Unit CastleGLImages
Description
Using images in OpenGL (as textures and as normal images).
For non-OpenGL image management, see CastleImages and CastleTextureImages units. They contain functions and classes to load, save and process images.
This unit has functions and classes to:
Load images as OpenGL textures. You usually do not use these directly, instead TCastleScene automatically uses these to load and render textures as part of 3D models.
A lot of utilities included: for 2D textures (see LoadGLTexture), cube maps (see glTextureCubeMap), 3D textures (see glTextureImage3D). These functions wrap OpenGL calls like glTexImage2D to handle our images (TEncodedImage (and descendant TCastleImage), TCompositeImage), and to automatically set texture parameters, mipmaps and such.
Load and draw images in 2D. This is useful to implement various 2D controls. See TDrawableImage class and friends.
Save the current OpenGL screen contents to our TCastleImage. You usually use this through TCastleWindow.SaveScreen or TCastleControl.SaveScreen, based on SaveScreen_NoFlush in this unit.
Render to texture, see TGLRenderToTexture class. This is our abstraction over OpenGL framebuffer (or glCopyTexSubImage for ancient GPUs).
This unit hides from your some details about OpenGL images handling. For example, you don't have to worry about "pixel store alignment", we handle it here internally when transferring images between memory and GPU. You also don't have to worry about texture sizes being power of 2, or about maximum texture sizes — we will resize textures if necessary.
Routines in this unit that take TCastleImage or TEncodedImage parameter are limited to TextureImageClassesAll (for routines dealing with textures) or PixelsImageClasses (for routines dealing with images drawn on 2D screen).
Uses
- SysUtils
- Generics.Collections
- Classes
- GL
- GLExt
- CastleImages
- CastleVectors
- CastleGLUtils
- CastleTimeUtils
- CastleTextureImages
- CastleVideos
- CastleInternalCompositeImage
- CastleRectangles
- CastleGLShaders
- CastleColors
- CastleUtils
- CastleRenderOptions
Overview
Classes, Interfaces, Objects and Records
Name | Description |
---|---|
Class ETextureLoadError |
|
Class EImageClassNotSupportedForOpenGL |
|
Class ECannotLoadCompressedTexture |
|
Class EInvalidImageForOpenGLTexture |
|
Record TTextureFilter |
|
Packed Record TTextureWrap2D |
|
Packed Record TTextureWrap3D |
|
Class TDrawableImage |
Image that can be drawn. |
Class TCastleImagePersistent |
Image that can be easily loaded from URL (possibly reusing a cache), drawn, and serialized to/from file. |
Class ECannotSaveTextureContents |
Raised by SaveTextureContents when we cannot get texture contents. |
Class EFramebufferError |
type - don't add this Delphi can't parse it correctly |
Class EFramebufferSizeTooLow |
|
Class EFramebufferInvalid |
|
Class TGLRenderToTexture |
Rendering to texture with OpenGL. |
Class TTextureMemoryProfiler |
OpenGL texture memory profiler. |
Class TGLVideo |
Video as a sequence of OpenGL textures that can be easily played. |
Class TGLVideo3D |
Video expressed as a series of textures, to play as texture on any 3D object. |
Class TGLVideo2D |
Video expressed as a series of TDrawableImage, to play as 2D GUI control. |
Record TSpriteAnimationFrame |
A frame of a custom animation. |
Class TSpriteAnimation |
Custom animation of a sprite. |
Class TSprite |
Sprite is an animation composed from frames arranged in rows and columns inside a single image. |
Functions and Procedures
function ImageGLFormat(const Img: TCastleImage): TGLenum; |
function ImageGLInternalFormat(const Img: TEncodedImage): TGLenum; |
function ImageGLType(const Img: TCastleImage): TGLenum; |
procedure glFreeTexture(var Tex: TGLTextureId); |
procedure TexParameterMaxAnisotropy(const target: TGLenum; const Anisotropy: TGLfloat); |
function TextureFilter(const Minification: TMinificationFilter; const Magnification: TMagnificationFilter): TTextureFilter; |
