8 #include "caffe/blob.hpp"
9 #include "caffe/common.hpp"
10 #include "caffe/layer_factory.hpp"
11 #include "caffe/proto/caffe.pb.h"
12 #include "caffe/util/math_functions.hpp"
18 namespace boost {
class mutex; }
32 template <
typename Dtype>
40 explicit Layer(
const LayerParameter& param)
151 const vector<bool>& propagate_down,
157 vector<shared_ptr<Blob<Dtype> > >&
blobs() {
169 virtual void ToProto(LayerParameter* param,
bool write_diff =
false);
174 inline Dtype
loss(
const int top_index)
const {
175 return (
loss_.size() > top_index) ?
loss_[top_index] : Dtype(0);
181 inline void set_loss(
const int top_index,
const Dtype value) {
182 if (
loss_.size() <= top_index) {
183 loss_.resize(top_index + 1, Dtype(0));
185 loss_[top_index] = value;
191 virtual inline const char*
type()
const {
return ""; }
301 vector<shared_ptr<Blob<Dtype> > >
blobs_;
327 const vector<bool>& propagate_down,
335 const vector<bool>& propagate_down,
351 <<
" bottom blob(s) as input.";
356 <<
" bottom blob(s) as input.";
361 <<
" bottom blob(s) as input.";
366 <<
" top blob(s) as output.";
371 <<
" top blob(s) as output.";
376 <<
" top blob(s) as output.";
379 CHECK_EQ(bottom.size(), top.size())
380 <<
type() <<
" Layer produces one top blob as output for each "
381 <<
"bottom blob input.";
390 const int num_loss_weights =
layer_param_.loss_weight_size();
391 if (num_loss_weights) {
392 CHECK_EQ(top.size(), num_loss_weights) <<
"loss_weight must be "
393 "unspecified or specified once per top blob.";
394 for (
int top_id = 0; top_id < top.size(); ++top_id) {
395 const Dtype loss_weight =
layer_param_.loss_weight(top_id);
396 if (loss_weight == Dtype(0)) {
continue; }
397 this->
set_loss(top_id, loss_weight);
398 const int count = top[top_id]->count();
399 Dtype* loss_multiplier = top[top_id]->mutable_cpu_diff();
400 caffe_set(count, loss_weight, loss_multiplier);
406 DISABLE_COPY_AND_ASSIGN(
Layer);
412 template <
typename Dtype>
416 Reshape(bottom, top);
417 switch (Caffe::mode()) {
419 Forward_cpu(bottom, top);
420 for (
int top_id = 0; top_id < top.size(); ++top_id) {
421 if (!this->loss(top_id)) {
continue; }
422 const int count = top[top_id]->count();
423 const Dtype* data = top[top_id]->cpu_data();
424 const Dtype* loss_weights = top[top_id]->cpu_diff();
425 loss += caffe_cpu_dot(count, data, loss_weights);
429 Forward_gpu(bottom, top);
431 for (
int top_id = 0; top_id < top.size(); ++top_id) {
432 if (!this->loss(top_id)) {
continue; }
433 const int count = top[top_id]->count();
434 const Dtype* data = top[top_id]->gpu_data();
435 const Dtype* loss_weights = top[top_id]->gpu_diff();
437 caffe_gpu_dot(count, data, loss_weights, &blob_loss);
443 LOG(FATAL) <<
"Unknown caffe mode.";
448 template <
typename Dtype>
450 const vector<bool>& propagate_down,
452 switch (Caffe::mode()) {
454 Backward_cpu(top, propagate_down, bottom);
457 Backward_gpu(top, propagate_down, bottom);
460 LOG(FATAL) <<
"Unknown caffe mode.";
465 template <
typename Dtype>
468 param->CopyFrom(layer_param_);
469 param->clear_blobs();
470 for (
int i = 0; i < blobs_.size(); ++i) {
471 blobs_[i]->ToProto(param->add_blobs(), write_diff);
477 #endif // CAFFE_LAYER_H_
vector< bool > param_propagate_down_
Definition: layer.hpp:303
virtual void Reshape(const vector< Blob< Dtype > * > &bottom, const vector< Blob< Dtype > * > &top)=0
Adjust the shapes of top blobs and internal buffers to accommodate the shapes of the bottom blobs.
virtual void CheckBlobCounts(const vector< Blob< Dtype > * > &bottom, const vector< Blob< Dtype > * > &top)
Definition: layer.hpp:346
virtual bool AutoTopBlobs() const
Return whether "anonymous" top blobs are created automatically by the layer.
Definition: layer.hpp:258
virtual void Backward_cpu(const vector< Blob< Dtype > * > &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > * > &bottom)=0
Using the CPU device, compute the gradients for any parameters and for the bottom blobs if propagate_...
