
AVRDUDE
A program for download/uploading AVR microcontroller flash and eeprom.

For AVRDUDE, Version 7.1, 8 January 2023.

by Brian S. Dean

Use https://github.com/avrdudes/avrdude/issues to report bugs and ask questions.

Copyright c© Brian S. Dean, Jörg Wunsch

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

https://github.com/avrdudes/avrdude/issues

i

Table of Contents

1 Introduction . 1
1.1 History and Credits . 4

2 Command Line Options . 5
2.1 Option Descriptions . 5
2.2 Programmers accepting extended parameters 19
2.3 Example Command Line Invocations . 26

3 Terminal Mode Operation . 30
3.1 Terminal Mode Commands . 30
3.2 Terminal Mode Examples . 33

4 Configuration File . 37
4.1 AVRDUDE Defaults . 37
4.2 Programmer Definitions . 37
4.3 Part Definitions . 38

4.3.1 Parent Part . 40
4.3.2 Instruction Format . 41

4.4 Other Notes . 42

5 Programmer Specific Information 43
5.1 Atmel STK600 . 43
5.2 Atmel DFU bootloader using FLIP version 1 46
5.3 SerialUPDI programmer . 46

Appendix A Platform Dependent Information . . 48
A.1 Unix . 48

A.1.1 Unix Installation . 48
A.1.1.1 FreeBSD Installation . 48
A.1.1.2 Linux Installation . 48

A.1.2 Unix Configuration Files . 49
A.1.2.1 FreeBSD Configuration Files . 49
A.1.2.2 Linux Configuration Files . 49

A.1.3 Unix Port Names . 49
A.1.4 Unix Documentation . 49

A.2 Windows . 49
A.2.1 Installation . 49
A.2.2 Configuration Files . 50

A.2.2.1 Configuration file names . 50
A.2.2.2 How AVRDUDE finds the configuration files. 50

A.2.3 Port Names . 50

ii

A.2.3.1 Serial Ports . 50
A.2.3.2 Parallel Ports . 50

A.2.4 Documentation . 51

Appendix B Troubleshooting . 52

Concept Index . 57

1

1 Introduction

AVRDUDE - AVR Downloader Uploader - is a program for downloading and uploading
the on-chip memories of Atmel’s AVR microcontrollers. It can program the Flash and
EEPROM, and where supported by the serial programming protocol, it can program fuse
and lock bits. AVRDUDE also supplies a direct instruction mode allowing one to issue any
programming instruction to the AVR chip regardless of whether AVRDUDE implements
that specific feature of a particular chip.

AVRDUDE can be used effectively via the command line to read or write all chip memory
types (eeprom, flash, fuse bits, lock bits, signature bytes) or via an interactive (terminal)
mode. Using AVRDUDE from the command line works well for programming the entire
memory of the chip from the contents of a file, while interactive mode is useful for exploring
memory contents, modifying individual bytes of eeprom, programming fuse/lock bits, etc.

AVRDUDE supports the following basic programmer types: Atmel’s STK500, Atmel’s
AVRISP and AVRISP mkII devices, Atmel’s STK600, Atmel’s JTAG ICE (the original one,
mkII, and 3, the latter two also in ISP mode), appnote avr910, appnote avr109 (including
the AVR Butterfly), serial bit-bang adapters, and the PPI (parallel port interface). PPI
represents a class of simple programmers where the programming lines are directly connected
to the PC parallel port. Several pin configurations exist for several variations of the PPI
programmers, and AVRDUDE can be configured to work with them by either specifying the
appropriate programmer on the command line or by creating a new entry in its configuration
file. All that’s usually required for a new entry is to tell AVRDUDE which pins to use for
each programming function.

A number of equally simple bit-bang programming adapters that connect to a serial port
are supported as well, among them the popular Ponyprog serial adapter, and the DASA
and DASA3 adapters that used to be supported by uisp(1). Note that these adapters are
meant to be attached to a physical serial port. Connecting to a serial port emulated on top
of USB is likely to not work at all, or to work abysmally slow.

If you happen to have a Linux system with at least 4 hardware GPIOs available (like
almost all embedded Linux boards) you can do without any additional hardware - just
connect them to the SDO, SDI, RESET and SCK pins of the AVR’s SPI interface and use
the linuxgpio programmer type. Older boards might use the labels MOSI for SDO and
MISO for SDI. It bitbangs the lines using the Linux sysfs GPIO interface. Of course, care
should be taken about voltage level compatibility. Also, although not strictly required, it is
strongly advisable to protect the GPIO pins from overcurrent situations in some way. The
simplest would be to just put some resistors in series or better yet use a 3-state buffer driver
like the 74HC244. Have a look at http://kolev.info/blog/2013/01/06/avrdude-linuxgpio/
for a more detailed tutorial about using this programmer type.

Under a Linux installation with direct access to the SPI bus and GPIO pins, such
as would be found on a Raspberry Pi, the “linuxspi” programmer type can be used to
directly connect to and program a chip using the built in interfaces on the computer. The
requirements to use this type are that an SPI interface is exposed along with one GPIO
pin. The GPIO serves as the reset output since the Linux SPI drivers do not hold chip
select down when a transfer is not occuring and thus it cannot be used as the reset pin. A
readily available level translator should be used between the SPI bus/reset GPIO and the
chip to avoid potentially damaging the computer’s SPI controller in the event that the chip

Chapter 1: Introduction 2

is running at 5V and the SPI runs at 3.3V. The GPIO chosen for reset can be configured
in the avrdude configuration file using the reset entry under the linuxspi programmer, or
directly in the port specification. An external pull-up resistor should be connected between
the AVR’s reset pin and Vcc. If Vcc is not the same as the SPI voltage, this should be done
on the AVR side of the level translator to protect the hardware from damage.

On a Raspberry Pi, header J8 provides access to the SPI and GPIO lines.

Typically, pins 19, 21, and 23 are SPI SDO, SDI, and SCK, while pins 24 and 26 would
serve as CE outputs. So, close to these pins is pin 22 as GPIO25 which can be used as
/RESET, and pin 25 can be used as GND.

A typical programming cable would then look like:

J8 pin ISP pin Name

21 1 SDI

- 2 Vcc - leave open

23 3 SCK

19 4 SDO

22 5 /RESET

25 6 GND

(Mind the 3.3 V voltage level of the Raspberry Pi!)

The -P portname option defaults to /dev/spidev0.0:/dev/gpiochip0 for this program-
mer.

The STK500, JTAG ICE, avr910, and avr109/butterfly use the serial port to communi-
cate with the PC. The STK600, JTAG ICE mkII/3, AVRISP mkII, USBasp, avrftdi (and
derivatives), and USBtinyISP programmers communicate through the USB, using libusb

as a platform abstraction layer. The avrftdi adds support for the FT2232C/D, FT2232H,
and FT4232H devices. These all use the MPSSE mode, which has a specific pin mapping.
Bit 1 (the lsb of the byte in the config file) is SCK. Bit 2 is SDO, and Bit 3 is SDI. Bit
4 usually reset. The 2232C/D parts are only supported on interface A, but the H parts
can be either A or B (specified by the usbdev config parameter). The STK500, STK600,
JTAG ICE, and avr910 contain on-board logic to control the programming of the target
device. The avr109 bootloader implements a protocol similar to avr910, but is actually
implemented in the boot area of the target’s flash ROM, as opposed to being an external
device. The fundamental difference between the two types lies in the protocol used to con-
trol the programmer. The avr910 protocol is very simplistic and can easily be used as the
basis for a simple, home made programmer since the firmware is available online. On the
other hand, the STK500 protocol is more robust and complicated and the firmware is not
openly available. The JTAG ICE also uses a serial communication protocol which is similar
to the STK500 firmware version 2 one. However, as the JTAG ICE is intended to allow on-
chip debugging as well as memory programming, the protocol is more sophisticated. (The
JTAG ICE mkII protocol can also be run on top of USB.) Only the memory programming
functionality of the JTAG ICE is supported by AVRDUDE. For the JTAG ICE mkII/3,
JTAG, debugWire and ISP mode are supported, provided it has a firmware revision of at
least 4.14 (decimal). See below for the limitations of debugWire. For ATxmega devices, the
JTAG ICE mkII/3 is supported in PDI mode, provided it has a revision 1 hardware and
firmware version of at least 5.37 (decimal).

Chapter 1: Introduction 3

The Atmel-ICE (ARM/AVR) is supported (JTAG, PDI for Xmega, debugWIRE, ISP,
UPDI).

Atmel’s XplainedPro boards, using EDBG protocol (CMSIS-DAP compliant), are sup-
ported by the “jtag3” programmer type.

Atmel’s XplainedMini boards, using mEDBG protocol, are also supported by the “jtag3”
programmer type.

The AVR Dragon is supported in all modes (ISP, JTAG, PDI, HVSP, PP, debugWire).
When used in JTAG and debugWire mode, the AVR Dragon behaves similar to a JTAG
ICE mkII, so all device-specific comments for that device will apply as well. When used
in ISP and PDI mode, the AVR Dragon behaves similar to an AVRISP mkII (or JTAG
ICE mkII in ISP mode), so all device-specific comments will apply there. In particular, the
Dragon starts out with a rather fast ISP clock frequency, so the -B bitclock option might
be required to achieve a stable ISP communication. For ATxmega devices, the AVR Dragon
is supported in PDI mode, provided it has a firmware version of at least 6.11 (decimal).

Wiring boards (e.g. Arduino Mega 2560 Rev3) are supported, utilizing STK500 V2.x
protocol, but a simple DTR/RTS toggle to set the boards into programming mode. The
programmer type is “wiring”. Note that the -D option will likely be required in this case,
because the bootloader will rewrite the program memory, but no true chip erase can be
performed.

Serial bootloaders that run a skeleton of the STK500 1.x protocol are supported via their
own programmer type specification “arduino”. This programmer works for the Arduino
Uno Rev3 or any AVR that runs the Optiboot bootloader. The number of connection retry
attempts can be specified as an extended parameter. See the section on extended parameters
below for details.

Urprotocol is a leaner version of the STK500 1.x protocol that is designed to be back-
wards compatible with STK500 v1.x; it allows bootloaders to be much smaller, e.g., as
implemented in the urboot project https://github.com/stefanrueger/urboot. The pro-
grammer type “urclock” caters for these urboot bootloaders. Owing to its backward com-
patibility, bootloaders that can be served by the arduino programmer can normally also be
served by the urclock programmer. This may require specifying the size of (to AVRDUDE)
unknown bootloaders in bytes using the -x bootsize=<n> option, which is necessary for
the urclock programmer to enable it to protect the bootloader from being overwritten. If
an unknown bootloader has EEPROM read/write capability then the option -x eepromrw

informs avrdude -c urclock of that capability.

The BusPirate is a versatile tool that can also be used as an AVR programmer. A single
BusPirate can be connected to up to 3 independent AVRs. See the section on extended
parameters below for details.

The USBasp ISP and USBtinyISP adapters are also supported, provided AVRDUDE
has been compiled with libusb support. They both feature simple firmware-only USB
implementations, running on an ATmega8 (or ATmega88), or ATtiny2313, respectively.

The Atmel DFU bootloader is supported in both, FLIP protocol version 1 (AT90USB*
and ATmega*U* devices), as well as version 2 (Xmega devices). See below for some hints
about FLIP version 1 protocol behaviour.

https://github.com/stefanrueger/urboot

Chapter 1: Introduction 4

The MPLAB(R) PICkit 4 and MPLAB(R) SNAP are supported in JTAG, TPI, ISP,
PDI and UPDI mode. The Curiosity Nano board is supported in UPDI mode. It is dubbed
“PICkit on Board”, thus the name pkobn_updi.

SerialUPDI programmer implementation is based on Microchip’s pymcuprog (https://
github.com/microchip-pic-avr-tools/pymcuprog) utility, but it also contains some per-
formance improvements included in Spence Konde’s DxCore Arduino core (https://
github.com/SpenceKonde/DxCore). In a nutshell, this programmer consists of simple USB-
>UART adapter, diode and couple of resistors. It uses serial connection to provide UPDI
interface. See Section 5.3 [SerialUPDI programmer], page 46, for more details and known
issues.

The jtag2updi programmer is supported, and can program AVRs with a UPDI interface.
Jtag2updi is just a firmware that can be uploaded to an AVR, which enables it to inter-
face with avrdude using the jtagice mkii protocol via a serial link (https://github.com/
ElTangas/jtag2updi).

The Micronucleus bootloader is supported for both protocol version V1 and V2. As
the bootloader does not support reading from flash memory, use the -V option to prevent
AVRDUDE from verifying the flash memory. See the section on extended parameters below
for Micronucleus specific options.

The Teensy bootloader is supported for all AVR boards. As the bootloader does not
support reading from flash memory, use the -V option to prevent AVRDUDE from verifying
the flash memory. See the section on extended parameters below for Teensy specific options.

1.1 History and Credits

AVRDUDE was written by Brian S. Dean under the name of AVRPROG to run on the
FreeBSD Operating System. Brian renamed the software to be called AVRDUDE when
interest grew in a Windows port of the software so that the name did not conflict with
AVRPROG.EXE which is the name of Atmel’s Windows programming software.

For many years, the AVRDUDE source resided in public repositories on savan-
nah.nongnu.org, where it continued to be enhanced and ported to other systems. In
addition to FreeBSD, AVRDUDE now runs on Linux and Windows. The developers
behind the porting effort primarily were Ted Roth, Eric Weddington, and Joerg Wunsch.

In 2022, the project moved to Github (https://github.com/avrdudes/avrdude/).

And in the spirit of many open source projects, this manual also draws on the work
of others. The initial revision was composed of parts of the original Unix manual page
written by Joerg Wunsch, the original web site documentation by Brian Dean, and from
the comments describing the fields in the AVRDUDE configuration file by Brian Dean. The
texi formatting was modeled after that of the Simulavr documentation by Ted Roth.

https://github.com/microchip-pic-avr-tools/pymcuprog
https://github.com/microchip-pic-avr-tools/pymcuprog
https://github.com/SpenceKonde/DxCore
https://github.com/SpenceKonde/DxCore
https://github.com/ElTangas/jtag2updi
https://github.com/ElTangas/jtag2updi
https://github.com/avrdudes/avrdude/

5

2 Command Line Options

2.1 Option Descriptions

AVRDUDE is a command line tool, used as follows:

avrdude -p partno options ...

