casacore
Lattice.h
Go to the documentation of this file.
1 //# Lattice.h: Lattice is an abstract base class for array-like classes
2 //# Copyright (C) 1994,1995,1996,1997,1998,1999,2000,2003
3 //# Associated Universities, Inc. Washington DC, USA.
4 //#
5 //# This library is free software; you can redistribute it and/or modify it
6 //# under the terms of the GNU Library General Public License as published by
7 //# the Free Software Foundation; either version 2 of the License, or (at your
8 //# option) any later version.
9 //#
10 //# This library is distributed in the hope that it will be useful, but WITHOUT
11 //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
13 //# License for more details.
14 //#
15 //# You should have received a copy of the GNU Library General Public License
16 //# along with this library; if not, write to the Free Software Foundation,
17 //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
18 //#
19 //# Correspondence concerning AIPS++ should be addressed as follows:
20 //# Internet email: aips2-request@nrao.edu.
21 //# Postal address: AIPS++ Project Office
22 //# National Radio Astronomy Observatory
23 //# 520 Edgemont Road
24 //# Charlottesville, VA 22903-2475 USA
25 //#
26 //# $Id$
27 
28 #ifndef LATTICES_LATTICE_H
29 #define LATTICES_LATTICE_H
30 
31 
32 //# Includes
33 #include <casacore/casa/aips.h>
34 #include <casacore/casa/Arrays/ArrayFwd.h>
35 #include <casacore/lattices/Lattices/LatticeBase.h>
36 #include <casacore/casa/Arrays/Slicer.h>
37 
38 namespace casacore { //# NAMESPACE CASACORE - BEGIN
39 
40 //# Forward Declarations
41 class IPosition;
42 class LatticeNavigator;
43 template <class T> class COWPtr;
44 template <class Domain, class Range> class Functional;
45 template <class T> class LatticeIterInterface;
46 
47 
48 // <summary>
49 // A templated, abstract base class for array-like objects.
50 // </summary>
51 
52 // <use visibility=export>
53 
54 // <reviewed reviewer="Peter Barnes" date="1999/10/30" tests="tArrayLattice.cc" demos="dLattice.cc">
55 // </reviewed>
56 
57 // <prerequisite>
58 // <li> <linkto class="IPosition"> IPosition </linkto>
59 // <li> <linkto class="Array"> Array </linkto>
60 // <li> <linkto class="LatticeBase"> LatticeBase </linkto>
61 // <li> Abstract Base class Inheritance - try "Advanced C++" by James
62 // O. Coplien, Ch. 5.
63 // </prerequisite>
64 
65 // <etymology>
66 // Lattice: "A regular, periodic configuration of points, particles,
67 // or objects, throughout an area of a space..." (American Heritage Directory)
68 // This definition matches our own: an n-dimensional arrangement of items,
69 // on regular orthogonal axes.
70 // </etymology>
71 
72 // <synopsis>
73 // This pure abstract base class defines the operations which may be performed
74 // on any concrete class derived from it. It has only a few non-pure virtual
75 // member functions.
76 // The fundamental contribution of this class, therefore, is that it
77 // defines the operations derived classes must provide:
78 // <ul>
79 // <li> how to extract a "slice" (or sub-array, or subsection) from
80 // a Lattice.
81 // <li> how to copy a slice in.
82 // <li> how to get and put a single element
83 // <li> how to apply a function to all elements
84 // <li> various shape related functions.
85 // </ul>
86 // The base class <linkto class=LatticeBase>LatticeBase</linkto> contains
87 // several functions not dependent on the template parameter.
88 // <note role=tip> Lattices always have a zero origin. </note>
89 // </synopsis>
90 
91 // <example>
92 // Because Lattice is an abstract base class, an actual instance of this
93 // class cannot be constructed. However the interface it defines can be used
94 // inside a function. This is always recommended as it allows functions
95 // which have Lattices as arguments to work for any derived class.
96 // <p>
97 // I will give a few examples here and then refer the reader to the
98 // <linkto class="ArrayLattice">ArrayLattice</linkto> class (a memory resident
99 // Lattice) and the <linkto class="PagedArray">PagedArray</linkto> class (a
100 // disk based Lattice) which contain further examples with concrete
101 // classes (rather than an abstract one). All the examples shown below are used
102 // in the <src>dLattice.cc</src> demo program.