procedure SetTextureFilter(const Target: TGLenum; const Filter: TTextureFilter); |
function Texture2DClampToEdge: TTextureWrap2D; |
procedure ResizeForTextureSize(var r: TCastleImage; const Sizing: TTextureSizing); |
function ResizeToTextureSize(const r: TCastleImage; const Sizing: TTextureSizing): TCastleImage; overload; |
function ResizeToTextureSize(const Size: Cardinal; const Sizing: TTextureSizing): Cardinal; overload; |
function IsTextureSized(const r: TEncodedImage; const Sizing: TTextureSizing): boolean; overload; |
function IsTextureSized(const Width, Height: Cardinal; const Sizing: TTextureSizing): boolean; overload; |
function LoadGLTexture(const image: TEncodedImage; const Filter: TTextureFilter; const Wrap: TTextureWrap2D; const CompositeForMipmaps: TCompositeImage = nil; const GUITexture: boolean = false): TGLTextureId; overload; |
function LoadGLTexture(const URL: string; const Filter: TTextureFilter; const Wrap: TTextureWrap2D; const CompositeForMipmaps: TCompositeImage = nil; const GUITexture: boolean = false): TGLTextureId; overload; |
procedure LoadGLGeneratedTexture(const TextureId: TGLTextureId; const image: TEncodedImage; Filter: TTextureFilter; const Wrap: TTextureWrap2D; const CompositeForMipmaps: TCompositeImage = nil; const GUITexture: boolean = false); overload; |
function GLDecompressTexture(Image: TGPUCompressedImage): TCastleImage; |
procedure SaveTextureContents(const Image: TCastleImage; const Texture: TGLTextureId); |
procedure glTextureImage3D(const TextureIdForProfiler: TGLTextureId; const Image: TEncodedImage; Filter: TTextureFilter; CompositeForMipmaps: TCompositeImage); |
function IsCubeMapTextureSized(const Size: Cardinal): boolean; overload; |
function ResizeToCubeMapTextureSize(const Size: Cardinal): Cardinal; overload; |
procedure glTextureCubeMap(const TextureIdForProfiler: TGLTextureId; PositiveX, NegativeX, PositiveY, NegativeY, PositiveZ, NegativeZ: TEncodedImage; CompositeForMipmaps: TCompositeImage; Mipmaps: boolean); |
function SaveScreen_NoFlush( const Rect: TRectangle; const ReadBuffer: TColorBuffer): TRGBImage; overload; |
function SaveScreen_NoFlush(const ImageClass: TCastleImageClass; const Rect: TRectangle; const ReadBuffer: TColorBuffer): TCastleImage; overload; |
procedure SaveScreen_NoFlush(const Image: TCastleImage; const Left, Bottom: Integer; const ReadBuffer: TColorBuffer); overload; |
function SaveScreenToGL_NoFlush(const Rect: TRectangle; const ReadBuffer: TColorBuffer; const SmoothScaling: boolean = false): TDrawableImage; |
function OffscreenRendering: Boolean; |
function TextureMemoryProfiler: TTextureMemoryProfiler; |
procedure BeforeUnpackImage(const Image: TCastleImage); |
procedure AfterUnpackImage(const Image: TCastleImage); |
procedure BeforePackImage(const Image: TCastleImage); |
procedure AfterPackImage(const Image: TCastleImage); |
Types
TGLTextureId = TGLuint; |
TMinificationFilter = CastleRenderOptions.TMinificationFilter; |
TMagnificationFilter = CastleRenderOptions.TMagnificationFilter; |
TGLImageManaged = TDrawableImage deprecated 'use TDrawableImage'; |
TGLImageOnDemand = TDrawableImage deprecated 'use TDrawableImage'; |
TGLImageCore = TDrawableImage deprecated 'use TDrawableImage'; |
TGLImage = TDrawableImage deprecated 'use TDrawableImage'; |
TTextureSizing = (...); |
TColorBuffer = (...); |
TGLRenderToTextureBuffer = (...); |
TSpriteList = specialize TObjectList<TSprite>; |
Constants
Variables
GLTextureScale: Cardinal = 1; |
GLTextureMinSize: Cardinal = 16; |
LogTextureLoading: boolean = false; |
Description
Functions and Procedures
function ImageGLFormat(const Img: TCastleImage): TGLenum; |
Return appropriate OpenGL format and type constants for given TCastleImage descendant. If you will pass here Img that is not a descendant of one of TextureImageClassesAll or PixelsImageClasses, they will raise EImageClassNotSupportedForOpenGL. ImageGLInternalFormat works with TGPUCompressedImage classes also, returning appropriate enum, suitable for glCompressedTexImage2D.
