operator+,-,*,/ (std::complex)
From cppreference.com
template< class T >
complex<T> operator+( const complex<T>& lhs, const complex<T>& rhs); |
(1) | |
template< class T >
complex<T> operator+( const complex<T>& lhs, const T& rhs); |
(2) | |
template< class T >
complex<T> operator+( const T& lhs, const complex<T>& rhs); |
(3) | |
template< class T >
complex<T> operator-( const complex<T>& lhs, const complex<T>& rhs); |
(4) | |
template< class T >
complex<T> operator-( const complex<T>& lhs, const T& rhs); |
(5) | |
template< class T >
complex<T> operator-( const T& lhs, const complex<T>& rhs); |
(6) | |
template< class T >
complex<T> operator*( const complex<T>& lhs, const complex<T>& rhs); |
(7) | |
template< class T >
complex<T> operator*( const complex<T>& lhs, const T& rhs); |
(8) | |
template< class T >
complex<T> operator*( const T& lhs, const complex<T>& rhs); |
(9) | |
template< class T >
complex<T> operator/( const complex<T>& lhs, const complex<T>& rhs); |
(10) | |
template< class T >
complex<T> operator/( const complex<T>& lhs, const T& rhs); |
(11) | |
template< class T >
complex<T> operator/( const T& lhs, const complex<T>& rhs); |
(12) | |
Implements the binary operators for complex arithmetic and for mixed complex/scalar arithmetic. Scalar arguments are treated as complex numbers with the real part equal to the argument and the imaginary part set to zero.
1-3) Returns the sum of its arguments
4-6) Returns the result of subtracting
rhs
from lhs
7-9) Multiplies its arguments
10-12) Divides
lhs
by rhs
Contents |
[edit] Parameters
lhs, rhs | - | the arguments: either both complex numbers or one complex and one scalar of matching type (float, double, long double) |
[edit] Return value
1-3) complex<T>(lhs) += rhs
4-6) complex<T>(lhs) -= rhs
7-9) complex<T>(lhs) *= rhs
10-12) complex<T>(lhs) /= rhs
[edit] Notes
Because template argument deduction does not consider implicit conversions, these operators cannot be used for mixed integer/complex arithmetic. In all cases, the scalar must have the same type as the underlying type of the complex number.
[edit] Example
Run this code
#include <iostream> #include <complex> int main() { std::complex<double> c2(2, 0); std::complex<double> ci(0, 1); std::cout << ci << " + " << c2 << " = " << ci+c2 << '\n' << ci << " * " << ci << " = " << ci*ci << '\n' << ci << " + " << c2 << " / " << ci << " = " << ci+c2/ci << '\n' << 1 << " / " << ci << " = " << 1./ci << '\n'; // std::cout << 1.f/ci; // compile error // std::cout << 1/ci; // compile error }
Output:
(0,1) + (2,0) = (2,1) (0,1) * (0,1) = (-1,0) (0,1) + (2,0) / (0,1) = (0,-1) 1 / (0,1) = (0,-1)
[edit] See also
compound assignment of two complex numbers or a complex and a scalar (public member function) |
|
applies unary operators to complex numbers (function template) |