Definition: internal_thread.hpp:10
virtual bool EqualNumBottomTopBlobs() const
Returns true if the layer requires an equal number of bottom and top blobs.
Definition: layer.hpp:248
virtual int MinTopBlobs() const
Returns the minimum number of top blobs required by the layer, or -1 if no minimum number is required...
Definition: layer.hpp:232
Dtype Forward(const vector< Blob< Dtype > * > &bottom, const vector< Blob< Dtype > * > &top)
Given the bottom blobs, compute the top blobs and the loss.
Definition: layer.hpp:413
virtual int ExactNumTopBlobs() const
Returns the exact number of top blobs required by the layer, or -1 if no exact number is required.
Definition: layer.hpp:224
void Backward(const vector< Blob< Dtype > * > &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > * > &bottom)
Given the top blob error gradients, compute the bottom blob error gradients.
Definition: layer.hpp:449
vector< shared_ptr< Blob< Dtype > > > & blobs()
Returns the vector of learnable parameter blobs.
Definition: layer.hpp:157
vector< shared_ptr< Blob< Dtype > > > blobs_
Definition: layer.hpp:301
virtual bool AllowForceBackward(const int bottom_index) const
Return whether to allow force_backward for a given bottom blob index.
Definition: layer.hpp:268
void set_param_propagate_down(const int param_id, const bool value)
Sets whether the layer should compute gradients w.r.t. a parameter at a particular index given by par...
Definition: layer.hpp:287
vector< Dtype > loss_
Definition: layer.hpp:307
A wrapper around SyncedMemory holders serving as the basic computational unit through which Layers,...
Definition: blob.hpp:24
virtual void LayerSetUp(const vector< Blob< Dtype > * > &bottom, const vector< Blob< Dtype > * > &top)
Does layer-specific setup: your layer should implement this function as well as Reshape.
Definition: layer.hpp:91
virtual int MaxBottomBlobs() const
Returns the maximum number of bottom blobs required by the layer, or -1 if no maximum number is requi...
Definition: layer.hpp:216
void SetUp(const vector< Blob< Dtype > * > &bottom, const vector< Blob< Dtype > * > &top)
Implements common layer setup functionality.
Definition: layer.hpp:67
An interface for the units of computation which can be composed into a Net.
Definition: layer.hpp:33
virtual void Backward_gpu(const vector< Blob< Dtype > * > &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > * > &bottom)
Using the GPU device, compute the gradients for any parameters and for the bottom blobs if propagate_...
Definition: layer.hpp:334
virtual int MaxTopBlobs() const
Returns the maximum number of top blobs required by the layer, or -1 if no maximum number is required...
Definition: layer.hpp:240
virtual int MinBottomBlobs() const
Returns the minimum number of bottom blobs required by the layer, or -1 if no minimum number is requi...
Definition: layer.hpp:208
void set_loss(const int top_index, const Dtype value)
Sets the loss associated with a top blob at a given index.
Definition: layer.hpp:181
LayerParameter layer_param_
Definition: layer.hpp:297
bool param_propagate_down(const int param_id)
Specifies whether the layer should compute gradients w.r.t. a parameter at a particular index given b...
Definition: layer.hpp:279
virtual void Forward_gpu(const vector< Blob< Dtype > * > &bottom, const vector< Blob< Dtype > * > &top)
Using the GPU device, compute the layer output. Fall back to Forward_cpu() if unavailable.
Definition: layer.hpp:316
virtual void ToProto(LayerParameter *param, bool write_diff=false)
Writes the layer parameter to a protocol buffer.
Definition: layer.hpp:466
void SetLossWeights(const vector< Blob< Dtype > * > &top)
Definition: layer.hpp:389
virtual void Forward_cpu(const vector< Blob< Dtype > * > &bottom, const vector< Blob< Dtype > * > &top)=0
Using the CPU device, compute the layer output.
A layer factory that allows one to register layers. During runtime, registered layers can be called b...
Definition: blob.hpp:14
Phase phase_
Definition: layer.hpp:299
const LayerParameter & layer_param() const
Returns the layer parameter.
Definition: layer.hpp:164
Layer(const LayerParameter ¶m)
Definition: layer.hpp:40
virtual int ExactNumBottomBlobs() const
Returns the exact number of bottom blobs required by the layer, or -1 if no exact number is required.
Definition: layer.hpp:200
Dtype loss(const int top_index) const
Returns the scalar loss associated with a top blob at a given index.
Definition: layer.hpp:174
virtual const char * type() const
Returns the layer type.
Definition: layer.hpp:191