
Beast II SDK: version 0.2

Remco R. Bouckaert
remco@cs.{auckland|waikato}.ac.nz

Department of Computer Science
University of Auckland & University of Waikato

August 2, 2011

Abstract

This is a short description of the Beast II Software Development Kit,
which includes a Java library for building Markov Chain Monte Carlo
(MCMC) applications using the Metropolis Hastings method and a library
for Bayesian analysis of evolutionary problems.

In particular, there is support for efficient updating of models, GUIs for
building models and support for documentation. Newly written Plugins
will be directly available in the GUIs, online help and HTML documen-
tation.

1 Introduction

Beast II is written in Java, open source and licensed under the Lesser GNU
Public License. The Beast II SDK can be downloaded from http://code.

google.com/p/beast2/downloads/list and the source is available from http:

//code.google.com/p/beast2/source/checkout.
Beast II typically runs as a standalone application, started from the command
line with java -jar beast.jar which starts beast.app.BeastMCMC. An XML
file should be specified as command line argument. XML files are used to store
models and data in a single place. See Section 4 for details.
To use the SDK, you write Java classes that derive from the Plugin class, or
derive from any of the more specialized classes that derive from Plugin. By
default, the classes are expected to reside in a jar file in the beastlib directory
from where BeastMCMC (or any of the other applications) is started. To specify
another locations, either set the beastlib environment variable to the directory
(or directories where the various directories are separated by a colon, just like
in Java class paths) where the jar file should be picked up.

1

2 Example

Figure 1 Example of a model specifying Jukes Cantors substriution model (JC).
It shows Plugins represented by rocket shapes connected to other Plugins through
inputs (the thrusters of the rocket).

Figure 1 show (part of) a model, representing an nucleotide sequence analysis
using the Jukes Cantor substitution model. The ’rockets’ represent plugins,
and their thrusters the inputs. Models can be build up by connecting plugins
through these inputs with other plugins. For example, in Figure 1, the Tree
has an Alignment as input, and both Tree and Alignment are inputs to the
TreeLikelihood. The TreeLikelihood calculates the likelihood of the sequence for
a given tree. To do this, the TreeLikelihood also needs at least a SiteModel as
input, and potentially also a BranchRateModel (not necessary in this example).
The SiteModel specifies everything related to the transition probabilities for
a site from one node to another in the Tree, such as the number of gamma
categories, proportion of invariant sites and substitution model. In Figure 1,
Jukes Cantor substitution model is used. In this Section, we extend this with the
HKY substitution model and show how this model interacts with the operators,
state, loggers and other bits and pieces in the model.

Figure 2 Example of a model specifying a HKY substitution model.

To define the HKY substitution model, first we need to find out what its in-
puts should be. The kappa parameter of the HKY model represents a variable
that can be estimated. Plugins in the calculation model (i.e. the part of the
model that performs the posterior calculation) are divided in StateNodes and
CalculationNodes. StateNodes are classes an operator can change, while Cal-
culationNodes are classes that change the internal state based on Inputs. The

2

HKY model is a CalculationNode, since it internally stores an eigenvalue matrix
that is calculated based on kappa. Kappa can be changed by an operator and
does not calculate antying itself, so the kappa parameter is a StateNode.
The other bit of information required for the HKY model it the character fre-
quencies. These can be calculated from the alignment.Compare Figure 2 with
Figure 1 to see how the HKY model differs from the JC model. See Section 3
for implementation details for plugin classes like HKY.

Figure 3 Adding operators.

In an MCMC framework, operators propose a move in the state space, and these
are then accepted or rejected based on how good the moves are and luck. Figure
3 shows the HKY model extended with seven operators: six for changing the
tree and one for changing the kappa parameter.

Figure 4 Adding the state.

3

The operators work on the tree and the kappa parameter. Any StateNode that
an operator can work on must be part of the State. Apart from the State
being a collection of StateNodes, the State performs introspection on the model
and controls the order in which Plugins are notified of changes and which of
them should store or restore their internal state. For example, if an operator
changes the Tree, the HKY model does not need to be bothered with updating
its internal state or storing that internal state since it never needs to be restored
based on the tree change alone.

