4#ifndef vtkVolumeShaderComposer_h
5#define vtkVolumeShaderComposer_h
26 for (
auto& item : inputs)
39 for (
auto& item : inputs)
42 const bool lighting = volProp->
GetShade() == 1;
51 for (
auto& item : inputs)
55 if (useClippedVoxelIntensity)
63inline std::string ArrayBaseName(
const std::string& arrayName)
65 return arrayName.substr(0, arrayName.length() - 3);
77VTK_ABI_NAMESPACE_BEGIN
83 " //Transform vertex (data coordinates) to clip coordinates\n"
84 " // p_clip = T_ProjViewModel * T_dataToWorld * p_data\n"
85 " vec4 pos = in_projectionMatrix * in_modelViewMatrix * in_volumeMatrix[0] *\n"
86 " vec4(in_vertexPos.xyz, 1.0);\n"
87 " gl_Position = pos;\n");
95 " // Transform vertex (data coordinates) to texture coordinates.\n"
96 " // p_texture = T_dataToTex * p_data\n"
97 " vec3 uvx = sign(in_cellSpacing[0]) * (in_inverseTextureDatasetMatrix[0] *\n"
98 " vec4(in_vertexPos, 1.0)).xyz;\n"
100 " // For point dataset, we offset the texture coordinate\n"
101 " // to account for OpenGL treating voxel at the center of the cell.\n"
102 " // Transform cell tex-coordinates to point tex-coordinates (cellToPoint\n"
103 " // is an identity matrix in the case of cell data).\n"
104 " ip_textureCoords = (in_cellToPoint[0] * vec4(uvx, 1.0)).xyz;\n"
105 " ip_inverseTextureDataAdjusted = in_cellToPoint[0] * in_inverseTextureDatasetMatrix[0];\n");
110 vtkVolume* vtkNotUsed(vol),
bool multipleInputs)
113 const int numInputs = gpuMapper->GetInputCount();
115 std::ostringstream ss;
116 ss <<
"uniform vec3 in_cellSpacing[" << numInputs
118 "uniform mat4 in_modelViewMatrix;\n"
119 "uniform mat4 in_projectionMatrix;\n";
121 const int numTransf = multipleInputs ? numInputs + 1 : 1;
122 ss <<
"uniform mat4 in_volumeMatrix[" << numTransf
124 "uniform mat4 in_inverseTextureDatasetMatrix["
127 "uniform mat4 in_cellToPoint["
131 "//This variable could be 'invariant varying' but it is declared\n"
132 "//as 'varying' to avoid compiler compatibility issues.\n"
133 "out mat4 ip_inverseTextureDataAdjusted;\n";
141 int numberPositionalLights,
bool defaultLighting,
int noOfComponents,
int independentComponents)
143 const int numInputs =
static_cast<int>(inputs.size());
145 std::ostringstream toShaderStr;
146 toShaderStr <<
"uniform sampler3D in_volume[" << numInputs <<
"];\n";
148 toShaderStr <<
"uniform vec4 in_volume_scale[" << numInputs
150 "uniform vec4 in_volume_bias["
151 << numInputs <<
"];\n";
155 toShaderStr <<
"uniform sampler1D in_coordTexs;\n";
156 toShaderStr <<
"uniform vec3 in_coordTexSizes;\n";
157 toShaderStr <<
"uniform vec3 in_coordsScale;\n";
158 toShaderStr <<
"uniform vec3 in_coordsBias;\n";
163 toShaderStr <<
"uniform sampler3D in_blanking;\n";
166 toShaderStr <<
"uniform int in_noOfComponents;\n"
168 "uniform sampler2D in_depthSampler;\n"
170 "// Camera position\n"
171 "uniform vec3 in_cameraPos;\n";
176 toShaderStr <<
"uniform sampler2D in_noiseSampler;\n";
181 const int numTransf = (numInputs > 1) ? numInputs + 1 : 1;
182 toShaderStr <<
"uniform mat4 in_volumeMatrix[" << numTransf
184 "uniform mat4 in_inverseVolumeMatrix["
187 "uniform mat4 in_textureDatasetMatrix["
190 "uniform mat4 in_inverseTextureDatasetMatrix["
193 "uniform mat4 in_textureToEye["
196 "uniform vec3 in_texMin["
199 "uniform vec3 in_texMax["
202 "uniform mat4 in_cellToPoint["
203 << numTransf <<