Command line options are used to control AVRDUDE’s behaviour. The following options
are recognized:

-p partno This option tells AVRDUDE what part (MCU) is connected to the program-
mer. The partno parameter is the part’s id listed in the configuration file. For
currently supported MCU types use ? as partno, which will print a list of
partno ids and official part names on the terminal. Both can be used with the
-p option. If a part is unknown to AVRDUDE, it means that there is no config
file entry for that part, but it can be added to the configuration file if you have
the Atmel datasheet so that you can enter the programming specifications. If
-p ? is specified with a specific programmer, see -c below, then only those parts
are output that the programmer expects to be able to handle, together with
the programming interface(s) that can be used in that combination. In reality
there can be deviations from this list, particularly if programming is directly
via a bootloader. Currently, the following MCU types are understood:

uc3a0512 AT32UC3A0512
c128 AT90CAN128
c32 AT90CAN32
c64 AT90CAN64
pwm2 AT90PWM2
pwm216 AT90PWM216
pwm2b AT90PWM2B
pwm3 AT90PWM3
pwm316 AT90PWM316
pwm3b AT90PWM3B
1200 AT90S1200 (****)
2313 AT90S2313
2333 AT90S2333
2343 AT90S2343 (*)
4414 AT90S4414
4433 AT90S4433
4434 AT90S4434
8515 AT90S8515
8535 AT90S8535
usb1286 AT90USB1286
usb1287 AT90USB1287
usb162 AT90USB162
usb646 AT90USB646
usb647 AT90USB647

Chapter 2: Command Line Options 6

usb82 AT90USB82
m103 ATmega103
m128 ATmega128
m1280 ATmega1280
m1281 ATmega1281
m1284 ATmega1284
m1284p ATmega1284P
m1284rfr2 ATmega1284RFR2
m128a ATmega128A
m128rfa1 ATmega128RFA1
m128rfr2 ATmega128RFR2
m16 ATmega16
m1608 ATmega1608
m1609 ATmega1609
m161 ATmega161
m162 ATmega162
m163 ATmega163
m164a ATmega164A
m164p ATmega164P
m164pa ATmega164PA
m165 ATmega165
m165a ATmega165A
m165p ATmega165P
m165pa ATmega165PA
m168 ATmega168
m168a ATmega168A
m168p ATmega168P
m168pa ATmega168PA
m168pb ATmega168PB
m169 ATmega169
m169a ATmega169A
m169p ATmega169P
m169pa ATmega169PA
m16a ATmega16A
m16u2 ATmega16U2
m16u4 ATmega16U4
m2560 ATmega2560 (**)
m2561 ATmega2561 (**)
m2564rfr2 ATmega2564RFR2
m256rfr2 ATmega256RFR2
m32 ATmega32
m3208 ATmega3208
m3209 ATmega3209
m324a ATmega324A
m324p ATmega324P
m324pa ATmega324PA
m324pb ATmega324PB

Chapter 2: Command Line Options 7

m325 ATmega325
m3250 ATmega3250
m3250a ATmega3250A
m3250p ATmega3250P
m3250pa ATmega3250PA
m325a ATmega325A
m325p ATmega325P
m325pa ATmega325PA
m328 ATmega328
m328p ATmega328P
m328pb ATmega328PB
m329 ATmega329
m3290 ATmega3290
m3290a ATmega3290A
m3290p ATmega3290P
m3290pa ATmega3290PA
m329a ATmega329A
m329p ATmega329P
m329pa ATmega329PA
m32a ATmega32A
m32m1 ATmega32M1
m32u2 ATmega32U2
m32u4 ATmega32U4
m406 ATmega406
m48 ATmega48
m4808 ATmega4808
m4809 ATmega4809
m48a ATmega48A
m48p ATmega48P
m48pa ATmega48PA
m48pb ATmega48PB
m64 ATmega64
m640 ATmega640
m644 ATmega644
m644a ATmega644A
m644p ATmega644P
m644pa ATmega644PA
m644rfr2 ATmega644RFR2
m645 ATmega645
m6450 ATmega6450
m6450a ATmega6450A
m6450p ATmega6450P
m645a ATmega645A
m645p ATmega645P
m649 ATmega649
m6490 ATmega6490
m6490a ATmega6490A

Chapter 2: Command Line Options 8

m6490p ATmega6490P
m649a ATmega649A
m649p ATmega649P
m64a ATmega64A
m64m1 ATmega64M1
m64rfr2 ATmega64RFR2
m8 ATmega8
m808 ATmega808
m809 ATmega809
m8515 ATmega8515
m8535 ATmega8535
m88 ATmega88
m88a ATmega88A
m88p ATmega88P
m88pa ATmega88PA
m88pb ATmega88PB
m8a ATmega8A
m8u2 ATmega8U2
t10 ATtiny10
t102 ATtiny102
t104 ATtiny104
t11 ATtiny11 (***)
t12 ATtiny12
t13 ATtiny13
t13a ATtiny13A
t15 ATtiny15
t1604 ATtiny1604
t1606 ATtiny1606
t1607 ATtiny1607
t1614 ATtiny1614
t1616 ATtiny1616
t1617 ATtiny1617
t1624 ATtiny1624
t1626 ATtiny1626
t1627 ATtiny1627
t1634 ATtiny1634
t1634r ATtiny1634R
t167 ATtiny167
t20 ATtiny20
t202 ATtiny202
t204 ATtiny204
t212 ATtiny212
t214 ATtiny214
t2313 ATtiny2313
t2313a ATtiny2313A
t24 ATtiny24
t24a ATtiny24A

Chapter 2: Command Line Options 9

t25 ATtiny25
t26 ATtiny26
t261 ATtiny261
t261a ATtiny261A
t28 ATtiny28
t3216 ATtiny3216
t3217 ATtiny3217
t3224 ATtiny3224
t3226 ATtiny3226
t3227 ATtiny3227
t4 ATtiny4
t40 ATtiny40
t402 ATtiny402
t404 ATtiny404
t406 ATtiny406
t412 ATtiny412
t414 ATtiny414
t416 ATtiny416
t417 ATtiny417
t424 ATtiny424
t426 ATtiny426
t427 ATtiny427
t4313 ATtiny4313
t43u ATtiny43U
t44 ATtiny44
t441 ATtiny441
t44a ATtiny44A
t45 ATtiny45
t461 ATtiny461
t461a ATtiny461A
t48 ATtiny48
t5 ATtiny5
t804 ATtiny804
t806 ATtiny806
t807 ATtiny807
t814 ATtiny814
t816 ATtiny816
t817 ATtiny817
t824 ATtiny824
t826 ATtiny826
t827 ATtiny827
t828 ATtiny828
t828r ATtiny828R
t84 ATtiny84
t841 ATtiny841
t84a ATtiny84A
t85 ATtiny85

Chapter 2: Command Line Options 10

t861 ATtiny861
t861a ATtiny861A
t87 ATtiny87
t88 ATtiny88
t9 ATtiny9
x128a1 ATxmega128A1
x128a1d ATxmega128A1revD
x128a1u ATxmega128A1U
x128a3 ATxmega128A3
x128a3u ATxmega128A3U
x128a4 ATxmega128A4
x128a4u ATxmega128A4U
x128b1 ATxmega128B1
x128b3 ATxmega128B3
x128c3 ATxmega128C3
x128d3 ATxmega128D3
x128d4 ATxmega128D4
x16a4 ATxmega16A4
x16a4u ATxmega16A4U
x16c4 ATxmega16C4
x16d4 ATxmega16D4
x16e5 ATxmega16E5
x192a1 ATxmega192A1
x192a3 ATxmega192A3
x192a3u ATxmega192A3U
x192c3 ATxmega192C3
x192d3 ATxmega192D3
x256a1 ATxmega256A1
x256a3 ATxmega256A3
x256a3b ATxmega256A3B
x256a3bu ATxmega256A3BU
x256a3u ATxmega256A3U
x256c3 ATxmega256C3
x256d3 ATxmega256D3
x32a4 ATxmega32A4
x32a4u ATxmega32A4U
x32c4 ATxmega32C4
x32d4 ATxmega32D4
x32e5 ATxmega32E5
x384c3 ATxmega384C3
x384d3 ATxmega384D3
x64a1 ATxmega64A1
x64a1u ATxmega64A1U
x64a3 ATxmega64A3
x64a3u ATxmega64A3U
x64a4 ATxmega64A4
x64a4u ATxmega64A4U

Chapter 2: Command Line Options 11

x64b1 ATxmega64B1
x64b3 ATxmega64B3
x64c3 ATxmega64C3
x64d3 ATxmega64D3
x64d4 ATxmega64D4
x8e5 ATxmega8E5
avr128da28 AVR128DA28
avr128da32 AVR128DA32
avr128da48 AVR128DA48
avr128da64 AVR128DA64
avr128db28 AVR128DB28
avr128db32 AVR128DB32
avr128db48 AVR128DB48
avr128db64 AVR128DB64
avr16dd14 AVR16DD14
avr16dd20 AVR16DD20
avr16dd28 AVR16DD28
avr16dd32 AVR16DD32
avr16ea28 AVR16EA28
avr16ea32 AVR16EA32
avr16ea48 AVR16EA48
avr32da28 AVR32DA28
avr32da32 AVR32DA32
avr32da48 AVR32DA48
avr32db28 AVR32DB28
avr32db32 AVR32DB32
avr32db48 AVR32DB48
avr32dd14 AVR32DD14
avr32dd20 AVR32DD20
avr32dd28 AVR32DD28
avr32dd32 AVR32DD32
avr32ea28 AVR32EA28
avr32ea32 AVR32EA32
avr32ea48 AVR32EA48
avr64da28 AVR64DA28
avr64da32 AVR64DA32
avr64da48 AVR64DA48
avr64da64 AVR64DA64
avr64db28 AVR64DB28
avr64db32 AVR64DB32
avr64db48 AVR64DB48
avr64db64 AVR64DB64
avr64dd14 AVR64DD14
avr64dd20 AVR64DD20
avr64dd28 AVR64DD28
avr64dd32 AVR64DD32
avr64ea28 AVR64EA28

Chapter 2: Command Line Options 12

avr64ea32 AVR64EA32
avr64ea48 AVR64EA48
avr8ea28 AVR8EA28
avr8ea32 AVR8EA32
ucr2 deprecated,
lgt8f168p LGT8F168P
lgt8f328p LGT8F328P
lgt8f88p LGT8F88P

(*) The AT90S2323 and ATtiny22 use the same algorithm.

(**) Flash addressing above 128 KB is not supported by all programming hard-
ware. Known to work are jtag2, stk500v2, and bit-bang programmers.

(***) The ATtiny11 can only be programmed in high-voltage serial mode.

(****) The ISP programming protocol of the AT90S1200 differs in subtle ways
from that of other AVRs. Thus, not all programmers support this device.
Known to work are all direct bitbang programmers, and all programmers talking
the STK500v2 protocol.

-p wildcard/flags

Run developer options for MCUs that are matched by wildcard. Whilst their
main use is for developers some flags can be of utility for users, e.g., avrdude -p

m328p/S outputs AVRDUDE’s understanding of ATmega328P MCU properties;
for more information run avrdude -p x/h.

-b baudrate

Override the RS-232 connection baud rate specified in the respective program-
mer’s entry of the configuration file.

-B bitclock

Specify the bit clock period for the JTAG, PDI, TPI, UPDI, or ISP interface.
The value is a floating-point number in microseconds. Alternatively, the value
might be suffixed with "Hz", "kHz" or "MHz" in order to specify the bit clock
frequency rather than a period. Some programmers default their bit clock
value to a 1 microsecond bit clock period, suitable for target MCUs running
at 4 MHz clock and above. Slower MCUs need a correspondingly higher bit
clock period. Some programmers reset their bit clock value to the default
value when the programming software signs off, whilst others store the last
used bit clock value. It is recommended to always specify the bit clock if
read/write speed is important. You can use the ’default bitclock’ keyword
in your ~/.config/avrdude/avrdude.rc or ~/.avrduderc configuration file
to assign a default value to keep from having to specify this option on every
invocation.

-c programmer-id

Specify the programmer to be used. AVRDUDE knows about several common
programmers. Use this option to specify which one to use. The programmer-id
parameter is the programmer’s id listed in the configuration file. Specify -c ? to
list all programmers in the configuration file. If you have a programmer that is
unknown to AVRDUDE, and the programmer is controlled via the PC parallel

Chapter 2: Command Line Options 13

port, there’s a good chance that it can be easily added to the configuration file
without any code changes to AVRDUDE. Simply copy an existing entry and
change the pin definitions to match that of the unknown programmer. If -c
? is specified with a specific part, see -p above, then only those programmers
are output that expect to be able to handle this part, together with the pro-
gramming interface(s) that can be used in that combination. In reality there
can be deviations from this list, particularly if programming is directly via a
bootloader. Currently, the following programmer ids are understood and sup-
ported:

-c wildcard/flags

Run developer options for programmers that are matched by wildcard. Whilst
their main use is for developers some flags can be of utility for users, e.g.,
avrdude -c usbtiny/S shows AVRDUDE’s understanding of usbtiny’s proper-
ties; for more information run avrdude -c x/h.

-C config-file

Use the specified config file for configuration data. This file contains all pro-
grammer and part definitions that AVRDUDE knows about. If not specified,
AVRDUDE looks for the configuration file in the following two locations:

1. <directory from which application loaded>/../etc/avrdude.conf

2. <directory from which application loaded>/avrdude.conf

If not found there, the lookup procedure becomes platform dependent. On
FreeBSD and Linux, AVRDUDE looks at /usr/local/etc/avrdude.conf. See
Appendix A for the method of searching on Windows.