Figure 5 Adding the loggers.

For the MCMC analysis to be any useful, we need to log results. Loggers take
care of this task. Loggers can log anything that is Loggable, such as parameters
and trees, but it is easy enough to write a custom logger and add it to the list
of inputs of a Logger. Typically, one logger logs to standard output, one to a
log file with parameter values (a tab delimited file that can be analysed with
Tracer) and one log file with trees in Newick format.

4

Figure 6 Adding the sequences. This is a complete model description that can
be executed in Beast II.

Finally, the alignment consist of a list of sequences. Each sequence object con-
taining the actual sequence and taxon information. This completes the model,
shown in Figure 6 and this model can be executed by Beast II.

3 Getting started

3.1 Beast II Philosophy

Everything is a plug-in!
Plug-ins provide...

• connection with with other plug-ins/values through ’inputs’

• validation

• documentation

• ’XML parsing’

The task of a Plugin writer is to create classes, specify inputs and provide extra
validation that is not already provided by inputs. The following snippet shows
a very basic example.

@Descr ipt ion (” Desc r ip t i on o f MyPlugin goes here ”)
public class MyPlugin extends Plugin {

public Input<Integer> m value = new Input<Integer >(” value ” ,
” va lue used by my plug in ”) ;

5

public void in i tAndVal idate () throws Exception {
// go check s t u f f and
// do s t u f f t h a t normal ly goes in a cons t ruc t o r

}

} // c l a s s MyPlugin

Firstly, the Description annotation is used to provide help, which is used in
GUIs online help and documentation generation. There is also a Citation

annotation that can be used to list a reference and DOI of a publication that
should be referenced when using the Plugin.
Secondly, all custom Plugins derive from Plugin or any of derived classes from
Plugin. By deriving from Plugin, services through introspection like validation
of models are provided.
To specify an input for a plugin, just declare an Input member. Input is a
template class, so the type of input can be specified to make sure that when
Inputs are connected to Plugins the correct type of Plugin is used. At least two
strings are used in the constructor of an Input:

• a name of the input, used in the XML, in documentation and in GUIs,

• a description of the input, used in documentation and GUI help.

Other constructors exists to support validation, default values, lists of values,
enumerations of Strings, etc. See Section 3.2 for details.
Finally, there is the initAndValidate method. This serves as a place to perform
validation on the Inputs, for instance range checks or check that dimensions of
two inputs are compatible. Furthermore, it is a place to perform everything
that normally goes into a constructor. Plugins are typically created by the
XMLParser, which firsts sets values for all inputs, then calls initAndValidate.
The following shows the skeleton of a bit larger example:

@Descr ipt ion (”HKY85 (Hasegawa , Kishino & Yano , 1985) ”+
” s u b s t i t u t i o n model o f n u c l e o t i d e evo lu t i on . ”)

@Citation (”Hasegawa , M. , Kishino , H and Yano , T. 1985 . ”+
”Dating the human−ape s p l i t t i n g by a ”+
” molecu lar c l o ck o f mitochondr ia l DNA. ” +
” Journal o f Molecular Evolut ion 22:160−174. ”)

public f ina l class HKY extends Subst i tut ionModel . Base {
public Input<RealParameter> kappa = new Input<RealParameter>(”kappa” ,

”kappa parameter in HKY model” , Va l idate .REQUIRED) ;

@Override
public void in i tAndVal idate () throws Exception {
}

@Override

6

public void g e t T r a n s i t i o n P r o b a b i l i t i e s (double di s tance , double [] matrix) {
. . .

}

@Override
protected boolean r e q u i r e s R e c a l c u l a t i o n () {

. . .
}

@Override
protected void s t o r e () {

. . .
}

@Override
protected void r e s t o r e () {

. . .
}

}

3.2 Inputs

Inputs can be created that are primitives, plugins, lists or enumerations. By
calling the appropriate constructor, the XMLParser validates the input after
assigning values and can check whether a REQUIRED input is assigned a value,
or whether two inputs that are XOR have exactly one input specified.