Exceptions raised
|
function ImageGLInternalFormat(const Img: TEncodedImage): TGLenum; |
function ImageGLType(const Img: TCastleImage): TGLenum; |
procedure glFreeTexture(var Tex: TGLTextureId); |
If Tex <> 0 then it does glDeleteTextures on Tex and sets Tex to 0. In other words, this is a simple wrapper over glDeleteTextures that
|
procedure TexParameterMaxAnisotropy(const target: TGLenum; const Anisotropy: TGLfloat); |
Call glTexParameterf to set GL_TEXTURE_MAX_ANISOTROPY_EXT on given texture target. Takes care to check for appropriate OpenGL extension (if not present, does nothing), and to query OpenGL limit for Anisotropy (eventually clamping provided Anisotropy down). |
function TextureFilter(const Minification: TMinificationFilter; const Magnification: TMagnificationFilter): TTextureFilter; |
Part of CastleGLImages unit: texture filtering (TTextureFilter and friends). |
procedure SetTextureFilter(const Target: TGLenum; const Filter: TTextureFilter); |
Set current texture minification and magnification filter. This is just a thin wrapper for calling glTexParameteri(Target, GL_TEXTURE_MIN_FILTER, ...); glTexParameteri(Target, GL_TEXTURE_MAG_FILTER, ...); |
function Texture2DClampToEdge: TTextureWrap2D; |
Return wrap GL_CLAMP_TO_EDGE in both directions. |
procedure ResizeForTextureSize(var r: TCastleImage; const Sizing: TTextureSizing); |
Resize the image to a size accepted as GL_TEXTURE_2D texture size for OpenGL. It tries to resize to a larger size, not smaller, to avoid losing image information. It also makes texture have power-of-two size, if Sizing <> tsAny (or if GLFeatures.TextureNonPowerOfTwo = Use Sizing = tsAny only for textures that you plan to use for drawing GUI images by TDrawableImage. |
function ResizeToTextureSize(const r: TCastleImage; const Sizing: TTextureSizing): TCastleImage; overload; |
function ResizeToTextureSize(const Size: Cardinal; const Sizing: TTextureSizing): Cardinal; overload; |
function IsTextureSized(const r: TEncodedImage; const Sizing: TTextureSizing): boolean; overload; |
Does image have proper size for 2D OpenGL texture. See ResizeForTextureSize. Note that this checks glGet(GL_MAX_TEXTURE_SIZE), so requires initialized OpenGL context. |
function IsTextureSized(const Width, Height: Cardinal; const Sizing: TTextureSizing): boolean; overload; |
function LoadGLTexture(const image: TEncodedImage; const Filter: TTextureFilter; const Wrap: TTextureWrap2D; const CompositeForMipmaps: TCompositeImage = nil; const GUITexture: boolean = false): TGLTextureId; overload; |
Load new texture to OpenGL. Generates new texture number by glGenTextures, then binds this texture, and loads it's data. Takes care of UNPACK_ALIGNMENT inside (if needed, we'll change it and later revert back, so that the texture is correctly loaded). Sets texture minification, magnification filters and wrap parameters. Changes currently bound texture to this one (returned). If mipmaps will be needed (this is decided looking at Filter.Minification) we will load them too.
Parameters
Exceptions raised
|
function LoadGLTexture(const URL: string; const Filter: TTextureFilter; const Wrap: TTextureWrap2D; const CompositeForMipmaps: TCompositeImage = nil; const GUITexture: boolean = false): TGLTextureId; overload; |
procedure LoadGLGeneratedTexture(const TextureId: TGLTextureId; const image: TEncodedImage; Filter: TTextureFilter; const Wrap: TTextureWrap2D; const CompositeForMipmaps: TCompositeImage = nil; const GUITexture: boolean = false); overload; |
Load OpenGL texture into already reserved texture number. It uses existing OpenGL texture number (TextureId). Everything else works exactly the same as LoadGLTexture. You can also use this to set "default unnamed OpenGL texture" parameters by passing TextureId = 0.