103 //
104 // <h4>Example 1:</h4>
105 // This example calculates the mean of the Lattice. Because Lattices can be too
106 // large to fit into physical memory it is not good enough to simply use
107 // <src>getSlice</src> to read all the elements into an Array. Instead the
108 // Lattice is accessed in chunks which can fit into memory (the size is
109 // determined by the <src>advisedMaxPixels</src> and <src>niceCursorShape</src>
110 // functions). The <src>LatticeIterator::cursor()</src> function then returns
111 // each of these chunks as an Array and the standard Array based functions are
112 // used to calculate the mean on each of these chunks. Functions like this one
113 // are the recommended way to access Lattices as the
114 // <linkto class="LatticeIterator">LatticeIterator</linkto> will correctly
115 // setup any required caches.
116 //
117 // <srcblock>
118 // Complex latMean(const Lattice<Complex>& lat) {
119 // const uInt cursorSize = lat.advisedMaxPixels();
120 // const IPosition cursorShape = lat.niceCursorShape(cursorSize);
121 // const IPosition latticeShape = lat.shape();
122 // Complex currentSum = 0.0f;
123 // size_t nPixels = 0u;
124 // RO_LatticeIterator<Complex> iter(lat,
125 // LatticeStepper(latticeShape, cursorShape));
126 // for (iter.reset(); !iter.atEnd(); iter++){
127 // currentSum += sum(iter.cursor());
128 // nPixels += iter.cursor().nelements();
129 // }
130 // return currentSum/nPixels;
131 // }
132 // </srcblock>
133 //
134 // <h4>Example 2:</h4>
135 // Sometimes it will be neccesary to access slices of a Lattice in a nearly
136 // random way. Often this can be done using the subSection commands in the
137 // <linkto class="LatticeStepper">LatticeStepper</linkto> class. But it is also
138 // possible to use the getSlice and putSlice functions. The following example
139 // does a two-dimensional Real to Complex Fourier transform. This example is
140 // restricted to four-dimensional Arrays (unlike the previous example) and does
141 // not set up any caches (caching is currently only used with PagedArrays). So
142 // only use getSlice and putSlice when things cannot be done using
143 // LatticeIterators.
144 //
145 // <srcblock>
146 // void FFT2DReal2Complex(Lattice<Complex>& result,
147 // const Lattice<Float>& input){
148 // AlwaysAssert(input.ndim() == 4, AipsError);
149 // const IPosition shape = input.shape();
150 // const uInt nx = shape(0);
151 // AlwaysAssert (nx > 1, AipsError);
152 // const uInt ny = shape(1);
153 // AlwaysAssert (ny > 1, AipsError);
154 // const uInt npol = shape(2);
155 // const uInt nchan = shape(3);
156 // const IPosition resultShape = result.shape();
157 // AlwaysAssert(resultShape.nelements() == 4, AipsError);
158 // AlwaysAssert(resultShape(3) == nchan, AipsError);
159 // AlwaysAssert(resultShape(2) == npol, AipsError);
160 // AlwaysAssert(resultShape(1) == ny, AipsError);
161 // AlwaysAssert(resultShape(0) == nx/2 + 1, AipsError);
162 //
163 // const IPosition inputSliceShape(4,nx,ny,1,1);
164 // const IPosition resultSliceShape(4,nx/2+1,ny,1,1);
165 // COWPtr<Array<Float> >
166 // inputArrPtr(new Array<Float>(inputSliceShape.nonDegenerate()));
167 // Array<Complex> resultArray(resultSliceShape.nonDegenerate());
168 // FFTServer<Float, Complex> FFT2D(inputSliceShape.nonDegenerate());
169 //
170 // IPosition start(4,0);
171 // Bool isARef;
172 // for (uInt c = 0; c < nchan; c++){
173 // for (uInt p = 0; p < npol; p++){
174 // isARef = input.getSlice(inputArrPtr,
175 // Slicer(start,inputSliceShape), True);
176 // FFT2D.fft(resultArray, *inputArrPtr);
177 // result.putSlice(resultArray, start);
178 // start(2) += 1;
179 // }
180 // start(2) = 0;
181 // start(3) += 1;
182 // }
183 // }
184 // </srcblock>
185 // Note that the <linkto class=LatticeFFT>LatticeFFT</linkto> class
186 // offers a nice way to do lattice based FFTs.