If config-file is written as +filename then this file is read after the system wide
and user configuration files. This can be used to add entries to the configuration
without patching your system wide configuration file. It can be used several
times, the files are read in same order as given on the command line.

-A Disable the automatic removal of trailing-0xFF sequences in file input that is
to be programmed to flash and in AVR reads from flash memory. Normally,
trailing 0xFFs can be discarded, as flash programming requires the memory be
erased to 0xFF beforehand. -A should be used when the programmer hardware,
or bootloader software for that matter, does not carry out chip erase and instead
handles the memory erase on a page level. The popular Arduino bootloader
exhibits this behaviour; for this reason -A is engaged by default when specifying
-c arduino.

-D Disable auto erase for flash. When the -U option with flash memory is speci-
fied, avrdude will perform a chip erase before starting any of the programming
operations, since it generally is a mistake to program the flash without per-
forming an erase first. This option disables that. Auto erase is not used for
ATxmega devices as these devices can use page erase before writing each page
so no explicit chip erase is required. Note however that any page not affected
by the current operation will retain its previous contents. Setting -D implies
-A.

Chapter 2: Command Line Options 14

-e Causes a chip erase to be executed. This will reset the contents of the flash ROM
and EEPROM to the value ‘0xff’, and clear all lock bits. Except for ATxmega
devices which can use page erase, it is basically a prerequisite command before
the flash ROM can be reprogrammed again. The only exception would be if the
new contents would exclusively cause bits to be programmed from the value ‘1’
to ‘0’. Note that in order to reprogram EERPOM cells, no explicit prior chip
erase is required since the MCU provides an auto-erase cycle in that case before
programming the cell.

-E exitspec[,...]

By default, AVRDUDE leaves the parallel port in the same state at exit as it
has been found at startup. This option modifies the state of the ‘/RESET’
and ‘Vcc’ lines the parallel port is left at, according to the exitspec arguments
provided, as follows:

reset The ‘/RESET’ signal will be left activated at program exit, that
is it will be held low, in order to keep the MCU in reset state
afterwards. Note in particular that the programming algorithm for
the AT90S1200 device mandates that the ‘/RESET’ signal is active
before powering up the MCU, so in case an external power supply
is used for this MCU type, a previous invocation of AVRDUDE
with this option specified is one of the possible ways to guarantee
this condition. reset is supported by the linuxspi and flip2

programmer options, as well as all parallel port based programmers.

noreset The ‘/RESET’ line will be deactivated at program exit, thus allow-
ing the MCU target program to run while the programming hard-
ware remains connected. noreset is supported by the linuxspi

and flip2 programmer options, as well as all parallel port based
programmers.

vcc This option will leave those parallel port pins active (i. e. high)
that can be used to supply ‘Vcc’ power to the MCU.

novcc This option will pull the ‘Vcc’ pins of the parallel port down at
program exit.

d_high This option will leave the 8 data pins on the parallel port active (i.
e. high).

d_low This option will leave the 8 data pins on the parallel port inactive
(i. e. low).

Multiple exitspec arguments can be separated with commas.

-F Normally, AVRDUDE tries to verify that the device signature read from the
part is reasonable before continuing. Since it can happen from time to time that
a device has a broken (erased or overwritten) device signature but is otherwise
operating normally, this options is provided to override the check. Also, for
programmers like the Atmel STK500 and STK600 which can adjust parameters
local to the programming tool (independent of an actual connection to a target
controller), this option can be used together with -t to continue in terminal

Chapter 2: Command Line Options 15

mode. Moreover, the option allows to continue despite failed initialization of
connection between a programmer and a target.

-i delay For bitbang-type programmers, delay for approximately delay microseconds be-
tween each bit state change. If the host system is very fast, or the target runs off
a slow clock (like a 32 kHz crystal, or the 128 kHz internal RC oscillator), this
can become necessary to satisfy the requirement that the ISP clock frequency
must not be higher than 1/4 of the CPU clock frequency. This is implemented
as a spin-loop delay to allow even for very short delays. On Unix-style operat-
ing systems, the spin loop is initially calibrated against a system timer, so the
number of microseconds might be rather realistic, assuming a constant system
load while AVRDUDE is running. On Win32 operating systems, a preconfig-
ured number of cycles per microsecond is assumed that might be off a bit for
very fast or very slow machines.

-l logfile

Use logfile rather than stderr for diagnostics output. Note that initial diagnostic
messages (during option parsing) are still written to stderr anyway.

-n No-write - disables actually writing data to the MCU (useful for debugging
AVRDUDE).

-O Perform a RC oscillator run-time calibration according to Atmel application
note AVR053. This is only supported on the STK500v2, AVRISP mkII, and
JTAG ICE mkII hardware. Note that the result will be stored in the EEPROM
cell at address 0.

-P port Use port to identify the device to which the programmer is attached. Normally,
the default parallel port is used, but if the programmer type normally connects
to the serial port, the default serial port will be used. See Appendix A, Platform
Dependent Information, to find out the default port names for your platform.
If you need to use a different parallel or serial port, use this option to specify
the alternate port name.

On Win32 operating systems, the parallel ports are referred to as lpt1 through
lpt3, referring to the addresses 0x378, 0x278, and 0x3BC, respectively. If the
parallel port can be accessed through a different address, this address can be
specified directly, using the common C language notation (i. e., hexadecimal
values are prefixed by 0x).

For the JTAG ICE mkII, if AVRDUDE has been built with libusb support, port
may alternatively be specified as usb[:serialno]. In that case, the JTAG ICE
mkII will be looked up on USB. If serialno is also specified, it will be matched
against the serial number read from any JTAG ICE mkII found on USB. The
match is done after stripping any existing colons from the given serial number,
and right-to-left, so only the least significant bytes from the serial number
need to be given. For a trick how to find out the serial numbers of all JTAG
ICEs attached to USB, see Section 2.3 [Example Command Line Invocations],
page 26.

As the AVRISP mkII device can only be talked to over USB, the very same
method of specifying the port is required there.

Chapter 2: Command Line Options 16

For the USB programmer "AVR-Doper" running in HID mode, the port must
be specified as avrdoper. Libhidapi support is required on Unix and Mac OS
but not on Windows. For more information about AVR-Doper see http://

www.obdev.at/avrusb/avrdoper.html.

For the USBtinyISP, which is a simplistic device not implementing serial num-
bers, multiple devices can be distinguished by their location in the USB hier-
archy. See the respective See Appendix B [Troubleshooting], page 52, entry for
examples.

For the XBee programmer the target MCU is to be programmed wirelessly over
a ZigBee mesh using the XBeeBoot bootloader. The ZigBee 64-bit address
for the target MCU’s own XBee device must be supplied as a 16-character
hexadecimal value as a port prefix, followed by the @ character, and the serial
device to connect to a second directly contactable XBee device associated with
the same mesh (with a default baud rate of 9600). This may look similar to:
0013a20000000001dev/tty.serial.

For diagnostic purposes, if the target MCU with an XBeeBoot bootloader is
connected directly to the serial port, the 64-bit address field can be omitted.
In this mode the default baud rate will be 19200.

For programmers that attach to a serial port using some kind of higher level
protocol (as opposed to bit-bang style programmers), port can be specified as
net:host:port. In this case, instead of trying to open a local device, a TCP
network connection to (TCP) port on host is established. Square brackets
may be placed around host to improve readability for numeric IPv6 addresses
(e.g. net:[2001:db8::42]:1337). The remote endpoint is assumed to be a
terminal or console server that connects the network stream to a local serial
port where the actual programmer has been attached to. The port is assumed
to be properly configured, for example using a transparent 8-bit data connection
without parity at 115200 Baud for a STK500.

Note: The ability to handle IPv6 hostnames and addresses is limited to Posix
systems (by now).

-q Disable (or quell) output of the progress bar while reading or writing to the
device. Specify it a second time for even quieter operation.

-s, -u These options used to control the obsolete "safemode" feature which is no longer
present. They are silently ignored for backwards compatibility.

-t Tells AVRDUDE to enter the interactive “terminal” mode instead of up- or
downloading files. See below for a detailed description of the terminal mode.

-U memtype:op:filename[:format]

Perform a memory operation. Multiple -U options can be specified in order
to operate on multiple memories on the same command-line invocation. The
memtype field specifies the memory type to operate on. Use the -v option
on the command line or the part command from terminal mode to display
all the memory types supported by a particular device. Typically, a device’s
memory configuration at least contains the memory types flash and eeprom.
All memory types currently known are:

http://www.obdev.at/avrusb/avrdoper.html
http://www.obdev.at/avrusb/avrdoper.html

Chapter 2: Command Line Options 17

calibration

One or more bytes of RC oscillator calibration data.

eeprom The EEPROM of the device.

efuse The extended fuse byte.

flash The flash ROM of the device.

fuse The fuse byte in devices that have only a single fuse byte.

hfuse The high fuse byte.

lfuse The low fuse byte.

lock The lock byte.

signature

The three device signature bytes (device ID).

fuseN The fuse bytes of ATxmega devices, N is an integer number for
each fuse supported by the device.

application

The application flash area of ATxmega devices.

apptable The application table flash area of ATxmega devices.

boot The boot flash area of ATxmega devices.

prodsig The production signature (calibration) area of ATxmega devices.

usersig The user signature area of ATxmega devices.

The op field specifies what operation to perform:

r read the specified device memory and write to the specified file

w read the specified file and write it to the specified device memory

v read the specified device memory and the specified file and perform
a verify operation

The filename field indicates the name of the file to read or write. The format
field is optional and contains the format of the file to read or write. Possible
values are:

i Intel Hex

I Intel Hex with comments on download and tolerance of checksum
errors on upload

s Motorola S-record

r raw binary; little-endian byte order, in the case of the flash ROM
data

e ELF (Executable and Linkable Format), the final output file from
the linker; currently only accepted as an input file

Chapter 2: Command Line Options 18

m immediate mode; actual byte values specified on the command line,
separated by commas or spaces in place of the filename field of
the -U option. This is useful for programming fuse bytes without
having to create a single-byte file or enter terminal mode. If the
number specified begins with 0x, it is treated as a hex value. If
the number otherwise begins with a leading zero (0) it is treated as
octal. Otherwise, the value is treated as decimal.

a auto detect; valid for input only, and only if the input is not pro-
vided at stdin.

d decimal; this and the following formats are only valid on output.
They generate one line of output for the respective memory section,
forming a comma-separated list of the values. This can be partic-
ularly useful for subsequent processing, like for fuse bit settings.

h hexadecimal; each value will get the string 0x prepended. Only
valid on output.

o octal; each value will get a 0 prepended unless it is less than 8 in
which case it gets no prefix. Only valid on output.

b binary; each value will get the string 0b prepended. Only valid on
output.

The default is to use auto detection for input files, and raw binary format for
output files.

Note that if filename contains a colon, the format field is no longer optional
since the filename part following the colon would otherwise be misinterpreted
as format.

When reading any kind of flash memory area (including the various sub-areas
in Xmega devices), the resulting output file will be truncated to not contain
trailing 0xFF bytes which indicate unprogrammed (erased) memory. Thus, if
the entire memory is unprogrammed, this will result in an output file that has
no contents at all.

As an abbreviation, the form -U filename is equivalent to specifying -U

flash:w:filename:a. This will only work if filename does not have a colon in it.

-v Enable verbose output. More -v options increase verbosity level.

-V Disable automatic verify check when uploading data.

-x extended_param

Pass extended param to the chosen programmer implementation as an extended
parameter. The interpretation of the extended parameter depends on the pro-
grammer itself. See below for a list of programmers accepting extended param-
eters.

Chapter 2: Command Line Options 19

2.2 Programmers accepting extended parameters

JTAG ICE mkII/3

Atmel-ICE

PICkit 4

MPLAB SNAP

Power Debugger

AVR Dragon

When using the JTAG ICE mkII, JTAGICE3, Atmel-ICE, PICkit 4, MPLAB
SNAP, Power Debugger or AVR Dragon in JTAG mode, the following extended
parameter is accepted:

‘jtagchain=UB,UA,BB,BA’

Setup the JTAG scan chain for UB units before, UA units after,
BB bits before, and BA bits after the target AVR, respectively.
Each AVR unit within the chain shifts by 4 bits. Other JTAG
units might require a different bit shift count.

The PICkit 4 and the Power Debugger also supports high-voltage UPDI pro-
gramming. This is used to enable a UPDI pin that has previously been set
to RESET or GPIO mode. High-voltage UPDI can be utilized by using an
extended parameter:

‘hvupdi’ Enable high-voltage UPDI initialization for targets that supports
this.

AVR910

The AVR910 programmer type accepts the following extended parameter:

‘devcode=VALUE’

Override the device code selection by using VALUE as the device
code. The programmer is not queried for the list of supported
device codes, and the specified VALUE is not verified but used
directly within the T command sent to the programmer. VALUE
can be specified using the conventional number notation of the C
programming language.

‘no_blockmode’

Disables the default checking for block transfer capability. Use
‘no_blockmode’ only if your ‘AVR910’ programmer creates errors
during initial sequence.

Arduino

The Arduino programmer type accepts the following extended parameter:

‘attemps=VALUE’

Overide the default number of connection retry attempt by using
VALUE.

Urclock

The urclock programmer type accepts the following extended parameters:

Chapter 2: Command Line Options 20

‘showall’

Show all info for the connected part, then exit. The -xshow...

options below can be used to assemble a bespoke response consisting
of a subset (or only one item) of all available relevant information
about the connected part and bootloader.

‘showid’ Show a unique Urclock ID stored in either flash or EEPROM of the
MCU, then exit.

‘id=<E|F>.<addr>.<len>’

Historically, the Urclock ID was a six-byte unique little-endian num-
ber stored in Urclock boards at EEPROM address 257. The loca-
tion of this number can be set by the -xid=<E|F>.<addr>.<len>

extended parameter. E stands for EEPROM and F stands for flash.
A negative address addr counts from the end of EEPROM and flash,
respectively. The length len of the Urclock ID can be between 1
and 8 bytes.