3.2.1 Input creation

Inputs can be simple primitives, like Double, Integer, Boolean, String.

public Input<Boolean> m pScaleAl l =
new Input<Boolean>(” s c a l e A l l ” ,

” i f true , a l l e lements o f a parameter (not t r e e) are sca l ed , o therw i se one i s randomly s e l e c t e d ” ,
new Boolean (fa l se)) ;

Inputs of a plugin can be other plugins.

public Input<Frequencies> m freqs =
new Input<Frequencies >(” f r e q u e n c i e s ” ,

” f r e q u e n c i e s n u c l e o t i d e l e t t e r s ”) ;

Inputs can be multiple inputs. When a list of inputs is specified, the Input
constructor should contain a (typically empty) List as a start value.

public Input<List<RealParameter>> m pParameters =
new Input<List<RealParameter>>(” parameter ” ,

”parameter , part o f the s t a t e ” ,
new ArrayList<RealParameter > ()) ;

7

Inputs cannot be template classes, so Input<Parameter<T>> would lead to trou-
ble. This is due to a limitation in Java introspection.
To provide an enumeration as input, the following constructor can be used: it
takes the usual name and description arguments, then the default value and an
array of strings to choose from. During validation it is checked that the value
assigned is in the list.

f ina l stat ic St r ing [] UNITS = {” year ” , ”month” , ”day” } ;

public Input<Str ing> m sUnits = new Input<Str ing >(” un i t s ” ,
”name o f the un i t s in which va lue s are posed , ” +

” used f o r conver s i on to a r e a l va lue . This can be ” +
Arrays . t oS t r i ng (UNITS) + ” (d e f a u l t ’ year ’) ” ,
” year ” ,
UNITS) ;

3.2.2 Input validation

To provide some basic validation, an extra argument can be provided to the
Input constructor. By default, inputs are considered to be OPTIONAL, i.e.,
need not necessarily be specified. If input is REQUIRED:

public Input<Parameter> m kappa =
new Input<Parameter>(”kappa” ,

”kappa parameter in HKY model” ,
Va l idate .REQUIRED) ;

If a list of inputs need to have at least one element specified, the required
argument needs to be provided.

public Input<List<Operator>> m operators =
new Input<List<Operator>>(” operator ” ,

” operator f o r gene ra t ing proposa l s in MCMC s t a t e space ” ,
new ArrayList<Operator >() , Va l idate .REQUIRED) ;

Sometimes either one or another input is required, but not bot. In that case an
input is declared XOR and the other input is provided as extra argument. The
XOR goes on the second Input.

public Input<Tree> m pTree =
new Input<Tree>(” t r e e ” ,

” i f s p e c i f i e d , a l l t r e e branch length are s c a l e d ”) ;
public Input<Parameter> m pParameter =

new Input<Parameter>(” parameter ” ,
” i f s p e c i f i e d , t h i s parameter i s s c a l e d ”
, Va l idate .XOR, m pTree) ;

8

3.3 MCMC library

The basic setup: The MCMC algorithm has a State object. Operator objects do
proposals to change the State. A Distribution object calculates the posterior
of the new state, and compares it with the old state’s posterior (taking the
Hasting ration of the Operator in account) to decide whether to accept or
reject the new state.
Typically, a plugin developer will create new CalculationNodes and Operators,
explained below.

3.3.1 CalculationNodes

A State contains StateNodes, like Parameters and Trees. The State is re-
sponsible for calling requiresRecalculation/store/restore on calculation
nodes. It keeps track which part of the State is changed by an Operation, hence
which CalculationNodes may need updating.
For example, suppose a scale operator (called kappScaler) changes the kappa
parameter in a simple HKY model. Then, frequencies, and the tree are not
affected, but the substitution model, the site model and the tree likelihood need
to be updated.