187 //
188 // <h4>Example 3:</h4>
189 // Occasionally you may want to access a few elements of a Lattice without
190 // all the difficulty involved in setting up Iterators or calling getSlice
191 // and putSlice. This is demonstrated in the example below.
192 // Setting a single element can be done with the <src>putAt</src> function,
193 // while getting a single element can be done with the parenthesis operator.
194 // Using these functions to access many elements of a Lattice is not
195 // recommended as this is the slowest access method.
196 //
197 // In this example an ideal point spread function will be inserted into an
198 // empty Lattice. As with the previous examples all the action occurs
199 // inside a function because Lattice is an interface (abstract) class.
200 //
201 // <srcblock>
202 // void makePsf(Lattice<Float>& psf) {
203 // const IPosition centrePos = psf.shape()/2;
204 // psf.set(0.0f); // this sets all the elements to zero
205 // // As it uses a LatticeIterator it is efficient
206 // psf.putAt (1, centrePos); // This sets just the centre element to one
207 // AlwaysAssert(near(psf(centrePos), 1.0f, 1E-6), AipsError);
208 // AlwaysAssert(near(psf(centrePos*0), 0.0f, 1E-6), AipsError);
209 // }
210 // </srcblock>
211 // </example>
212 
213 // <motivation>
214 // Creating an abstract base class which provides a common interface between
215 // memory and disk based arrays has a number of advantages.
216 // <ul>
217 // <li> It allows functions common to all arrays to be written independent
218 // of the way the data is stored. This is illustrated in the three examples
219 // above.
220 // <li> It reduces the learning curve for new users who only have to become
221 // familiar with one interface (ie. Lattice) rather than distinct interfaces
222 // for different array types.
223 // </ul>
224 // </motivation>
225 
226 // <todo asof="1996/07/01">
227 // <li> Make PagedArray cache functions virtual in this base class.
228 // </todo>
229 
230 
231 template <class T> class Lattice : public LatticeBase
232 {
233 public:
234  // a virtual destructor is needed so that it will use the actual destructor
235  // in the derived class
236  virtual ~Lattice();
237 
238  // Make a copy of the derived object (reference semantics).
239  virtual Lattice<T>* clone() const = 0;
240 
241  // Get the data type of the lattice.
242  virtual DataType dataType() const;
243 
244  // Return the value of the single element located at the argument
245  // IPosition.
246  // <br> The default implementation uses getSlice.
247  // <group>
248  T operator() (const IPosition& where) const;
249  virtual T getAt (const IPosition& where) const;
250  // </group>
251 
252  // Put the value of a single element.
253  // <br> The default implementation uses putSlice.
254  virtual void putAt (const T& value, const IPosition& where);
255 
256  // Functions which extract an Array of values from a Lattice. All the
257  // IPosition arguments must have the same number of axes as the underlying
258  // Lattice, otherwise, an exception is thrown. <br>
259  // The parameters are:
260  // <ul>
261  // <li> buffer: a <src>COWPtr<Array<T>></src> or an
262  // <src>Array<T></src>. See example 2 above for an example.
263  // <li> start: The starting position (or Bottom Left Corner), within
264  // the Lattice, of the data to be extracted.
265  // <li> shape: The shape of the data to be extracted. This is not a
266  // position within the Lattice but the actual shape the buffer will
267  // have after this function is called. This argument added
268  // to the "start" argument should be the "Top Right Corner".
269  // <li> stride: The increment for each axis. A stride of
270  // one will return every data element, a stride of two will return
271  // every other element. The IPosition elements may be different for
272  // each respective axis. Thus, a stride of IPosition(3,1,2,3) says:
273  // fill the buffer with every element whose position has a first
274  // index between start(0) and start(0)+shape(0), a second index
275  // which is every other element between start(1) and
276  // (start(1)+shape(1))*2, and a third index of every third element
277  // between start(2) and (start(2)+shape(2))*3.