‘showdate’

Show the last-modified date of the input file for the flash applica-
tion, then exit. If the input file was stdin, the date will be that of
the programming. Date and filename are part of the metadata that
the urclock programmer stores by default in high flash just under
the bootloader; see also -xnometadata.

‘showfilename’

Show the input filename (or title) of the last flash writing session,
then exit.

‘title=<string>’

When set, <string> will be used in lieu of the input filename. The
maximum string length for the title/filename field is 254 bytes in-
cluding terminating nul.

‘showapp’

Show the size of the programmed application, then exit.

‘showstore’

Show the size of the unused flash between the application and meta-
data, then exit.

‘showmeta’

Show the size of the metadata just below the bootloader, then exit.

‘showboot’

Show the size of the bootloader, then exit.

‘showversion’

Show bootloader version and capabilities, then exit.

‘showvector’

Show the vector number and name of the interrupt table vector
used by the bootloader for starting the application, then exit. For

Chapter 2: Command Line Options 21

hardware-supported bootloaders this will be vector 0 (Reset), and
for vector bootloaders this will be any other vector number of the
interrupt vector table or the slot just behind the vector table with
the name VBL_ADDITIONAL_VECTOR.

‘showpart’

Show the part for which the bootloader was compiled, then exit.

‘bootsize=<size>’

Manual override for bootloader size. Urboot bootloaders put the
number of used bootloader pages into a table at the top of the boot-
loader section, ie, typically top of flash, so the urclock programmer
can look up the bootloader size itself. In backward-compatibility
mode, when programming via other bootloaders, this option can
be used to tell the programmer the size, and therefore the location,
of the bootloader.

‘vectornum=<arg>’

Manual override for vector number. Urboot bootloaders put the
vector number used by a vector bootloader into a table at the top of
flash, so this option is normally not needed for urboot bootloaders.
However, it is useful in backward-compatibility mode (or when the
urboot bootloader does not offer flash read). Specifying a vector
number in these circumstances implies a vector bootloader whilst
the default assumption would be a hardware-supported bootloader.

‘eepromrw’

Manual override for asserting EEPROM read/write capability. Not
normally needed for urboot bootloaders, but useful for in backward-
compatibility mode if the bootloader offers EEPROM read/write.

‘emulate_ce’

If an urboot bootloader does not offer a chip erase command it will
tell the urclock programmer so during handshake. In this case the
urclock programmer emulates a chip erase, if warranted by user
command line options, by filling the remainder of unused flash be-
low the bootloader with 0xff. If this option is specified, the urclock
programmer will assume that the bootloader cannot erase the chip
itself. The option is useful for backwards-compatible bootloaders
that do not implement chip erase.

‘restore’

Upload unchanged flash input files and trim below the bootloader
if needed. This is most useful when one has a backup of the full
flash and wants to play that back onto the device. No metadata
are written in this case and no vector patching happens either if it
is a vector bootloader. However, for vector bootloaders, even under
the option -xrestore an input file will not be uploaded for which
the reset vector does not point to the vector bootloader. This is
to avoid writing an input file to the device that would render the

Chapter 2: Command Line Options 22

vector bootloader not functional as it would not be reached after
reset.

‘initstore’

On writing to flash fill the store space between the flash application
and the metadata section with 0xff.

‘nofilename’

On writing to flash do not store the application input filename (nor
a title).

‘nodate’ On writing to flash do not store the application input filename (nor
a title) and no date either.

‘nometadata’

On writing to flash do not store any metadata. The full flash below
the bootloader is available for the application. In particular, no
data store frame is programmed.

‘delay=<n>’

Add a <n> ms delay after reset. This can be useful if a board takes
a particularly long time to exit from external reset. <n> can be
negative, in which case the default 120 ms delay after issuing reset
will be shortened accordingly.

‘strict’ Urclock has a faster, but slightly different strategy than -c arduino
to synchronise with the bootloader; some stk500v1 bootloaders can-
not cope with this, and they need the -xstrict option.

‘help’ Show this help menu and exit

BusPirate

The BusPirate programmer type accepts the following extended parameters:

‘reset=cs,aux,aux2’

The default setup assumes the BusPirate’s CS output pin connected
to the RESET pin on AVR side. It is however possible to have
multiple AVRs connected to the same BP with SDI, SDO and SCK
lines common for all of them. In such a case one AVR should have
its RESET connected to BusPirate’s CS pin, second AVR’s RESET
connected to BusPirate’s AUX pin and if your BusPirate has an
AUX2 pin (only available on BusPirate version v1a with firmware
3.0 or newer) use that to activate RESET on the third AVR.

It may be a good idea to decouple the BusPirate and the AVR’s
SPI buses from each other using a 3-state bus buffer. For example
74HC125 or 74HC244 are some good candidates with the latches
driven by the appropriate reset pin (cs, aux or aux2). Otherwise
the SPI traffic in one active circuit may interfere with programming
the AVR in the other design.

‘spifreq=0..7’

0 30 kHz (default)

Chapter 2: Command Line Options 23

1 125 kHz
2 250 kHz
3 1 MHz
4 2 MHz
5 2.6 MHz
6 4 MHz
7 8 MHz

‘rawfreq=0..3’

Sets the SPI speed and uses the Bus Pirate’s binary “raw-wire”
mode instead of the default binary SPI mode:

0 5 kHz
1 50 kHz
2 100 kHz

(Firmware v4.2+
only)

3 400 kHz (v4.2+)

The only advantage of the “raw-wire” mode is that different SPI
frequencies are available. Paged writing is not implemented in this
mode.

‘ascii’ Attempt to use ASCII mode even when the firmware supports Bin-
Mode (binary mode). BinMode is supported in firmware 2.7 and
newer, older FW’s either don’t have BinMode or their BinMode
is buggy. ASCII mode is slower and makes the above ‘reset=’,
‘spifreq=’ and ‘rawfreq=’ parameters unavailable. Be aware that
ASCII mode is not guaranteed to work with newer firmware ver-
sions, and is retained only to maintain compatibility with older
firmware versions.

‘nopagedwrite’

Firmware versions 5.10 and newer support a binary mode SPI com-
mand that enables whole pages to be written to AVR flash memory
at once, resulting in a significant write speed increase. If use of this
mode is not desirable for some reason, this option disables it.

‘nopagedread’

Newer firmware versions support in binary mode SPI command
some AVR Extended Commands. Using the “Bulk Memory Read
from Flash” results in a significant read speed increase. If use of
this mode is not desirable for some reason, this option disables it.

‘cpufreq=125..4000’

This sets the AUX pin to output a frequency of n kHz. Connecting
the AUX pin to the XTAL1 pin of your MCU, you can provide
it a clock, for example when it needs an external clock because of
wrong fuses settings. Make sure the CPU frequency is at least four
times the SPI frequency.

Chapter 2: Command Line Options 24

‘serial_recv_timeout=1...’

This sets the serial receive timeout to the given value. The timeout
happens every time avrdude waits for the BusPirate prompt. Es-
pecially in ascii mode this happens very often, so setting a smaller
value can speed up programming a lot. The default value is 100ms.
Using 10ms might work in most cases.

Micronucleus bootloader

When using the Micronucleus programmer type, the following optional extended
parameter is accepted:

‘wait=timeout’

If the device is not connected, wait for the device to be plugged in.
The optional timeout specifies the connection time-out in seconds.
If no time-out is specified, AVRDUDE will wait indefinitely until
the device is plugged in.

Teensy bootloader

When using the Teensy programmer type, the following optional extended pa-
rameter is accepted:

‘wait=timeout’

If the device is not connected, wait for the device to be plugged in.
The optional timeout specifies the connection time-out in seconds.
If no time-out is specified, AVRDUDE will wait indefinitely until
the device is plugged in.

Wiring

When using the Wiring programmer type, the following optional extended pa-
rameter is accepted:

‘snooze=0..32767’

After performing the port open phase, AVRDUDE will
wait/snooze for snooze milliseconds before continuing to the
protocol sync phase. No toggling of DTR/RTS is performed if
snooze > 0.

PICkit2 Connection to the PICkit2 programmer:

(AVR) (PICkit2)

RST VPP/MCLR (1)

VDD VDD Target (2)

-- possibly

optional if AVR

self powered

GND GND (3)

SDI PGD (4)

SCLK PDC (5)

OSI AUX (6)

Extended command line parameters:

Chapter 2: Command Line Options 25

‘clockrate=rate’

Sets the SPI clocking rate in Hz (default is 100kHz). Alternately
the -B or -i options can be used to set the period.

‘timeout=usb-transaction-timeout’

Sets the timeout for USB reads and writes in milliseconds (default
is 1500 ms).

USBasp Extended parameters:

‘section_config’

Programmer will erase configuration section with option ’-e’ (chip
erase), rather than entire chip. Only applicable to TPI devices
(ATtiny 4/5/9/10/20/40).

xbee Extended parameters:

‘xbeeresetpin=1..7’

Select the XBee pin DIO<1..7> that is connected to the MCU’s
‘/RESET’ line. The programmer needs to know which DIO pin to
use to reset into the bootloader. The default (3) is the DIO3 pin
(XBee pin 17), but some commercial products use a different XBee
pin.

The remaining two necessary XBee-to-MCU connections are not
selectable - the XBee DOUT pin (pin 2) must be connected to the
MCU’s ‘RXD’ line, and the XBee DIN pin (pin 3) must be connected
to the MCU’s ‘TXD’ line.

serialupdi

Extended parameters:

‘rtsdtr=low|high’

Forces RTS/DTR lines to assume low or high state during the whole
programming session. Some programmers might use this signal to
indicate UPDI programming state, but this is strictly hardware
specific.

When not provided, driver/OS default value will be used.

linuxspi Extended parameter:

‘disable_no_cs’

Ensures the programmer does not use the SPI NO CS bit for the
SPI driver. This parameter is useful for kernels that do not support
the CS line being managed outside the application.

Chapter 2: Command Line Options 26

2.3 Example Command Line Invocations

Download the file diag.hex to the ATmega128 chip using the STK500 programmer con-
nected to the default serial port:� �

% avrdude -p m128 -c stk500 -e -U flash:w:diag.hex

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.03s

avrdude: Device signature = 0x1e9702

avrdude: erasing chip

avrdude: done.

avrdude: performing op: 1, flash, 0, diag.hex

avrdude: reading input file "diag.hex"

avrdude: input file diag.hex auto detected as Intel Hex

avrdude: writing flash (19278 bytes):

Writing | ## | 100% 7.60s

avrdude: 19456 bytes of flash written

avrdude: verifying flash memory against diag.hex:

avrdude: load data flash data from input file diag.hex:

avrdude: input file diag.hex auto detected as Intel Hex

avrdude: input file diag.hex contains 19278 bytes

avrdude: reading on-chip flash data:

Reading | ## | 100% 6.83s

avrdude: verifying ...

avrdude: 19278 bytes of flash verified

avrdude done. Thank you.

%
 	

Chapter 2: Command Line Options 27

Upload the flash memory from the ATmega128 connected to the STK500 programmer and
save it in raw binary format in the file named c:/diag flash.bin:� �

% avrdude -p m128 -c stk500 -U flash:r:"c:/diag flash.bin":r

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.03s

avrdude: Device signature = 0x1e9702

avrdude: reading flash memory:

Reading | ## | 100% 46.10s

avrdude: writing output file "c:/diag flash.bin"

avrdude done. Thank you.

%
 	

Chapter 2: Command Line Options 28

Using the default programmer, download the file diag.hex to flash, eeprom.hex to EEP-
ROM, and set the Extended, High, and Low fuse bytes to 0xff, 0x89, and 0x2e respectively:� �

% avrdude -p m128 -u -U flash:w:diag.hex \

> -U eeprom:w:eeprom.hex \

> -U efuse:w:0xff:m \

> -U hfuse:w:0x89:m \

> -U lfuse:w:0x2e:m

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.03s

avrdude: Device signature = 0x1e9702

avrdude: NOTE: FLASH memory has been specified, an erase cycle will be performed

To disable this feature, specify the -D option.

avrdude: erasing chip

avrdude: reading input file "diag.hex"

avrdude: input file diag.hex auto detected as Intel Hex

avrdude: writing flash (19278 bytes):

Writing | ## | 100% 7.60s

avrdude: 19456 bytes of flash written

avrdude: verifying flash memory against diag.hex:

avrdude: load data flash data from input file diag.hex:

avrdude: input file diag.hex auto detected as Intel Hex

avrdude: input file diag.hex contains 19278 bytes

avrdude: reading on-chip flash data:

Reading | ## | 100% 6.84s

avrdude: verifying ...

avrdude: 19278 bytes of flash verified

[... other memory status output skipped for brevity ...]

avrdude done. Thank you.

%
 	

Chapter 2: Command Line Options 29

Connect to the JTAG ICE mkII which serial number ends up in 1C37 via USB, and enter
terminal mode:� �

% avrdude -c jtag2 -p m649 -P usb:1c:37 -t

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.03s

avrdude: Device signature = 0x1e9603

[... terminal mode output skipped for brevity ...]

avrdude done. Thank you.
 	
List the serial numbers of all JTAG ICEs attached to USB. This is done by specifying an
invalid serial number, and increasing the verbosity level.� �

% avrdude -c jtag2 -p m128 -P usb:xx -v

[...]

Using Port : usb:xxx

Using Programmer : jtag2

avrdude: usbdev_open(): Found JTAG ICE, serno: 00A000001C6B

avrdude: usbdev_open(): Found JTAG ICE, serno: 00A000001C3A

avrdude: usbdev_open(): Found JTAG ICE, serno: 00A000001C30

avrdude: usbdev_open(): did not find any (matching) USB device "usb:xxx"
 	

30

3 Terminal Mode Operation

AVRDUDE has an interactive mode called terminal mode that is enabled by the -t option.
This mode allows one to enter interactive commands to display and modify the various de-
vice memories, perform a chip erase, display the device signature bytes and part parameters,
and to send raw programming commands. Commands and parameters may be abbreviated
to their shortest unambiguous form. Terminal mode also supports a command history so
that previously entered commands can be recalled and edited.