"];\n";
205 toShaderStr <<
"// view and model matrices\n"
206 "uniform mat4 in_projectionMatrix;\n"
207 "uniform mat4 in_inverseProjectionMatrix;\n"
208 "uniform mat4 in_modelViewMatrix;\n"
209 "uniform mat4 in_inverseModelViewMatrix;\n"
210 "in mat4 ip_inverseTextureDataAdjusted;\n"
213 "uniform vec3 in_cellStep["
214 << numInputs <<
"];\n";
219 toShaderStr <<
"mat4 g_eyeToTexture = in_inverseTextureDatasetMatrix[0] *"
220 " in_inverseVolumeMatrix[0] * in_inverseModelViewMatrix;\n";
223 if (inputs[0].Volume->GetProperty() && inputs[0].Volume->GetProperty()->GetShade() &&
224 !defaultLighting && totalNumberOfLights > 0)
226 toShaderStr <<
"mat4 g_texToView = in_modelViewMatrix * in_volumeMatrix[0] *"
227 "in_textureDatasetMatrix[0];\n";
230 toShaderStr <<
"uniform vec2 in_scalarsRange[" << numInputs * 4
232 "uniform vec3 in_cellSpacing["
236 "// Sample distance\n"
237 "uniform float in_sampleDistance;\n"
240 "uniform vec2 in_windowLowerLeftCorner;\n"
241 "uniform vec2 in_inverseOriginalWindowSize;\n"
242 "uniform vec2 in_inverseWindowSize;\n"
243 "uniform vec3 in_textureExtentsMax;\n"
244 "uniform vec3 in_textureExtentsMin;\n"
246 "// Material and lighting\n"
247 "uniform vec3 in_diffuse[4];\n"
248 "uniform vec3 in_ambient[4];\n"
249 "uniform vec3 in_specular[4];\n"
250 "uniform float in_shininess[4];\n"
253 "vec3 g_rayJitter = vec3(0.0);\n"
255 "uniform vec2 in_averageIPRange;\n";
257 toShaderStr <<
"vec4 g_eyePosObjs[" << numInputs <<
"];\n";
259 const bool hasGradientOpacity = HasGradientOpacity(inputs);
260 if (totalNumberOfLights > 0 || hasGradientOpacity)
262 toShaderStr <<
"uniform bool in_twoSidedLighting;\n";
267 toShaderStr << R
"***(
268uniform float in_giReach;
269uniform float in_anisotropy;
270uniform float in_volumetricScatteringBlending;
275 if (totalNumberOfLights > 0)
277 std::string totalLights = std::to_string(totalNumberOfLights);
278 std::string positionalLights = std::to_string(numberPositionalLights);
280 if (!defaultLighting)
282 toShaderStr <<
"#define TOTAL_NUMBER_LIGHTS " << totalLights
284 "#define NUMBER_POS_LIGHTS "
287 "vec4 g_fragWorldPos;\n"
288 "uniform vec3 in_lightAmbientColor[TOTAL_NUMBER_LIGHTS];\n"
289 "uniform vec3 in_lightDiffuseColor[TOTAL_NUMBER_LIGHTS];\n"
290 "uniform vec3 in_lightSpecularColor[TOTAL_NUMBER_LIGHTS];\n"
291 "uniform vec3 in_lightDirection[TOTAL_NUMBER_LIGHTS];\n";
292 if (numberPositionalLights > 0)
294 toShaderStr <<
"uniform vec3 in_lightPosition[NUMBER_POS_LIGHTS];\n"
295 "uniform vec3 in_lightAttenuation[NUMBER_POS_LIGHTS];\n"
296 "uniform float in_lightConeAngle[NUMBER_POS_LIGHTS];\n"
297 "uniform float in_lightExponent[NUMBER_POS_LIGHTS];\n";
302 toShaderStr <<
"vec3 g_lightDirectionTex[TOTAL_NUMBER_LIGHTS];\n";
304 if (numberPositionalLights > 0)
306 toShaderStr <<
"vec3 g_lightPositionTex[NUMBER_POS_LIGHTS];\n";
312 toShaderStr <<
"uniform vec3 in_lightAmbientColor[1];\n"
313 "uniform vec3 in_lightDiffuseColor[1];\n"
314 "uniform vec3 in_lightSpecularColor[1];\n"
315 "vec4 g_lightPosObj["
325 << numInputs <<
"];\n";
329 if (noOfComponents > 1 && independentComponents)
331 toShaderStr <<
"uniform vec4 in_componentWeight;\n";
337 toShaderStr <<
"uniform sampler2D in_depthPassSampler;\n";
342 toShaderStr <<
"#if NUMBER_OF_CONTOURS\n"
343 "uniform float in_isosurfacesValues[NUMBER_OF_CONTOURS];\n"
