipb 
)
Parameters
[in]nscaltotal number of scalars
[in]isvhbindicator to save exchange coeffient
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rough wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)
[in,out]rcodclboundary condition values:
  • rcodcl(1) value of the dirichlet
  • rcodcl(2) value of the exterior exchange coefficient (infinite if no exchange)
  • rcodcl(3) value flux density (negative if gain) in w/m2 or roughness in m if icodcl=6
    1. for the velocity $ (\mu+\mu_T) \gradv \vect{u} \cdot \vect{n} $
    2. for the pressure $ \Delta t \grad P \cdot \vect{n} $
    3. for a scalar $ cp \left( K + \dfrac{K_T}{\sigma_T} \right) \grad T \cdot \vect{n} $
[in]velipbvalue of the velocity at $ \centip $ of boundary cells
[in]rijipbvalue of $ R_{ij} $ at $ \centip $ of boundary cells
[out]visvdrdynamic viscosity after V. Driest damping in boundary cells
[out]hbordexchange coefficient at boundary
[in]theipbvalue of thermal scalar at $ \centip $ of boundary cells

◆ clptur_scalar()

subroutine clptur_scalar ( integer  iscal,
integer  isvhb,
integer, dimension(:,:), pointer  icodcl,
double precision, dimension(:,:,:), pointer  rcodcl,
double precision, dimension(:)  byplus,
double precision, dimension(:)  bdplus,
double precision, dimension(:)  buk,
double precision, dimension(:), pointer  hbord,
double precision, dimension(:), pointer  theipb,
double precision  tetmax,
double precision  tetmin,
double precision  tplumx,
double precision  tplumn 
)
Parameters
[in]iscalscalar id
[in]isvhbindicator to save exchange coeffient
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rough wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)
[in,out]rcodclboundary condition values:
  • rcodcl(1) value of the dirichlet
  • rcodcl(2) value of the exterior exchange coefficient (infinite if no exchange)
  • rcodcl(3) value flux density (negative if gain) in w/m2 or roughness in m if icodcl=6
    1. for the velocity $ (\mu+\mu_T) \gradv \vect{u} \cdot \vect{n} $
    2. for the pressure $ \Delta t \grad P \cdot \vect{n} $
    3. for a scalar $ cp \left( K + \dfrac{K_T}{\sigma_T} \right) \grad T \cdot \vect{n} $
[in]byplusdimensionless distance to the wall
[in]bdplusdimensionless shift to the wall for scalable wall functions
[in]bukdimensionless velocity
[in,out]hbordexchange coefficient at boundary
[in]theipbvalue of thermal scalar at $ \centip $ of boundary cells
[out]tetmaxmaximum local ustar value
[out]tetminminimum local ustar value
[out]tplumxmaximum local tplus value
[out]tplumnminimum local tplus value

◆ clptur_vector()

subroutine clptur_vector ( integer  iscal,
integer  isvhb,
integer, dimension(:,:), pointer  icodcl,
double precision, dimension(:,:,:), pointer  rcodcl,
double precision, dimension(:)  byplus,
double precision, dimension(:)  bdplus,
double precision, dimension(:)  buk 
)
Parameters
[in]iscalscalar id
[in]isvhbindicator to save exchange coeffient
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rough wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)
[in,out]rcodclboundary condition values:
  • rcodcl(1) value of the dirichlet
  • rcodcl(2) value of the exterior exchange coefficient (infinite if no exchange)
  • rcodcl(3) value flux density (negative if gain) in w/m2 or roughness in m if icodcl=6
    1. for the velocity $ (\mu+\mu_T) \gradv \vect{u} \cdot \vect{n} $
    2. for the pressure $ \Delta t \grad P \cdot \vect{n} $
    3. for a scalar $ cp \left( K + \dfrac{K_T}{\sigma_T} \right) \grad T \cdot \vect{n} $
[in]byplusdimensionless distance to the wall
[in]bdplusdimensionless shift to the wall for scalable wall functions
[in]bukdimensionless velocity
[in,out]hbordexchange coefficient at boundary