3.1 Terminal Mode Commands

The following commands are implemented for all programmers:

dump memtype addr nbytes

Read nbytes from the specified memory area, and display them in the usual
hexadecimal and ASCII form.

dump memtype addr ...

Start reading from addr, all the way to the last memory address.

dump memtype addr

Read 256 bytes from the specified memory area, and display them.

dump memtype ...

Read all bytes from the specified memory, and display them.

dump memtype

Continue dumping the memory contents for another nbytes where the previous
dump command left off.

read Can be used as an alias for dump.

write memtype addr data[,] {data[,]}

Manually program the respective memory cells, starting at address addr, using
the data items provided. The terminal implements reading from and writing
to flash and EEPROM type memories normally through a cache and paged
access functions. All other memories are directly written to without use of a
cache. Some older parts without paged access will also have flash and EEPROM
directly accessed without cache.

Items data can have the following formats:

Type Example Size (bytes)

String "Hello, world\n" varying

Character ’A’ 1

Decimal integer 12345 1, 2, 4, or 8

Octal integer 012345 1, 2, 4, or 8

Chapter 3: Terminal Mode Operation 31

Hexadecimal integer 0x12345 1, 2, 4, or 8

Float 3.1415926 4

Double 3.141592653589793D 8

data can be hexadecimal, octal or decimal integers, floating point numbers or
C-style strings and characters. For integers, an optional case-insensitive suffix
specifies the data size as in the table below:

LL 8 bytes / 64 bits

L 4 bytes / 32 bits

H or S 2 bytes / 16 bits

HH 1 byte / 8 bits

Suffix D indicates a 64-bit double, F a 32-bit float, whilst a floating point number
without suffix defaults to 32-bit float. Hexadecimal floating point notation is
supported. An ambiguous trailing suffix, e.g., 0x1.8D, is read as no-suffix float
where D is part of the mantissa; use a zero exponent 0x1.8p0D to clarify.

An optional U suffix makes integers unsigned. Ordinary 0x hex integers are
always treated as unsigned. +0x or -0x hex numbers are treated as signed
unless they have a U suffix. Unsigned integers cannot be larger than 2^64-1. If
n is an unsigned integer then -n is also a valid unsigned integer as in C. Signed
integers must fall into the [-2^63, 2^63-1] range or a correspondingly smaller
range when a suffix specifies a smaller type.

Ordinary 0x hex integers with n hex digits (counting leading zeros) use the
smallest size of one, two, four and eight bytes that can accommodate any n-
digit hex integer. If an integer suffix specifies a size explicitly the corresponding
number of least significant bytes are written, and a warning shown if the num-
ber does not fit into the desired representation. Otherwise, unsigned integers
occupy the smallest of one, two, four or eight bytes needed. Signed numbers
are allowed to fit into the smallest signed or smallest unsigned representation:
For example, 255 is stored as one byte as 255U would fit in one byte, though
as a signed number it would not fit into a one-byte interval [-128, 127]. The
number -1 is stored in one byte whilst -1U needs eight bytes as it is the same
as 0xFFFFffffFFFFffffU.

One trailing comma at the end of data items is ignored to facilitate copy and
paste of lists.

write memtype addr length data[,] {data[,]} ...

The ellipses form . . . of write is similar to above, but length byte of the memory
are written. For that purpose, after writing the initial items, the last data item
is replicated as many times as needed.

flush Synchronise with the device all pending cached writes to EEPROM or flash.
With some programmer and part combinations, flash (and sometimes EEP-
ROM, too) looks like a NOR memory, ie, one can only write 0 bits, not 1 bits.

Chapter 3: Terminal Mode Operation 32

When this is detected, either page erase is deployed (e.g., with parts that have
PDI/UPDI interfaces), or if that is not available, both EEPROM and flash
caches are fully read in, a chip erase command is issued and both EEPROM
and flash are written back to the device. Hence, it can take minutes to ensure
that a single previously cleared bit is set and, therefore, this command should
be used sparingly.

abort Normally, caches are only ever actually written to the device when using flush,
at the end of the terminal session after typing quit, or after EOF on input is
encountered. The abort command resets the cache discarding all previous
writes to the flash and EEPROM cache.

erase Perform a chip erase and discard all pending writes to EEPROM and flash.

sig Display the device signature bytes.

part Display the current part settings and parameters. Includes chip specific infor-
mation including all memory types supported by the device, read/write timing,
etc.

verbose [level]

Change (when level is provided), or display the verbosity level. The initial
verbosity level is controlled by the number of -v options given on the command
line.

quell [level]

Change (when level is provided), or display the quell level. 1 is used to suppress
progress reports. 2 or higher yields progressively quieter operations. The initial
quell level is controlled by the number of -q options given on the command line.

?

help Give a short on-line summary of the available commands.

quit Leave terminal mode and thus AVRDUDE.

In addition, the following commands are supported on some programmers:

pgerase memory addr

Erase one page of the memory specified.

send b1 b2 b3 b4

Send raw instruction codes to the AVR device. If you need access to a feature
of an AVR part that is not directly supported by AVRDUDE, this command
allows you to use it, even though AVRDUDE does not implement the command.
When using direct SPI mode, up to 3 bytes can be omitted.

spi Enter direct SPI mode. The pgmled pin acts as chip select. Only supported on
parallel bitbang programmers, and partially by USBtiny. Chip Select must be
externally held low for direct SPI when using USBtinyISP, and send must be a
multiple of four bytes.

pgm Return to programming mode (from direct SPI mode).

vtarg voltage

Set the target’s supply voltage to voltage Volts.

Chapter 3: Terminal Mode Operation 33

varef [channel] voltage

Set the adjustable voltage source to voltage Volts. This voltage is normally
used to drive the target’s Aref input on the STK500 and STK600. The STK600
offers two reference voltages, which can be selected by the optional parameter
channel (either 0 or 1).

fosc freq[M|k]

Set the programming oscillator to freq Hz. An optional trailing letter M multi-
plies by 1E6, a trailing letter k by 1E3.

fosc off Turn the programming oscillator off.

sck period

STK500 and STK600 only: Set the SCK clock period to period microseconds.
JTAG ICE only: Set the JTAG ICE bit clock period to period microseconds.
Note that unlike STK500 settings, this setting will be reverted to its default
value (approximately 1 microsecond) when the programming software signs off
from the JTAG ICE. This parameter can also be used on the JTAG ICE mkII/3
to specify the ISP clock period when operating the ICE in ISP mode.

parms STK500 and STK600 only: Display the current voltage and programming os-
cillator parameters. JTAG ICE only: Display the current target supply voltage
and JTAG bit clock rate/period.

3.2 Terminal Mode Examples

Display part parameters, modify eeprom cells, perform a chip erase:

Chapter 3: Terminal Mode Operation 34

� �
% avrdude -p m128 -c stk500 -t

avrdude: AVR device initialized and ready to accept instructions

avrdude: Device signature = 0x1e9702

avrdude> part

>>> part

AVR Part : ATMEGA128

Chip Erase delay : 9000 us

PAGEL : PD7

BS2 : PA0

RESET disposition : dedicated

RETRY pulse : SCK

serial program mode : yes

parallel program mode : yes

Memory Detail :

Page Polled

Memory Type Paged Size Size #Pages MinW MaxW ReadBack

----------- ------ ------ ---- ------ ----- ----- ---------

eeprom no 4096 8 0 9000 9000 0xff 0xff

flash yes 131072 256 512 4500 9000 0xff 0x00

lfuse no 1 0 0 0 0 0x00 0x00

hfuse no 1 0 0 0 0 0x00 0x00

efuse no 1 0 0 0 0 0x00 0x00

lock no 1 0 0 0 0 0x00 0x00

calibration no 1 0 0 0 0 0x00 0x00

signature no 3 0 0 0 0 0x00 0x00

avrdude> dump eeprom 0 16

>>> dump eeprom 0 16

0000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude> write eeprom 0 1 2 3 4

>>> write eeprom 0 1 2 3 4

avrdude> dump eeprom 0 16

>>> dump eeprom 0 16

0000 01 02 03 04 ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude> erase

>>> erase

avrdude: erasing chip

avrdude> dump eeprom 0 16

>>> dump eeprom 0 16

0000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude>
 	

Program the fuse bits of an ATmega128 (disable M103 compatibility, enable high speed ex-
ternal crystal, enable brown-out detection, slowly rising power). Note since we are working
with fuse bits the -u (unsafe) option is specified, which allows you to modify the fuse bits.
First display the factory defaults, then reprogram:

Chapter 3: Terminal Mode Operation 35

� �
% avrdude -p m128 -u -c stk500 -t

avrdude: AVR device initialized and ready to accept instructions

avrdude: Device signature = 0x1e9702

avrdude> d efuse

>>> d efuse

0000 fd |. |

avrdude> d hfuse

>>> d hfuse

0000 99 |. |

avrdude> d lfuse

>>> d lfuse

0000 e1 |. |

avrdude> w efuse 0 0xff

>>> w efuse 0 0xff

avrdude> w hfuse 0 0x89

>>> w hfuse 0 0x89

avrdude> w lfuse 0 0x2f

>>> w lfuse 0 0x2f

avrdude>
 	
� �
% avrdude -c pkobn_updi -p avr128db48 -t

Vtarget : 4.71 V

PDI/UPDI clock Xmega/megaAVR : 100 kHz

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.01s

avrdude: Device signature = 0x1e970c (probably avr128db48)

avrdude> write eeprom 0 1234567890 ’A’ ’V’ ’R’ 2.718282 "Hello World!"

>>> write eeprom 0 1234567890 ’A’ ’V’ ’R’ 2.718282 "Hello World!"

Warning: no size suffix specified for "1234567890". Writing 4 byte(s)

Info: Writing 24 bytes starting from address 0x00

avrdude> dump eeprom 0 32

>>> dump eeprom 0 32

0000 d2 02 96 49 41 56 52 55 f8 2d 40 48 65 6c 6c 6f |...IAVRU.-@Hello|

0010 20 57 6f 72 6c 64 21 00 ff ff ff ff ff ff ff ff | World!.........|

avrdude> q
 	
The following example demonstrates the second form of the write command where the

last data value provided is used to fill up the indicated memory range.

Chapter 3: Terminal Mode Operation 36

� �
avrdude> write eeprom 0x00 0x20 ’a’ ’b’ ’c’ 0x11 0xcafe 0x55 ...

>>> write eeprom 0x00 0x20 ’a’ ’b’ ’c’ 0x11 0xcafe 0x55 ...

avrdude> dump eeprom 0 0x30

>>> dump eeprom 0 0x30

0000 61 62 63 11 fe ca 55 55 55 55 55 55 55 55 55 55 |abc...UUUUUUUUUU|

0010 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 |UUUUUUUUUUUUUUUU|

0020 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
 	

37

4 Configuration File

AVRDUDE reads a configuration file upon startup which describes all of the parts and
programmers that it knows about. The advantage of this is that if you have a chip that
is not currently supported by AVRDUDE, you can add it to the configuration file without
waiting for a new release of AVRDUDE. Likewise, if you have a parallel port programmer
that is not supported, chances are that you can copy an existing programmer definition
and, with only a few changes, make your programmer work.

AVRDUDE first looks for a system wide configuration file in a platform dependent
location. On Unix, this is usually /usr/local/etc/avrdude.conf, whilst on Windows it
is usually in the same location as the executable file. The full name of this file can be
specified using the -C command line option. After parsing the system wide configuration
file, AVRDUDE looks for a per-user configuration file to augment or override the system
wide defaults. On Unix, the per-user file is ${XDG_CONFIG_HOME}/avrdude/avrdude.rc,
whereas if ${XDG_CONFIG_HOME} is either not set or empty, ${HOME}/.config/ is used
instead. If that does not exists .avrduderc within the user’s home directory is used. On
Windows, this file is the avrdude.rc file located in the same directory as the executable.

4.1 AVRDUDE Defaults

default_parallel = "default-parallel-device";

Assign the default parallel port device. Can be overridden using the -P option.

default_serial = "default-serial-device";

Assign the default serial port device. Can be overridden using the -P option.

default_programmer = "default-programmer-id";

Assign the default programmer id. Can be overridden using the -c option.

default_bitclock = "default-bitclock";

Assign the default bitclock value. Can be overridden using the -B option.

4.2 Programmer Definitions

The format of the programmer definition is as follows:
programmer

parent <id> # optional parent

id = <id1> [, <id2> ...] ; # <idN> are quoted strings

desc = <description> ; # quoted string

type = <type>; # programmer type, quoted string

supported types can be listed by "-c ?type"

prog_modes = PM_<i/f> { | PM_<i/f> } # interfaces, e.g., PM_SPM|PM_PDI

connection_type = parallel | serial | usb | spi

baudrate = <num> ; # baudrate for avr910-programmer

vcc = <pin1> [, <pin2> ...] ; # pin number(s)

buff = <pin1> [, <pin2> ...] ; # pin number(s)

reset = <pin> ; # pin number

sck = <pin> ; # pin number

sdo = <pin> ; # pin number

sdi = <pin> ; # pin number

errled = <pin> ; # pin number

rdyled = <pin> ; # pin number

Chapter 4: Configuration File 38

pgmled = <pin> ; # pin number

vfyled = <pin> ; # pin number

usbvid = <hexnum> ; # USB VID (Vendor ID)

usbpid = <hexnum> [, <hexnum> ...] ; # USB PID (Product ID)

usbdev = <interface> ; # USB interface or other device info

usbvendor = <vendorname> ; # USB Vendor Name

usbproduct = <productname> ; # USB Product Name

usbsn = <serialno> ; # USB Serial Number

hvupdi_support = <num> [, <num>, ...] ; # UPDI HV Variants Support

;

If a parent is specified, all settings of it (except its ids) are used for the new programmer.
These values can be changed by new setting them for the new programmer.