278  // <li> section: Another way of specifying the start, shape and stride
279  // <li> removeDegenerateAxes: a Bool which dictates whether to remove
280  // "empty" axis created in buffer. (e.g. extracting an n-dimensional
281  // from an (n+1)-dimensional will fill 'buffer' with an array that
282  // has a degenerate axis (i.e. one axis will have a length = 1.)
283  // Setting removeDegenerateAxes = True will return a buffer with
284  // a shape that doesn't reflect these superfluous axes.)
285  // </ul>
286  //
287  // The derived implementations of these functions return
288  // 'True' if "buffer" is a reference to Lattice data and 'False' if it
289  // is a copy.
290  // <group>
291  Bool get (COWPtr<Array<T> >& buffer,
292  Bool removeDegenerateAxes=False) const;
293  Bool getSlice (COWPtr<Array<T> >& buffer, const Slicer& section,
294  Bool removeDegenerateAxes=False) const;
295  Bool getSlice (COWPtr<Array<T> >& buffer, const IPosition& start,
296  const IPosition& shape,
297  Bool removeDegenerateAxes=False) const;
298  Bool getSlice (COWPtr<Array<T> >& buffer, const IPosition& start,
299  const IPosition& shape, const IPosition& stride,
300  Bool removeDegenerateAxes=False) const;
301  Bool get (Array<T>& buffer,
302  Bool removeDegenerateAxes=False);
303  Bool getSlice (Array<T>& buffer, const Slicer& section,
304  Bool removeDegenerateAxes=False);
305  Bool getSlice (Array<T>& buffer, const IPosition& start,
306  const IPosition& shape,
307  Bool removeDegenerateAxes=False);
308  Bool getSlice (Array<T>& buffer, const IPosition& start,
309  const IPosition& shape, const IPosition& stride,
310  Bool removeDegenerateAxes=False);
311  Array<T> get (Bool removeDegenerateAxes=False) const;
312  Array<T> getSlice (const Slicer& section,
313  Bool removeDegenerateAxes=False) const;
314  Array<T> getSlice (const IPosition& start,
315  const IPosition& shape,
316  Bool removeDegenerateAxes=False) const;
317  Array<T> getSlice (const IPosition& start,
318  const IPosition& shape, const IPosition& stride,
319  Bool removeDegenerateAxes=False) const;
320  // </group>
321 
322  // A function which places an Array of values within this instance of the
323  // Lattice at the location specified by the IPosition "where", incrementing
324  // by "stride". All of the IPosition arguments must be of the same
325  // dimensionality as the Lattice. The sourceBuffer array may (and probably
326  // will) have less axes than the Lattice. The stride defaults to one if
327  // not specified.
328  // <group>
329  void putSlice (const Array<T>& sourceBuffer, const IPosition& where,
330  const IPosition& stride)
331  { doPutSlice (sourceBuffer, where, stride); }
332  void putSlice (const Array<T>& sourceBuffer, const IPosition& where);
333  void put (const Array<T>& sourceBuffer);
334 
335  // </group>
336 
337  // Set all elements in the Lattice to the given value.
338  virtual void set (const T& value);
339 
340  // Replace every element, x, of the Lattice with the result of f(x). You
341  // must pass in the address of the function -- so the function must be
342  // declared and defined in the scope of your program. All versions of
343  // apply require a function that accepts a single argument of type T (the
344  // Lattice template type) and return a result of the same type. The first
345  // apply expects a function with an argument passed by value; the second
346  // expects the argument to be passed by const reference; the third
347  // requires an instance of the class <src>Functional<T,T></src>. The
348  // first form ought to run faster for the built-in types, which may be an
349  // issue for large Lattices stored in memory, where disk access is not an
350  // issue.
351  // <group>
352  virtual void apply (T (*function)(T));
353  virtual void apply (T (*function)(const T&));
354  virtual void apply (const Functional<T,T>& function);
355  // </group>
356 
357  // Add, subtract, multiple, or divide by another Lattice.