After an Operator has done a proposal, the State calls store on all CalculationNodes
that could possibly be affected. Then State calls requiresRecalculation on
each of the CalculationNodes between the StateNodes that are changed and
the Distribution of the MCMC. The requiresRecalculation method returns
true to indicate whether the CalculationNode is changed, hence is ’dirty’, due
to changes in the State. Also, it is a good place to set flags whether parts
need to be recalculated, e.g. the EigenDecomposition in the HKY model af-
ter the kappa parameter is changed. Then, the distribution is asked to cal-
culated the log-posterior. If the new state is accepted, accept is called on all
CalculationNodes, which by default just marks them as ’not dirty’. If rejected,
a restore is called on all CalculationNodes and this method can be overridden
to
In summary: typically a Plugin developer overrides a CalculationNode.

9

CalculationNodes can help increase efficiency by overwriting

• requiresRecalculation to set flags to recalculate parts and return whether
the Plugin is dirty or not.

• store to store internal states.

• restore to restore when a new State is not accepted.

3.3.2 Operators

Operators need to have at least one StateNode as input. StateNodes are man-
aged by the State, which takes care of synchronization, store and restore.
To create a new Operator, implement the public double proposal() method,
which changes one of more StateNodes and returns the Hasting ratio of the
proposal.

3.3.3 Loggable

To create custom loggers, implement the Loggable interface, which has three
methods:
o init(), for generating header information and called only at the start of the
log,
o exit(), for any closing statements, e.g. ’End;’ in a Nexus tree file, and
o log(), for periodically logging relevant information.

3.4 Evolution library

The Evolution library provides support for calculating posteriors for phyloge-
netic analysis. The classes of interest are

• SubstitutionModel Specifies transition probability matrix for a given dis-
tance.

• BranchRateModel Defines a mean rate for each branch in the beast.tree.

• SpeciationLikelihood A likelihood function for speciation processes.

• tree.Node Nodes in building binary beast.tree data structure.

• PopulationFunction A population size function for the Coalescent.

See javadocs for details.

4 XML format

The easiest way to create XML for a newly created Plugin is to start the Mod-
elBuilder (java -cp beast.jar beast.app.ModelBuilder), load an existing

10

XML file from the example directory and change the Plugins, then save the
XML.
The basic XML is very very simple: everything can be specified using the input
element. There are 4 reserved attributes, namely id, idref, name and spec.

<input id=’myId’

idref=’otherId’

name=’inputName’

spec=’x.y.z.MyClass’ />

The id attribute allows elements to be referred to from other elements through
the idref attribute. The name attribute specified the name of the Input in the
plugin. The spec attribute specifies the Plugin class. The XML parser creates
an object of this class, then set the input with name name of the Plugin specified
by the enclosing input element. This way every model can be specified, but it is
very tedious format to read. So, there are a lot of short cuts, making the XML
more palatable.
A hand crafted XML file can be processed through the XMLParser as follows:
java -cp beast.jar beast.util.XMLParser <file.xml> which then tries to
beautify the XML and print it to standard output.

4.1 Short XML spec

The following elements are reserved keywords: distribution, operator, logger,
data, sequence, state, parameter, tree, and run which have default mappings
to objects. Furthermore, <plate var=’n’ range=’.p1,.p2,.p3’><parameter

idref=’hky$(n)’/></plate> is short for <parameter idref=’hky.p1’/> <parameter

idref=’hky.p2’/> <parameter idref=’hky.p3’/> and the top level element
should have attribute version=’2.0’ and can have namespace=’x.y.z:’ which
allows spec-attributes to use x.y.z as name space. Finally, <map name=’elementName’>x.y.z.Class</map>

maps element elementName to spec x.y.z.Class.
Common abbreviations:
Element name = name attribute.
<input name=’x’>...</input> == <x> ... </x>

Primitive inputs (Integer, Double, Boolean, String) can go inline.
<input ...> <input name=’xyz’ value=’1.0’/></input>

==

<input ... xyz=’1.0’/>

Any plugin with String constructor, like parameters and tree, can go inline
<input ...> <xyz spec=’IntegerParameter’ value=’10 20’/></input>

==

<input ... xyz=’10 20’/>

Idref inline using @ sign.
<input ...> <input name=’xyz’ idref=’ref’/></input>

==

<input ... xyz=’@ref’/>

11

5 FAQ/Known ways to get into trouble

5.1 General programming issues

5.1.1 Input is not declared public.

If Inputs are not public, they cannot get values assigned by for instance the
XMLParser.