Known programming modes are

• PM_SPM: Bootloaders, self-programming with SPM opcodes or NVM Controllers

• PM_TPI: Tiny Programming Interface (t4, t5, t9, t10, t20, t40, t102, t104)

• PM_ISP: SPI programming for In-System Programming (almost all classic parts)

• PM_PDI: Program and Debug Interface (xmega parts)

• PM_UPDI: Unified Program and Debug Interface

• PM_HVSP: High Voltage Serial Programming (some classic parts)

• PM_HVPP: High Voltage Parallel Programming (most non-HVSP classic parts)

• PM_debugWIRE: Simpler alternative to JTAG (a subset of HVPP/HVSP parts)

• PM_JTAG: Joint Test Action Group standard (some classic parts)

• PM_JTAGmkI: Subset of PM_JTAG, older parts, Atmel ICE mkI

• PM_XMEGAJTAG: JTAG, some XMEGA parts

• PM_AVR32JTAG: JTAG for 32-bit AVRs

• PM_aWire: AVR32 parts

To invert a bit in the pin definitions, use = ~ <num>. To invert a pin list (all pins get
inverted) use ~ (<num1> [, <num2> ...]).

Not all programmer types can handle a list of USB PIDs.

The following programmer types are currently implemented:

4.3 Part Definitions
part

desc = <description> ; # quoted string

id = <id> ; # quoted string

family_id = <id> ; # quoted string, e.g., "megaAVR" or "tinyAVR"

prog_modes = PM_<i/f> {| PM_<i/f>} # interfaces, e.g., PM_SPM|PM_ISP|PM_HVPP|PM_debugWIRE

mcuid = <num>; # unique id in 0..2039 for 8-bit AVRs

n_interrupts = <num>; # number of interrupts, used for vector bootloaders

n_page_erase = <num>; # if set, number of pages erased during SPM erase

n_boot_sections = <num>; # Number of boot sections

boot_section_size = <num>; # Size of (smallest) boot section, if any

hvupdi_variant = <num> ; # numeric -1 (n/a) or 0..2

devicecode = <num> ; # deprecated, use stk500_devcode

stk500_devcode = <num> ; # numeric

Chapter 4: Configuration File 39

avr910_devcode = <num> ; # numeric

has_jtag = <yes/no> ; # part has JTAG i/f (deprecated, use prog_modes)

has_debugwire = <yes/no> ; # part has debugWire i/f (deprecated, use prog_modes)

has_pdi = <yes/no> ; # part has PDI i/f (deprecated, use prog_modes)

has_updi = <yes/no> ; # part has UPDI i/f (deprecated, use prog_modes)

has_tpi = <yes/no> ; # part has TPI i/f (deprecated, use prog_modes)

is_avr32 = <yes/no> ; # AVR32 part (deprecated, use prog_modes)

is_at90s1200 = <yes/no> ; # AT90S1200 part

signature = <num> <num> <num> ; # signature bytes

usbpid = <num> ; # DFU USB PID

chip_erase_delay = <num> ; # micro-seconds

reset = dedicated | io ;

retry_pulse = reset | sck ;

chip_erase_delay = <num> ; # chip erase delay (us)

STK500 parameters (parallel programming IO lines)

pagel = <num> ; # pin name in hex, i.e., 0xD7

bs2 = <num> ; # pin name in hex, i.e., 0xA0

serial = <yes/no> ; # can use serial downloading

parallel = <yes/no/pseudo> ; # can use par. programming

STK500v2 parameters, to be taken from Atmel’s ATDF files

timeout = <num> ;

stabdelay = <num> ;

cmdexedelay = <num> ;

synchloops = <num> ;

bytedelay = <num> ;

pollvalue = <num> ;

pollindex = <num> ;

predelay = <num> ;

postdelay = <num> ;

pollmethod = <num> ;

hvspcmdexedelay = <num> ;

STK500v2 HV programming parameters, from ATDFs

pp_controlstack = <num>, <num>, ... ; # PP only

hvsp_controlstack = <num>, <num>, ... ; # HVSP only

flash_instr = <num>, <num>, <num> ;

eeprom_instr = <num>, <num>, ... ;

hventerstabdelay = <num> ;

progmodedelay = <num> ; # PP only

latchcycles = <num> ;

togglevtg = <num> ;

poweroffdelay = <num> ;

resetdelayms = <num> ;

resetdelayus = <num> ;

hvleavestabdelay = <num> ;

resetdelay = <num> ;

synchcycles = <num> ; # HVSP only

chiperasepulsewidth = <num> ; # PP only

chiperasepolltimeout = <num> ;

chiperasetime = <num> ; # HVSP only

programfusepulsewidth = <num> ; # PP only

programfusepolltimeout = <num> ;

programlockpulsewidth = <num> ; # PP only

programlockpolltimeout = <num> ;

debugWIRE and/or JTAG ICE mkII parameters, also from ATDF files

allowfullpagebitstream = <yes/no> ;

enablepageprogramming = <yes/no> ;

idr = <num> ; # IO addr of IDR (OCD) reg

rampz = <num> ; # IO addr of RAMPZ reg

Chapter 4: Configuration File 40

spmcr = <num> ; # mem addr of SPMC[S]R reg

eecr = <num> ; # mem addr of EECR reg only when != 0x3f

eind = <num> ; # mem addr of EIND reg

mcu_base = <num> ;

nvm_base = <num> ;

ocd_base = <num> ;

ocdrev = <num> ;

pgm_enable = <instruction format> ;

chip_erase = <instruction format> ;

parameters for bootloaders

autobaud_sync = <num> ; # autobaud detection byte, default 0x30

memory <memtype>

paged = <yes/no> ; # yes/no (flash only, do not use for EEPROM)

offset = <num> ; # memory offset

size = <num> ; # bytes

page_size = <num> ; # bytes

num_pages = <num> ; # numeric

n_word_writes = <num> ; # TPI only: if set, number of words to write

min_write_delay = <num> ; # micro-seconds

max_write_delay = <num> ; # micro-seconds

readback = <num> <num> ; # pair of byte values

readback_p1 = <num> ; # byte value (first component)

readback_p2 = <num> ; # byte value (second component)

pwroff_after_write = <yes/no> ; # yes/no

mode = <num> ; # STK500 v2 file parameter from ATDF files

delay = <num> ; # "

blocksize = <num> ; # "

readsize = <num> ; # "

read = <instruction format> ;

write = <instruction format> ;

read_lo = <instruction format> ;

read_hi = <instruction format> ;

write_lo = <instruction format> ;

write_hi = <instruction format> ;

loadpage_lo = <instruction format> ;

loadpage_hi = <instruction format> ;

writepage = <instruction format> ;

;

;

If any of the above parameters are not specified, the default value of 0 is used for numerics
(except for mcuid, hvupdi_variant and ocdrev, where the default value is -1, and for
autobaud_sync which defaults to 0x30) or the empty string "" for string values. If a
required parameter is left empty, AVRDUDE will complain. Almost all occurrences of
numbers (with the exception of pin numbers and where they are separated by space, e.g.,
in signature and readback) can also be given as simple expressions involving arithemtic and
bitwise operators.

4.3.1 Parent Part

Parts can also inherit parameters from previously defined parts using the following syntax.
In this case specified integer and string values override parameter values from the parent
part. New memory definitions are added to the definitions inherited from the parent. If,
however, a new memory definition refers to an existing one of the same name for that part
then, from v7.1, the existing memory definition is extended, and components overwritten

Chapter 4: Configuration File 41

with new values. Assigning NULL removes an inherited SPI instruction format, memory
definition, control stack, eeprom or flash instruction, e.g., as in memory "efuse" = NULL;

Example format for part inheritance:

part parent <id> # quoted string

id = <id> ; # quoted string

<any set of other parameters from the list above>

;

4.3.2 Instruction Format

Instruction formats are specified as a comma separated list of string values containing
information (bit specifiers) about each of the 32 bits of the instruction. Bit specifiers may
be one of the following formats:

1 The bit is always set on input as well as output

0 the bit is always clear on input as well as output

x the bit is ignored on input and output

a the bit is an address bit, the bit-number matches this bit specifier’s position
within the current instruction byte

aN the bit is the Nth address bit, bit-number = N, i.e., a12 is address bit 12 on
input, a0 is address bit 0.

i the bit is an input data bit

o the bit is an output data bit

Each instruction must be composed of 32 bit specifiers. The instruction specification
closely follows the instruction data provided in Atmel’s data sheets for their parts. For
example, the EEPROM read and write instruction for an AT90S2313 AVR part could be
encoded as:

read = "1 0 1 0 0 0 0 0 x x x x x x x x",

"x a6 a5 a4 a3 a2 a1 a0 o o o o o o o o";

write = "1 1 0 0 0 0 0 0 x x x x x x x x",

"x a6 a5 a4 a3 a2 a1 a0 i i i i i i i i";

As the address bit numbers in the SPI opcodes are highly systematic, they don’t really
need to be specified. A compact version of the format specification neither uses bit-numbers
for address lines nor spaces. If such a string is longer than 7 characters, then the characters
0, 1, x, a, i and o will be recognised as the corresponding bit, whilst any of the characters
., -, _ or / can act as arbitrary visual separators, which are ignored. Examples:

loadpage_lo = "0100.0000--000x.xxxx--xxaa.aaaa--iiii.iiii";

loadpage_lo = "0100.0000", "000x.xxxx", "xxaa.aaaa", "iiii.iiii";

Chapter 4: Configuration File 42

4.4 Other Notes

• The devicecode parameter is the device code used by the STK500 and is obtained
from the software section (avr061.zip) of Atmel’s AVR061 application note available
from http://www.atmel.com/dyn/resources/prod_documents/doc2525.pdf.

• Not all memory types will implement all instructions.

• AVR Fuse bits and Lock bits are implemented as a type of memory.

• Example memory types are: flash, eeprom, fuse, lfuse (low fuse), hfuse (high fuse),
efuse (extended fuse), signature, calibration, lock.

• The memory type specified on the AVRDUDE command line must match one of the
memory types defined for the specified chip.

• The pwroff_after_write flag causes AVRDUDE to attempt to power the device off
and back on after an unsuccessful write to the affected memory area if VCC programmer
pins are defined. If VCC pins are not defined for the programmer, a message indicating
that the device needs a power-cycle is printed out. This flag was added to work around
a problem with the at90s4433/2333’s; see the at90s4433 errata at:

http://www.atmel.com/dyn/resources/prod_documents/doc1280.pdf

• The boot loader from application note AVR109 (and thus also the AVR Butterfly) does
not support writing of fuse bits. Writing lock bits is supported, but is restricted to
the boot lock bits (BLBxx). These are restrictions imposed by the underlying SPM
instruction that is used to program the device from inside the boot loader. Note that
programming the boot lock bits can result in a “shoot-into-your-foot” scenario as the
only way to unprogram these bits is a chip erase, which will also erase the boot loader
code.

The boot loader implements the “chip erase” function by erasing the flash pages of the
application section.

Reading fuse and lock bits is fully supported.

http://www.atmel.com/dyn/resources/prod_documents/doc2525.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc1280.pdf

43

5 Programmer Specific Information

5.1 Atmel STK600

The following devices are supported by the respective STK600 routing and socket card:

Routing card Socket card Devices
STK600-ATTINY10 ATtiny4 ATtiny5 ATtiny9 ATtiny10

STK600-RC008T-2 STK600-DIP ATtiny11 ATtiny12 ATtiny13 ATtiny13A
ATtiny25 ATtiny45 ATtiny85

STK600-RC008T-7 STK600-DIP ATtiny15
STK600-RC014T-42 STK600-SOIC ATtiny20
STK600-RC020T-1 STK600-DIP ATtiny2313 ATtiny2313A ATtiny4313

STK600-TinyX3U ATtiny43U
STK600-RC014T-12 STK600-DIP ATtiny24 ATtiny44 ATtiny84 ATtiny24A

ATtiny44A

STK600-RC020T-8 STK600-DIP ATtiny26 ATtiny261 ATtiny261A AT-
tiny461 ATtiny861 ATtiny861A

STK600-RC020T-43 STK600-SOIC ATtiny261 ATtiny261A ATtiny461 AT-
tiny461A ATtiny861 ATtiny861A

STK600-RC020T-23 STK600-SOIC ATtiny87 ATtiny167
STK600-RC028T-3 STK600-DIP ATtiny28
STK600-RC028M-6 STK600-DIP ATtiny48 ATtiny88 ATmega8 ATmega8A

ATmega48 ATmega88 ATmega168 AT-
mega48P ATmega48PA ATmega88P AT-
mega88PA ATmega168P ATmega168PA
ATmega328P

QT600-ATTINY88-

QT8

ATtiny88

STK600-RC040M-4 STK600-DIP ATmega8515 ATmega162
STK600-RC044M-30 STK600-TQFP44 ATmega8515 ATmega162
STK600-RC040M-5 STK600-DIP ATmega8535 ATmega16 ATmega16A AT-

mega32 ATmega32A ATmega164P AT-
mega164PA ATmega324P ATmega324PA
ATmega644 ATmega644P ATmega644PA
ATmega1284P

STK600-RC044M-31 STK600-TQFP44 ATmega8535 ATmega16 ATmega16A AT-
mega32 ATmega32A ATmega164P AT-
mega164PA ATmega324P ATmega324PA
ATmega644 ATmega644P ATmega644PA
ATmega1284P

QT600-ATMEGA324-

QM64

ATmega324PA

Chapter 5: Programmer Specific Information 44

STK600-RC032M-29 STK600-TQFP32 ATmega8 ATmega8A ATmega48
ATmega88 ATmega168 ATmega48P
ATmega48PA ATmega88P ATmega88PA
ATmega168P ATmega168PA ATmega328P

STK600-RC064M-9 STK600-TQFP64 ATmega64 ATmega64A ATmega128
ATmega128A ATmega1281 ATmega2561
AT90CAN32 AT90CAN64 AT90CAN128

STK600-RC064M-10 STK600-TQFP64 ATmega165 ATmega165P ATmega169 AT-
mega169P ATmega169PA ATmega325 AT-
mega325P ATmega329 ATmega329P AT-
mega645 ATmega649 ATmega649P