358  // The other Lattice can be a scalar (e.g. the result of LatticeExpr).
359  // Possible masks are not taken into account.
360  // <group>
361  void operator+= (const Lattice<T>& other)
362  { handleMath (other, 0); }
363  void operator-= (const Lattice<T>& other)
364  { handleMath (other, 1); }
365  void operator*= (const Lattice<T>& other)
366  { handleMath (other, 2); }
367  void operator/= (const Lattice<T>& other)
368  { handleMath (other, 3); }
369  // </group>
370 
371  // Copy the data from the given lattice to this one.
372  // The default implementation uses function <src>copyDataTo</src>.
373  virtual void copyData (const Lattice<T>& from);
374 
375  // Copy the data from this lattice to the given lattice.
376  // The default implementation only copies data (thus no mask, etc.).
377  virtual void copyDataTo (Lattice<T>& to) const;
378 
379  // This function returns the advised maximum number of pixels to
380  // include in the cursor of an iterator. The default implementation
381  // returns a number that is a power of two and includes enough pixels to
382  // consume between 4 and 8 MBytes of memory.
383  virtual uInt advisedMaxPixels() const;
384 
385  // These functions are used by the LatticeIterator class to generate an
386  // iterator of the correct type for a specified Lattice. Not recommended
387  // for general use.
388  // <br>The default implementation creates a LatticeIterInterface object.
390  Bool useRef) const;
391 
392  // The functions (in the derived classes) doing the actual work.
393  // These functions are public, so they can be used internally in the
394  // various Lattice classes, which is especially useful for doGetSlice.
395  // <br>However, doGetSlice does not call Slicer::inferShapeFromSource
396  // to fill in possible unspecified section values. Therefore one
397  // should normally use one of the get(Slice) functions. doGetSlice
398  // should be used with care and only when performance is an issue.
399  // <group>
400  virtual Bool doGetSlice (Array<T>& buffer, const Slicer& section) = 0;
401  virtual void doPutSlice (const Array<T>& buffer, const IPosition& where,
402  const IPosition& stride) = 0;
403  // </group>
404 
405 protected:
406  // Define default constructor to satisfy compiler.
407  Lattice() {};
408 
409  // Handle the Math operators (+=, -=, *=, /=).
410  // They work similarly to copyData(To).
411  // However, they are not defined for Bool types, thus specialized below.
412  // <group>
413  virtual void handleMath (const Lattice<T>& from, int oper);
414  virtual void handleMathTo (Lattice<T>& to, int oper) const;
415  // </group>
416 
417  // Copy constructor and assignment can only be used by derived classes.
418  // <group>
420  : LatticeBase() {}
422  { return *this; }
423  // </group>
424 };
425 
426 
427 template<> inline
429  { throwBoolMath(); }
430 
431 //# Declare extern templates for often used types.
432  extern template class Lattice<Float>;
433  extern template class Lattice<Complex>;
434 
435 
436 } //# NAMESPACE CASACORE - END
437 
438 //# There is a problem in including Lattice.tcc, because it needs
439 //# LatticeIterator.h which in its turn includes Lattice.h again.
440 //# So in a source file including LatticeIterator.h, Lattice::set fails
441 //# to compile, because the LatticeIterator declarations are not seen yet.
442 //# Therefore LatticeIterator.h is included here, while LatticeIterator.h
443 //# includes Lattice.tcc.
444 #ifndef CASACORE_NO_AUTO_TEMPLATES
445 #include <casacore/lattices/Lattices/LatticeIterator.h>
446 #endif //# CASACORE_NO_AUTO_TEMPLATES
447 #endif
virtual IPosition shape() const =0
Return the shape of the Lattice including all degenerate axes (ie.
void putSlice(const Array< T > &sourceBuffer, const IPosition &where)
void operator-=(const Lattice< T > &other)
Definition: Lattice.h:363
virtual void apply(T(*function)(const T &))
Bool getSlice(COWPtr< Array< T > > &buffer, const Slicer &section, Bool removeDegenerateAxes=False) const
Array< T > getSlice(const Slicer &section, Bool removeDegenerateAxes=False) const
virtual Lattice< T > * clone() const =0
Make a copy of the derived object (reference semantics).