5.1.2 Type of input is a template class (other than List).

Thanks to limitations of Java introspection and the way Beast II is set up, Inputs
should be of a type that is concrete, and apart from List<T> no template class
should be used.

5.1.3 Store/restore do not call super.store()/super.restore().

Obviously, not calling store/restore on super classes may result in unexpected
behavior.

5.1.4 Input rule of base class is not what you want.

If an Input is REQUIRED for a base class you want to override, but for the
derived class this Input should be OPTIONAL, set the Input to OPTIONAL in
the constructor. E.g. for a SNPSequence that derives from Sequence, but for
which m sData is optional, add a constructor

public SNPSequence () {
m sData . setRule (Va l idate .OPTIONAL) ;

}

Note that the constructor needs to be public, to prevent IllegalAccessExceptions
on construction by e.g. the XMLParser.

5.1.5 Log header on screen seems to have rubbish in there.

Put the logger that outputs to screen (i.e. does not have a filename specified)
as last in the list of loggers.

5.2 Setting up

5.2.1 Setting up an add-on in Intellij

This assumes that Beast2 source code is checked out from google code using
’svn checkout http://beast2.googlecode.com/svn/trunk/ beast2-read-only’ and
set up as a project in Intellij, named beast2.
To set up a new Add-on to Beast 2 in Intellij

• Create new project

12

• Import Beast 2 as follows:
Choose menu File/New Module
then choose ’Import existing module’
select the button for browsing the file to be imported.
Then go to the Beast 2 source folder where you select Beast2.iml file.
Press OK

• Add dependency on Beast 2 as follows:
Choose menu File/Project structure.
Select Modules tab
Select your new module
Press Add button, select Module Dependencies
Select the Beast 2 module
Press OK

5.2.2 Setting up an add-on in Eclipse

This assumes that Beast2 source code is checked out from google code using
’svn checkout http://beast2.googlecode.com/svn/trunk/ beast2-read-only’ and
set up as a project in Eclipse, named beast2.
To set up a new Add-on to Beast 2 in Eclipse

• Import beast2 as a project as follows
Choose File/Import menu
The ’import’ dialog pops up. Choose ’General/Existing Projects into
Workspace’ and click ’Next’
The next ’import’ dialog pops up. Select Browse button
Select the directory containing beast2 in the file choose dialog, click ok
Click next, and beast2 will be added as a project

• Create new add-on project as follows
Select File/New/Java Project menu
Fill in project name and click the Next button
A ’New Java Project’ dialog pops up, select the ’Projects’ tab
Click ’Add’ button, and a ”Required Project Selection” dialog pops up
Select ’beast2’ and click OK
Click ’Finish’ and all is done

5.2.3 Set up Hudson for a google-code project add-on

This assumes that there is a build.xml file based on the build file for the beastii
add-on. Hudson can be set up for a new add-on using the following steps:
1. create new job on Hudson Main Page
fill in job name
select ’Build a free-style software project’
click OK

13

2. Select sensible directory
Under ’Advanced Project Options’ click ’Advanced’ button
Click ’Use custom workspace’
In Directory entry that now appears, fill in the project name
3. Under ’Source Code Management’, select ’Subversion’
Fill in repository URL, say ’http://myaddon.googlecode.com/svn/trunk’
Put a full stop in ’Local module directory (optional)’
4. set up build triggers
Click ’Build after other projects are built’
Fill in ’BEAST 2 Trunk’ under ’Projects names’
Click ’Poll SCM’
Fill in ’* * * * *’ under ’Schedule’
5 Add build step
Click ”Add build step” button, select ’Invoke Ant’
Fill in the target, e.g., build jar all BEAST
6 Add Post-build actions
Click ’Publish JUnit test result report’
Fill in ’Test report XMLs’ with ’build/junitreport/*.xml’
Click ’E-mail notification’
Fill in recipients
7 Click ’Save’.

14