STK600-RC100M-11 STK600-TQFP100 ATmega640 ATmega1280 ATmega2560
STK600-ATMEGA2560 ATmega2560

STK600-RC100M-18 STK600-TQFP100 ATmega3250 ATmega3250P ATmega3290
ATmega3290P ATmega6450 ATmega6490

STK600-RC032U-20 STK600-TQFP32 AT90USB82 AT90USB162 ATmega8U2
ATmega16U2 ATmega32U2

STK600-RC044U-25 STK600-TQFP44 ATmega16U4 ATmega32U4
STK600-RC064U-17 STK600-TQFP64 ATmega32U6 AT90USB646 AT90USB1286

AT90USB647 AT90USB1287

STK600-RCPWM-22 STK600-TQFP32 ATmega32C1 ATmega64C1 ATmega16M1
ATmega32M1 ATmega64M1

STK600-RCPWM-19 STK600-SOIC AT90PWM2 AT90PWM3 AT90PWM2B
AT90PWM3B AT90PWM216
AT90PWM316

STK600-RCPWM-26 STK600-SOIC AT90PWM81
STK600-RC044M-24 STK600-TSSOP44 ATmega16HVB ATmega32HVB

STK600-HVE2 ATmega64HVE
STK600-ATMEGA128RFA1ATmega128RFA1

STK600-RC100X-13 STK600-TQFP100 ATxmega64A1 ATxmega128A1
ATxmega128A1 revD ATxmega128A1U

STK600-ATXMEGA1281A1ATxmega128A1
QT600-ATXMEGA128A1-

QT16

ATxmega128A1

STK600-RC064X-14 STK600-TQFP64 ATxmega64A3 ATxmega128A3
ATxmega256A3 ATxmega64D3
ATxmega128D3 ATxmega192D3
ATxmega256D3

STK600-RC064X-14 STK600-MLF64 ATxmega256A3B
STK600-RC044X-15 STK600-TQFP44 ATxmega32A4 ATxmega16A4

ATxmega16D4 ATxmega32D4

STK600-ATXMEGAT0 ATxmega32T0
STK600-uC3-144 AT32UC3A0512 AT32UC3A0256

AT32UC3A0128

Chapter 5: Programmer Specific Information 45

STK600-RCUC3A144-

33

STK600-TQFP144 AT32UC3A0512 AT32UC3A0256
AT32UC3A0128

STK600-RCuC3A100-

28

STK600-TQFP100 AT32UC3A1512 AT32UC3A1256
AT32UC3A1128

STK600-RCuC3B0-21 STK600-TQFP64-2 AT32UC3B0256 AT32UC3B0512RevC
AT32UC3B0512 AT32UC3B0128
AT32UC3B064 AT32UC3D1128

STK600-RCuC3B48-27 STK600-TQFP48 AT32UC3B1256 AT32UC3B164
STK600-RCUC3A144-

32

STK600-TQFP144 AT32UC3A3512 AT32UC3A3256
AT32UC3A3128 AT32UC3A364
AT32UC3A3256S AT32UC3A3128S
AT32UC3A364S

STK600-RCUC3C0-36 STK600-TQFP144 AT32UC3C0512 AT32UC3C0256
AT32UC3C0128 AT32UC3C064

STK600-RCUC3C1-38 STK600-TQFP100 AT32UC3C1512 AT32UC3C1256
AT32UC3C1128 AT32UC3C164

STK600-RCUC3C2-40 STK600-TQFP64-2 AT32UC3C2512 AT32UC3C2256
AT32UC3C2128 AT32UC3C264

STK600-RCUC3C0-37 STK600-TQFP144 AT32UC3C0512 AT32UC3C0256
AT32UC3C0128 AT32UC3C064

STK600-RCUC3C1-39 STK600-TQFP100 AT32UC3C1512 AT32UC3C1256
AT32UC3C1128 AT32UC3C164

STK600-RCUC3C2-41 STK600-TQFP64-2 AT32UC3C2512 AT32UC3C2256
AT32UC3C2128 AT32UC3C264

STK600-RCUC3L0-34 STK600-TQFP48 AT32UC3L064 AT32UC3L032
AT32UC3L016

QT600-AT32UC3L-

QM64

AT32UC3L064

Ensure the correct socket and routing card are mounted before powering on the STK600.
While the STK600 firmware ensures the socket and routing card mounted match each other
(using a table stored internally in nonvolatile memory), it cannot handle the case where
a wrong routing card is used, e. g. the routing card STK600-RC040M-5 (which is meant
for 40-pin DIP AVRs that have an ADC, with the power supply pins in the center of the
package) was used but an ATmega8515 inserted (which uses the “industry standard” pinout
with Vcc and GND at opposite corners).

Note that for devices that use the routing card STK600-RC008T-2, in order to use ISP
mode, the jumper for AREF0 must be removed as it would otherwise block one of the ISP
signals. High-voltage serial programming can be used even with that jumper installed.

The ISP system of the STK600 contains a detection against shortcuts and other wiring
errors. AVRDUDE initiates a connection check before trying to enter ISP programming
mode, and display the result if the target is not found ready to be ISP programmed.

High-voltage programming requires the target voltage to be set to at least 4.5 V in order
to work. This can be done using Terminal Mode, see Chapter 3 [Terminal Mode Operation],
page 30.

Chapter 5: Programmer Specific Information 46

5.2 Atmel DFU bootloader using FLIP version 1

Bootloaders using the FLIP protocol version 1 experience some very specific behaviour.

These bootloaders have no option to access memory areas other than Flash and EEP-
ROM.

When the bootloader is started, it enters a security mode where the only acceptable
access is to query the device configuration parameters (which are used for the signature on
AVR devices). The only way to leave this mode is a chip erase. As a chip erase is normally
implied by the -U option when reprogramming the flash, this peculiarity might not be very
obvious immediately.

Sometimes, a bootloader with security mode already disabled seems to no longer respond
with sensible configuration data, but only 0xFF for all queries. As these queries are used
to obtain the equivalent of a signature, AVRDUDE can only continue in that situation by
forcing the signature check to be overridden with the -F option.

A chip erase might leave the EEPROM unerased, at least on some versions of the
bootloader.

5.3 SerialUPDI programmer

SerialUPDI programmer can be used for programming UPDI-only devices using very sim-
ple serial connection. You can read more about the details here https://github.com/

SpenceKonde/AVR-Guidance/blob/master/UPDI/jtag2updi.md

SerialUPDI programmer has been tested using FT232RL USB->UART interface with
the following connection layout (copied from Spence Kohde’s page linked above):

-------------------- To Target device

DTR| __________________

Rx |--------------,------------------| UPDI---\/\/---------->

Tx---/\/\/\---Tx |-------|<|---’ .--------| Gnd 470 ohm

resistor Vcc|---------------------------------| Vcc

1k CTS| .‘ |__________________

Gnd|--------------------’

There are several limitations in current SerialUPDI/AVRDUDE integration, listed be-
low.

At the end of each run there are fuse values being presented to the user. For most of the
UPDI-enabled devices these definitions (low fuse, high fuse, extended fuse) have no meaning
whatsoever, as they have been simply replaced by array of fuses: fuse0..9. Therefore you
can simply ignore this particular line of AVRDUDE output.

Currently available devices support only UPDI NVM programming model 0 and 2, but
there is also experimental implementation of model 3 - not yet tested.

One of the core AVRDUDE features is verification of the connection by reading device
signature prior to any operation, but this operation is not possible on UPDI locked devices.
Therefore, to be able to connect to such a device, you have to provide -F to override this
check.

Please note: using -F during write operation to locked device will force chip erase. Use
carefully.

https://github.com/SpenceKonde/AVR-Guidance/blob/master/UPDI/jtag2updi.md
https://github.com/SpenceKonde/AVR-Guidance/blob/master/UPDI/jtag2updi.md

Chapter 5: Programmer Specific Information 47

Another issue you might notice is slow performance of EEPROM writing using Seri-
alUPDI for AVR Dx devices. This can be addressed by changing avrdude.conf section for
this device - changing EEPROM page size to 0x20 (instead of default 1), like so:

#--

AVR128DB28

#--

part parent ".avrdx"

id = "avr128db28";

desc = "AVR128DB28";

signature = 0x1E 0x97 0x0E;

memory "flash"

size = 0x20000;

offset = 0x800000;

page_size = 0x200;

readsize = 0x100;

;

memory "eeprom"

size = 0x200;

offset = 0x1400;

page_size = 0x1;

readsize = 0x100;

;

;

USERROW memory has not been defined for new devices except for experimental addi-
tion for AVR128DB28. The point of USERROW is to provide ability to write configuration
details to already locked device and currently SerialUPDI interface supports this feature,
but it hasn’t been tested on wide variety of chips. Treat this as something experimental
at this point. Please note: on locked devices it’s not possible to read back USERROW
contents when written, so the automatic verification will most likely fail and to prevent
error messages, use -V.

Please note that SerialUPDI interface is pretty new and some issues are to be ex-
pected. In case you run into them, please make sure to run the intended command with
debug output enabled (-v -v -v) and provide this verbose output with your bug report.
You can also try to perform the same action using pymcuprog (https://github.com/
microchip-pic-avr-tools/pymcuprog) utility with -v debug and provide its output too.
You will notice that both outputs are pretty similar, and this was implemented like that on
purpose - it was supposed to make analysis of UPDI protocol quirks easier.

https://github.com/microchip-pic-avr-tools/pymcuprog
https://github.com/microchip-pic-avr-tools/pymcuprog

48

Appendix A Platform Dependent Information

A.1 Unix

A.1.1 Unix Installation

To build and install from the source tarball on Unix like systems:

$ gunzip -c avrdude-7.1.tar.gz | tar xf -

$ cd avrdude-7.1

$./configure

$ make

$ su root -c ’make install’

The default location of the install is into /usr/local so you will need to be sure that
/usr/local/bin is in your PATH environment variable.

If you do not have root access to your system, you can do the following instead:

$ gunzip -c avrdude-7.1.tar.gz | tar xf -

$ cd avrdude-7.1

$./configure --prefix=$HOME/local

$ make

$ make install

A.1.1.1 FreeBSD Installation

AVRDUDE is installed via the FreeBSD Ports Tree as follows:

% su - root

cd /usr/ports/devel/avrdude

make install

If you wish to install from a pre-built package instead of the source, you can use the
following instead:

% su - root

pkg_add -r avrdude

Of course, you must be connected to the Internet for these methods to work, since that
is where the source as well as the pre-built package is obtained.

A.1.1.2 Linux Installation

On rpm based Linux systems (such as RedHat, SUSE, Mandrake, etc.), you can build and
install the rpm binaries directly from the tarball:

$ su - root

rpmbuild -tb avrdude-7.1.tar.gz

rpm -Uvh /usr/src/redhat/RPMS/i386/avrdude-7.1-1.i386.rpm

Note that the path to the resulting rpm package, differs from system to system. The
above example is specific to RedHat.

Appendix A: Platform Dependent Information 49

A.1.2 Unix Configuration Files

When AVRDUDE is build using the default --prefix configure option, the default config-
uration file for a Unix system is located at /usr/local/etc/avrdude.conf. This can be
overridden by using the -C command line option. Additionally, the user’s home directory is
searched for a file named .avrduderc, and if found, is used to augment the system default
configuration file.

A.1.2.1 FreeBSD Configuration Files

When AVRDUDE is installed using the FreeBSD ports system, the system configuration
file is always /usr/local/etc/avrdude.conf.

A.1.2.2 Linux Configuration Files

When AVRDUDE is installed using from an rpm package, the system configuration file will
be always be /etc/avrdude.conf.

A.1.3 Unix Port Names

The parallel and serial port device file names are system specific. MacOS has no default
serial or parallel port names, but available ports can be found under /dev/cu.*. The
following table lists the default names for a given system.

System Default Parallel Port Default Serial Port
FreeBSD /dev/ppi0 /dev/cuad0

Linux /dev/parport0 /dev/ttyS0

Solaris /dev/printers/0 /dev/term/a

On FreeBSD systems, AVRDUDE uses the ppi(4) interface for accessing the parallel
port and the sio(4) driver for serial port access.

On Linux systems, AVRDUDE uses the ppdev interface for accessing the parallel port
and the tty driver for serial port access.

On Solaris systems, AVRDUDE uses the ecpp(7D) driver for accessing the parallel port
and the asy(7D) driver for serial port access.

A.1.4 Unix Documentation

AVRDUDE installs a manual page as well as info, HTML and PDF documentation. The
manual page is installed in /usr/local/man/man1 area, while the HTML and PDF doc-
umentation is installed in /usr/local/share/doc/avrdude directory. The info manual is
installed in /usr/local/info/avrdude.info.

Note that these locations can be altered by various configure options such as --prefix.

A.2 Windows

A.2.1 Installation

A Windows executable of avrdude is included in WinAVR which can be found at http://
sourceforge.net/projects/winavr. WinAVR is a suite of executable, open source soft-
ware development tools for the AVR for the Windows platform.

There are two options to build avrdude from source under Windows. The first one is to
use Cygwin (http://www.cygwin.com/).

http://sourceforge.net/projects/winavr
http://sourceforge.net/projects/winavr
http://www.cygwin.com/

Appendix A: Platform Dependent Information 50

To build and install from the source tarball for Windows (using Cygwin):

$ set PREFIX=<your install directory path>

$ export PREFIX

$ gunzip -c avrdude-7.1.tar.gz | tar xf -

$ cd avrdude-7.1

$./configure LDFLAGS="-static" --prefix=$PREFIX --datadir=$PREFIX

--sysconfdir=$PREFIX/bin --enable-versioned-doc=no

$ make

$ make install

Note that recent versions of Cygwin (starting with 1.7) removed the MinGW support
from the compiler that is needed in order to build a native Win32 API binary that does not
require to install the Cygwin library cygwin1.dll at run-time. Either try using an older
compiler version that still supports MinGW builds, or use MinGW (http://www.mingw.
org/) directly.