Bool get(COWPtr< Array< T > > &buffer, Bool removeDegenerateAxes=False) const
Functions which extract an Array of values from a Lattice.
virtual void handleMath(const Lattice< T > &from, int oper)
Handle the Math operators (+=, -=, *=, /=).
void put(const Array< T > &sourceBuffer)
virtual void copyData(const Lattice< T > &from)
Copy the data from the given lattice to this one.
Bool getSlice(Array< T > &buffer, const IPosition &start, const IPosition &shape, const IPosition &stride, Bool removeDegenerateAxes=False)
virtual T getAt(const IPosition &where) const
Bool getSlice(COWPtr< Array< T > > &buffer, const IPosition &start, const IPosition &shape, Bool removeDegenerateAxes=False) const
Lattice()
Define default constructor to satisfy compiler.
Definition: Lattice.h:407
Lattice< T > & operator=(const Lattice< T > &)
Definition: Lattice.h:421
virtual void apply(T(*function)(T))
Replace every element, x, of the Lattice with the result of f(x).
Bool get(Array< T > &buffer, Bool removeDegenerateAxes=False)
Array< T > getSlice(const IPosition &start, const IPosition &shape, const IPosition &stride, Bool removeDegenerateAxes=False) const
virtual ~Lattice()
a virtual destructor is needed so that it will use the actual destructor in the derived class
Lattice(const Lattice< T > &)
Copy constructor and assignment can only be used by derived classes.
Definition: Lattice.h:419
virtual Bool doGetSlice(Array< T > &buffer, const Slicer &section)=0
The functions (in the derived classes) doing the actual work.
Array< T > get(Bool removeDegenerateAxes=False) const
Bool getSlice(Array< T > &buffer, const IPosition &start, const IPosition &shape, Bool removeDegenerateAxes=False)
virtual void putAt(const T &value, const IPosition &where)
Put the value of a single element.
void operator/=(const Lattice< T > &other)
Definition: Lattice.h:367
void operator*=(const Lattice< T > &other)
Definition: Lattice.h:365
virtual void set(const T &value)
Set all elements in the Lattice to the given value.
virtual void handleMathTo(Lattice< T > &to, int oper) const
void operator+=(const Lattice< T > &other)
Add, subtract, multiple, or divide by another Lattice.
Definition: Lattice.h:361
void putSlice(const Array< T > &sourceBuffer, const IPosition &where, const IPosition &stride)
A function which places an Array of values within this instance of the Lattice at the location specif...
Definition: Lattice.h:329
Bool getSlice(Array< T > &buffer, const Slicer &section, Bool removeDegenerateAxes=False)
virtual void doPutSlice(const Array< T > &buffer, const IPosition &where, const IPosition &stride)=0
virtual void apply(const Functional< T, T > &function)
Array< T > getSlice(const IPosition &start, const IPosition &shape, Bool removeDegenerateAxes=False) const
virtual void copyDataTo(Lattice< T > &to) const
Copy the data from this lattice to the given lattice.
virtual uInt advisedMaxPixels() const
This function returns the advised maximum number of pixels to include in the cursor of an iterator.
virtual LatticeIterInterface< T > * makeIter(const LatticeNavigator &navigator, Bool useRef) const
These functions are used by the LatticeIterator class to generate an iterator of the correct type for...
Bool getSlice(COWPtr< Array< T > > &buffer, const IPosition &start, const IPosition &shape, const IPosition &stride, Bool removeDegenerateAxes=False) const
T operator()(const IPosition &where) const
Return the value of the single element located at the argument IPosition.
virtual DataType dataType() const
Get the data type of the lattice.
this file contains all the compiler specific defines
Definition: mainpage.dox:28
const Bool False
Definition: aipstype.h:44
unsigned int uInt
Definition: aipstype.h:51
bool Bool
Define the standard types used by Casacore.
Definition: aipstype.h:42
LatticeExprNode value(const LatticeExprNode &expr)
This function returns the value of the expression without a mask.