Exceptions raised
|
function GLDecompressTexture(Image: TGPUCompressedImage): TCastleImage; |
Decompress texture image by loading it to a temporary OpenGL(ES) texture and reading back. IOW, this does decompression by using current OpenGL(ES) context. TODO: Note that the current implementation will always raise ECannotLoadCompressedTexture on OpenGLES, e.g. on mobile. Same as SaveTextureContents. This is fixable (we need to use FBO instead of glGetTexImage on OpenGLES), please submit a bugreport if you need it. Exceptions raised
|
procedure SaveTextureContents(const Image: TCastleImage; const Texture: TGLTextureId); |
Save OpenGL texture contents to TCastleImage. Size of the texture must match the Image size, otherwise terrible things (writing over unallocated memory) will happen. Exceptions raised
|
procedure glTextureImage3D(const TextureIdForProfiler: TGLTextureId; const Image: TEncodedImage; Filter: TTextureFilter; CompositeForMipmaps: TCompositeImage); |
Comfortably load a 3D texture. Think about this as doing glTexImage3D(...) for you. It also sets texture minification, magnification filters and creates mipmaps if necessary. It checks OpenGL 3D texture size requirements, and throws exceptions if not satisfied. It takes care about OpenGL unpack parameters. Just don't worry about it. If Filter uses mipmaps, then all mipmap levels will be loaded.
Pass TextureIdForProfiler only for profiling purposes (for TextureMemoryProfiler). This procedure assumes that the texture is already bound.
Exceptions raised
|
function IsCubeMapTextureSized(const Size: Cardinal): boolean; overload; |
Part of CastleGLImages unit: cubemaps sizing and loading. |
function ResizeToCubeMapTextureSize(const Size: Cardinal): Cardinal; overload; |
procedure glTextureCubeMap(const TextureIdForProfiler: TGLTextureId; PositiveX, NegativeX, PositiveY, NegativeY, PositiveZ, NegativeZ: TEncodedImage; CompositeForMipmaps: TCompositeImage; Mipmaps: boolean); |
Comfortably load all six cube map texture images. Think about this as doing glTexImage2D(Side, ...) for each cube side. It takes care of (almost?) everything you need to prepare OpenGL cube map texture. It automatically takes care to adjust the texture size to appropriate size, honoring the "power of two" requirement and the GL_MAX_CUBE_MAP_TEXTURE_SIZE_ARB limit of OpenGL. So texture image may be resized (preferably up) internally before loading. Although, if texture is compressed, we cannot resize it — so ECannotLoadCompressedTexture will be raised if texture is not appropriate size. It takes care about OpenGL unpack parameters. Just don't worry about it. Pass TextureIdForProfiler only for profiling purposes (for TextureMemoryProfiler). This procedure assumes that the texture is already bound. If mipmaps are requested:
Exceptions raised
|
function SaveScreen_NoFlush( const Rect: TRectangle; const ReadBuffer: TColorBuffer): TRGBImage; overload; |
Save the current color buffer contents to image. The suffix "NoFlush" is there to remind you that this function grabs the current buffer contents. Usually you want to redraw the screen to the back buffer, and call this function to capture back buffer before swapping, since this is the only reliable way to capture OpenGL screen. Just use TCastleWindow.SaveScreen to do it automatically. Version with ImageClass can save to any image format from PixelsImageClasses. Version with TCastleImage instance just uses this instance to save the image. You must pass here already created TCastleImage instance, it's class, Width and Height will be used when saving.
Exceptions raised
|
function SaveScreen_NoFlush(const ImageClass: TCastleImageClass; const Rect: TRectangle; const ReadBuffer: TColorBuffer): TCastleImage; overload; |
procedure SaveScreen_NoFlush(const Image: TCastleImage; const Left, Bottom: Integer; const ReadBuffer: TColorBuffer); overload; |
function SaveScreenToGL_NoFlush(const Rect: TRectangle; const ReadBuffer: TColorBuffer; const SmoothScaling: boolean = false): TDrawableImage; |
Captures current screen as a TDrawableImage instance, ready to be drawn on 2D screen. |
function OffscreenRendering: Boolean; |
Are we currently doing off-screen rendering. This is |
function TextureMemoryProfiler: TTextureMemoryProfiler; |
OpenGL texture memory profiler, to detect which textures use up the GPU texture memory. Especially useful on mobile devices, where texture memory is limited and your application must really optimize texture usage. Also useful to detect texture memory leaks. Enable it at the very beginning of the application (for example in the main unit initialization clause), like this: TextureMemoryProfiler.Enabled := true