A.2.2 Configuration Files

A.2.2.1 Configuration file names

AVRDUDE on Windows looks for a system configuration file name of avrdude.conf and
looks for a user override configuration file of avrdude.rc.

A.2.2.2 How AVRDUDE finds the configuration files.

AVRDUDE on Windows has a different way of searching for the system and user configu-
ration files. Below is the search method for locating the configuration files:

1. Only for the system configuration file: <directory from which application

loaded>/../etc/avrdude.conf

2. The directory from which the application loaded.

3. The current directory.

4. The Windows system directory. On Windows NT, the name of this directory is
SYSTEM32.

5. Windows NT: The 16-bit Windows system directory. The name of this directory is
SYSTEM.

6. The Windows directory.

7. The directories that are listed in the PATH environment variable.

A.2.3 Port Names

A.2.3.1 Serial Ports

When you select a serial port (i.e. when using an STK500) use the Windows serial port
device names such as: com1, com2, etc.

A.2.3.2 Parallel Ports

AVRDUDE will accept 3 Windows parallel port names: lpt1, lpt2, or lpt3. Each of these
names corresponds to a fixed parallel port base address:

lpt1 0x378

http://www.mingw.org/
http://www.mingw.org/

Appendix A: Platform Dependent Information 51

lpt2 0x278

lpt3 0x3BC

On your desktop PC, lpt1 will be the most common choice. If you are using a laptop,
you might have to use lpt3 instead of lpt1. Select the name of the port the corresponds to
the base address of the parallel port that you want.

If the parallel port can be accessed through a different address, this address can be
specified directly, using the common C language notation (i. e., hexadecimal values are
prefixed by 0x).

A.2.4 Documentation

AVRDUDE installs a manual page as well as info, HTML and PDF documentation. The
manual page is installed in /usr/local/man/man1 area, while the HTML and PDF doc-
umentation is installed in /usr/local/share/doc/avrdude directory. The info manual is
installed in /usr/local/info/avrdude.info.

Note that these locations can be altered by various configure options such as --prefix
and --datadir.

52

Appendix B Troubleshooting

In general, please report any bugs encountered via
https://github.com/avrdudes/avrdude/issues.

• Problem: I’m using a serial programmer under Windows and get the following error:

avrdude: serial_open(): can’t set attributes for device "com1",

Solution: This problem seems to appear with certain versions of Cygwin. Specifying
"/dev/com1" instead of "com1" should help.

• Problem: I’m using Linux and my AVR910 programmer is really slow.

Solution (short): setserial port low_latency

Solution (long): There are two problems here. First, the system may wait some time
before it passes data from the serial port to the program. Under Linux the following
command works around this (you may need root privileges for this).

setserial port low_latency

Secondly, the serial interface chip may delay the interrupt for some time. This be-
haviour can be changed by setting the FIFO-threshold to one. Under Linux this can
only be done by changing the kernel source in drivers/char/serial.c. Search the file
for UART_FCR_TRIGGER_8 and replace it with UART_FCR_TRIGGER_1. Note that overall
performance might suffer if there is high throughput on serial lines. Also note that you
are modifying the kernel at your own risk.

• Problem: I’m not using Linux and my AVR910 programmer is really slow.

Solutions: The reasons for this are the same as above. If you know how to work around
this on your OS, please let us know.

• Problem: Updating the flash ROM from terminal mode does not work with the JTAG
ICEs.

Solution: None at this time. Currently, the JTAG ICE code cannot write to the flash
ROM one byte at a time.

• Problem: Page-mode programming the EEPROM (using the -U option) does not erase
EEPROM cells before writing, and thus cannot overwrite any previous value != 0xff.

Solution: None. This is an inherent feature of the way JTAG EEPROM program-
ming works, and is documented that way in the Atmel AVR datasheets. In order to
successfully program the EEPROM that way, a prior chip erase (with the EESAVE
fuse unprogrammed) is required. This also applies to the STK500 and STK600 in
high-voltage programming mode.

• Problem: How do I turn off the DWEN fuse?

Solution: If the DWEN (debugWire enable) fuse is activated, the /RESET pin is not
functional anymore, so normal ISP communication cannot be established. There are
two options to deactivate that fuse again: high-voltage programming, or getting the
JTAG ICE mkII talk debugWire, and prepare the target AVR to accept normal ISP
communication again.

The first option requires a programmer that is capable of high-voltage programming
(either serial or parallel, depending on the AVR device), for example the STK500.
In high-voltage programming mode, the /RESET pin is activated initially using a

https://github.com/avrdudes/avrdude/issues

Appendix B: Troubleshooting 53

12 V pulse (thus the name high voltage), so the target AVR can subsequently be
reprogrammed, and the DWEN fuse can be cleared. Typically, this operation cannot
be performed while the AVR is located in the target circuit though.

The second option requires a JTAG ICE mkII that can talk the debugWire protocol.
The ICE needs to be connected to the target using the JTAG-to-ISP adapter, so the
JTAG ICE mkII can be used as a debugWire initiator as well as an ISP programmer.
AVRDUDE will then be activated using the jtag2isp programmer type. The initial ISP
communication attempt will fail, but AVRDUDE then tries to initiate a debugWire
reset. When successful, this will leave the target AVR in a state where it can accept
standard ISP communication. The ICE is then signed off (which will make it signing
off from the USB as well), so AVRDUDE has to be called again afterwards. This time,
standard ISP communication can work, so the DWEN fuse can be cleared.

The pin mapping for the JTAG-to-ISP adapter is:

JTAG pin ISP pin
1 3
2 6
3 1
4 2
6 5
9 4

• Problem: Multiple USBasp or USBtinyISP programmers connected simultaneously are
not found.

Solution: The USBtinyISP code supports distinguishing multiple programmers based
on their bus:device connection tuple that describes their place in the USB hierarchy
on a specific host. This tuple can be added to the -P usb option, similar to adding a
serial number on other USB-based programmers.

The actual naming convention for the bus and device names is operating-system de-
pendent; AVRDUDE will print out what it found on the bus when running it with (at
least) one -v option. By specifying a string that cannot match any existing device (for
example, -P usb:xxx), the scan will list all possible candidate devices found on the bus.

Examples:

avrdude -c usbtiny -p atmega8 -P usb:003:025 (Linux)

avrdude -c usbtiny -p atmega8 -P usb:/dev/usb:/dev/ugen1.3 (FreeBSD 8+)

avrdude -c usbtiny -p atmega8 \

-P usb:bus-0:\\.\libusb0-0001--0x1781-0x0c9f (Windows)

• Problem: I cannot do . . . when the target is in debugWire mode.

Solution: debugWire mode imposes several limitations.

The debugWire protocol is Atmel’s proprietary one-wire (plus ground) protocol to
allow an in-circuit emulation of the smaller AVR devices, using the /RESET line.
DebugWire mode is initiated by activating the DWEN fuse, and then power-cycling
the target. While this mode is mainly intended for debugging/emulation, it also offers
limited programming capabilities. Effectively, the only memory areas that can be read
or programmed in this mode are flash ROM and EEPROM. It is also possible to read
out the signature. All other memory areas cannot be accessed. There is no chip erase
functionality in debugWire mode; instead, while reprogramming the flash ROM, each

Appendix B: Troubleshooting 54

flash ROM page is erased right before updating it. This is done transparently by the
JTAG ICE mkII (or AVR Dragon). The only way back from debugWire mode is to
initiate a special sequence of commands to the JTAG ICE mkII (or AVR Dragon), so
the debugWire mode will be temporarily disabled, and the target can be accessed using
normal ISP programming. This sequence is automatically initiated by using the JTAG
ICE mkII or AVR Dragon in ISP mode, when they detect that ISP mode cannot be
entered.

• Problem: I want to use my JTAG ICE mkII to program an Xmega device through PDI.
The documentation tells me to use the XMEGA PDI adapter for JTAGICE mkII that
is supposed to ship with the kit, yet I don’t have it.

Solution: Use the following pin mapping:

JTAGICE Target Squid cab- PDI
mkII probe pins le colors header
1 (TCK) Black
2 (GND) GND White 6
3 (TDO) Grey
4 (VTref) VTref Purple 2
5 (TMS) Blue
6 (nSRST) PDI CLK Green 5
7 (N.C.) Yellow
8 (nTRST) Orange
9 (TDI) PDI DATA Red 1
10 (GND) Brown

• Problem: I want to use my AVR Dragon to program an Xmega device through PDI.

Solution: Use the 6 pin ISP header on the Dragon and the following pin mapping:

Dragon Target
ISP Header pins
1 (SDI) PDI DATA
2 (VCC) VCC
3 (SCK)
4 (SDO)
5 (RESET) PDI CLK /

RST

6 (GND) GND

• Problem: I want to use my AVRISP mkII to program an ATtiny4/5/9/10 device
through TPI. How to connect the pins?

Solution: Use the following pin mapping:

AVRISP Target ATtiny
connector pins pin #
1 (SDI) TPIDATA 1
2 (VTref) Vcc 5
3 (SCK) TPICLK 3
4 (SDO)
5 (RESET) /RESET 6
6 (GND) GND 2

Appendix B: Troubleshooting 55

• Problem: I want to program an ATtiny4/5/9/10 device using a serial/parallel bitbang
programmer. How to connect the pins?

Solution: Since TPI has only 1 pin for bi-directional data transfer, both SDI and SDO
pins should be connected to the TPIDATA pin on the ATtiny device. However, a 1K
resistor should be placed between the SDO and TPIDATA. The SDI pin connects to
TPIDATA directly. The SCK pin is connected to TPICLK.

In addition, the Vcc, /RESET and GND pins should be connected to their respective
ports on the ATtiny device.

• Problem: How can I use a FTDI FT232R USB-to-Serial device for bitbang program-
ming?

Solution: When connecting the FT232 directly to the pins of the target Atmel device,
the polarity of the pins defined in the programmer definition should be inverted by pre-
fixing a tilde. For example, the dasa programmer would look like this when connected
via a FT232R device (notice the tildes in front of pins 7, 4, 3 and 8):

programmer

id = "dasa_ftdi";

desc = "serial port banging, reset=rts sck=dtr sdo=txd sdi=cts";

type = serbb;

reset = ~7;

sck = ~4;

sdo = ~3;

sdi = ~8;

;

Note that this uses the FT232 device as a normal serial port, not using the FTDI
drivers in the special bitbang mode.

• Problem: My ATtiny4/5/9/10 reads out fine, but any attempt to program it (through
TPI) fails. Instead, the memory retains the old contents.

Solution: Mind the limited programming supply voltage range of these devices.

In-circuit programming through TPI is only guaranteed by the datasheet at Vcc = 5
V.

• Problem: My ATxmega. . .A1/A2/A3 cannot be programmed through PDI with my
AVR Dragon. Programming through a JTAG ICE mkII works though, as does pro-
gramming through JTAG.

Solution: None by this time (2010 Q1).

It is said that the AVR Dragon can only program devices from the A4 Xmega sub-
family.

• Problem: when programming with an AVRISPmkII or STK600, AVRDUDE hangs
when programming files of a certain size (e.g. 246 bytes). Other (larger or smaller)
sizes work though.

Solution: This is a bug caused by an incorrect handling of zero-length packets (ZLPs)
in some versions of the libusb 0.1 API wrapper that ships with libusb 1.x in certain
Linux distributions. All Linux systems with kernel versions < 2.6.31 and libusb >=
1.0.0 < 1.0.3 are reported to be affected by this.

See also: http://www.libusb.org/ticket/6

http://www.libusb.org/ticket/6

Appendix B: Troubleshooting 56

• Problem: after flashing a firmware that reduces the target’s clock speed (e.g. through
the CLKPR register), further ISP connection attempts fail. Or a programmer cannot
initialize communication with a brand new chip.

Solution: Even though ISP starts with pulling /RESET low, the target continues to
run at the internal clock speed either as defined by the firmware running before or as set
by the factory. Therefore, the ISP clock speed must be reduced appropriately (to less
than 1/4 of the internal clock speed) using the -B option before the ISP initialization
sequence will succeed.

As that slows down the entire subsequent ISP session, it might make sense to just issue
a chip erase using the slow ISP clock (option -e), and then start a new session at
higher speed. Option -D might be used there, to prevent another unneeded erase cycle.

57

Concept Index

–
-x Arduino . 19
-x AVR Dragon . 19
-x AVR910 . 19
-x Buspirate . 22
-x linuxspi . 25
-x Micronucleus bootloader . 24
-x PICkit2 . 24
-x serialupdi . 25
-x Teensy bootloader . 24
-x Urclock . 19
-x USBasp . 25
-x Wiring . 24
-x xbee . 25

A
avrdude.conf . 36

C
Configuration File . 36

D
Device support . 5
DFU bootloader . 45

H
History . 4

I
Introduction . 1

O
Options (command-line) . 5

P
Programmer support . 13
Programmers supported . 1

S
SerialUPDI . 46
STK600 . 43

T
Terminal Mode . 30, 33

	1 Introduction
	History and Credits

	2 Command Line Options
	Option Descriptions
	Programmers accepting extended parameters
	Example Command Line Invocations

	3 Terminal Mode Operation
	Terminal Mode Commands
	Terminal Mode Examples

	4 Configuration File
	AVRDUDE Defaults
	Programmer Definitions
	Part Definitions
	Parent Part
	Instruction Format

	Other Notes

	5 Programmer Specific Information
	Atmel STK600
	Atmel DFU bootloader using FLIP version 1
	SerialUPDI programmer

	A Platform Dependent Information
	Unix
	Unix Installation
	FreeBSD Installation
	Linux Installation

	Unix Configuration Files
	FreeBSD Configuration Files
	Linux Configuration Files

	Unix Port Names
	Unix Documentation

	Windows
	Installation
	Configuration Files
	Configuration file names
	How AVRDUDE finds the configuration files.

	Port Names
	Serial Ports
	Parallel Ports

	Documentation

	B Troubleshooting
	Concept Index