Then at any point during the game you can query texture usage by TTextureMemoryProfiler.Summary method. For example dump it to the log like this:
WritelnLog('Textures', TextureMemoryProfiler.Summary);
The resulting output lists the currently allocated textures, in descending order of their size. This tells you which textures are worth optimizing. Maybe scale these textures down, maybe compress them, maybe remove alpha channel or convert them to grayscale... The profiler counts the real texture size on GPU, knowing that some textures are resized to power of 2, that textures may be compressed on GPU, that some textures have mipmaps and so on. All kinds of textures (2D, 3D, cubemaps, float, depth etc.) are covered. Every type is reported — loaded from files, generated (like by GeneratedCubeMapTexture), embedded in code (by embedding images or fonts in code)... The textures loaded from disk are described by URL, for other textures we invent special URLs like:
You can also use the profiler from view3dscene, run it with "–debug-texture-memory" command-line option, load your 3D model and then use menu option "Console -> Print Texture Memory Usage". |
procedure BeforeUnpackImage(const Image: TCastleImage); |
Save / restore OpenGL pixel store for unpacking / packing given TCastleImage. Before you pass this image to some OpenGL procedures (like glDrawPixels for unpacking, glReadPixels for packing), call BeforeXxx, and later call AfterXxx to restore original state. These will take care of setting / restoring pixel alignment. |
procedure AfterUnpackImage(const Image: TCastleImage); |
procedure BeforePackImage(const Image: TCastleImage); |
procedure AfterPackImage(const Image: TCastleImage); |
Types
TGLTextureId = TGLuint; |
type - don't add type Delphi can't parse that correctly |
TMinificationFilter = CastleRenderOptions.TMinificationFilter; |
We recommend using CastleRenderOptions unit to get these types. But for backward compatibility, they are also available here. |
TMagnificationFilter = CastleRenderOptions.TMagnificationFilter; |
TGLImageManaged = TDrawableImage deprecated 'use TDrawableImage'; |
Warning: this symbol is deprecated: use TDrawableImage |
TGLImageOnDemand = TDrawableImage deprecated 'use TDrawableImage'; |
Warning: this symbol is deprecated: use TDrawableImage |
TGLImageCore = TDrawableImage deprecated 'use TDrawableImage'; |
Warning: this symbol is deprecated: use TDrawableImage |
TGLImage = TDrawableImage deprecated 'use TDrawableImage'; |
Warning: this symbol is deprecated: use TDrawableImage |
TTextureSizing = (...); |
Constraints on texture size, used by ResizeToTextureSize and IsTextureSized. Values
|
TColorBuffer = (...); |
Color buffer to grab, used by SaveScreen_NoFlush. Values
|
TGLRenderToTextureBuffer = (...); |
Values
|
TSpriteList = specialize TObjectList<TSprite>; |
List of sprites. |
Constants
PixelsImageClasses: array [0..3] of TEncodedImageClass = (
TRGBImage,
TRGBAlphaImage,
TGrayscaleImage,
TGrayscaleAlphaImage); |
Part of CastleGLImages unit: miscellneous stuff. |
minNearest = CastleRenderOptions.minNearest; |
We recommend using CastleRenderOptions unit to get these constants. But for backward compatibility, they are also available here. |
minLinear = CastleRenderOptions.minLinear; |
minNearestMipmapNearest = CastleRenderOptions.minNearestMipmapNearest; |
minNearestMipmapLinear = CastleRenderOptions.minNearestMipmapLinear; |
minLinearMipmapNearest = CastleRenderOptions.minLinearMipmapNearest; |
minLinearMipmapLinear = CastleRenderOptions.minLinearMipmapLinear; |
magNearest = CastleRenderOptions.magNearest; |
magLinear = CastleRenderOptions.magLinear; |
Texture2DRepeat: TTextureWrap2D = (Data: (GL_REPEAT, GL_REPEAT)); |
Part of CastleGLImages unit: texture wrapping modes. |
Variables
GLTextureScale: Cardinal = 1; |
Scaling for all textures loaded to OpenGL. This allows you to conserve GPU memory. Each size (width, height, and (for 3D textures) depth) is scaled by 1 / 2ˆ Note that textures used for GUI, by TDrawableImage (more precisely: all non-power-of-2 textures) avoid this scaling entirely. This allows to scale the textures at runtime. For an independent mechanism that allows to load already downscaled textures (and scale them as a preprocessing step when packaging your game), see TextureLoadingScale. The documentation of TextureLoadingScale lists all the differences between these two approaches to scaling. |
GLTextureMinSize: Cardinal = 16; |
Constraints the scaling done by GLTextureScale. Scaling caused by GLTextureScale cannot scale texture to something less than |
LogTextureLoading: boolean = false; |
Log (through CastleLog) all texture and image loading to GPU. If additionally TextureMemoryProfiler is enabled, then we will dump texture memory usage. |
Generated by PasDoc 0.16.0.