345 "int findIsoSurfaceIndex(float scalar, float array[NUMBER_OF_CONTOURS+2])\n"
347 " int index = NUMBER_OF_CONTOURS >> 1;\n"
348 " while (scalar > array[index]) ++index;\n"
349 " while (scalar < array[index]) --index;\n"
356 vtkVolume* vol = inputs.begin()->second.Volume;
359 if (func && func->
IsA(
"vtkPlane"))
362 <<
"uniform vec3 in_slicePlaneOrigin;\n"
363 "uniform vec3 in_slicePlaneNormal;\n"
364 "vec3 g_intersection;\n"
366 "float intersectRayPlane(vec3 rayOrigin, vec3 rayDir)\n"
368 " vec4 planeNormal = in_inverseVolumeMatrix[0] * vec4(in_slicePlaneNormal, 0.0);\n"
369 " float denom = dot(planeNormal.xyz, rayDir);\n"
370 " if (abs(denom) > 1e-6)\n"
372 " vec4 planeOrigin = in_inverseVolumeMatrix[0] * vec4(in_slicePlaneOrigin, 1.0);\n"
373 " return dot(planeOrigin.xyz - rayOrigin, planeNormal.xyz) / denom;\n"
380 return toShaderStr.str();
388 vtkVolume* vol = inputs.begin()->second.Volume;
389 const int numInputs =
static_cast<int>(inputs.size());
391 std::ostringstream shaderStr;
397 \n vec2 fragTexCoord2 = (gl_FragCoord.xy - in_windowLowerLeftCorner) *\
398 \n in_inverseWindowSize;\
399 \n vec4 depthValue = texture2D(in_depthPassSampler, fragTexCoord2);\
400 \n vec4 rayOrigin = WindowToNDC(gl_FragCoord.x, gl_FragCoord.y, depthValue.x);\
402 \n // From normalized device coordinates to eye coordinates.\
403 \n // in_projectionMatrix is inversed because of way VT\
404 \n // From eye coordinates to texture coordinates\
405 \n rayOrigin = in_inverseTextureDatasetMatrix[0] *\
406 \n in_inverseVolumeMatrix[0] *\
407 \n in_inverseModelViewMatrix *\
408 \n in_inverseProjectionMatrix *\
410 \n rayOrigin /= rayOrigin.w;\
411 \n g_rayOrigin = rayOrigin.xyz;";
416 \n // Get the 3D texture coordinates for lookup into the in_volume dataset\
417 \n g_rayOrigin = ip_textureCoords.xyz;";
422 \n // Eye position in dataset space\
423 \n g_eyePosObj = in_inverseVolumeMatrix[0] * vec4(in_cameraPos, 1.0);";
424 for (
int i = 0; i < numInputs; ++i)
429 << i <<
"] = in_inverseVolumeMatrix[" << (numInputs > 1 ? i + 1 : i)
430 <<
"] * vec4(in_cameraPos, 1.0);";
433 \n // Getting the ray marching direction (in dataset space)\
434 \n vec3 rayDir = computeRayDirection();\
436 \n // 2D Texture fragment coordinates [0,1] from fragment coordinates.\
437 \n // The frame buffer texture has the size of the plain buffer but \
438 \n // we use a fraction of it. The texture coordinate is less than 1 if\
439 \n // the reduction factor is less than 1.\
440 \n // Device coordinates are between -1 and 1. We need texture\
441 \n // coordinates between 0 and 1. The in_depthSampler\
442 \n // buffer has the original size buffer.\
443 \n vec2 fragTexCoord = (gl_FragCoord.xy - in_windowLowerLeftCorner) *\
444 \n in_inverseWindowSize;\
446 \n // Multiply the raymarching direction with the step size to get the\
447 \n // sub-step size we need to take at each raymarching step\
448 \n g_dirStep = (ip_inverseTextureDataAdjusted *\
449 \n vec4(rayDir, 0.0)).xyz * in_sampleDistance;\
450 \n g_lengthStep = length(g_dirStep);\
454 \n float jitterValue = 0.0;\
463 \n jitterValue = texture2D(in_noiseSampler, gl_FragCoord.xy /\
464 vec2(textureSize(in_noiseSampler, 0))).x;\
465 \n g_rayJitter = g_dirStep * jitterValue;\
471 \n g_rayJitter = g_dirStep;\
475 \n g_rayOrigin += g_rayJitter;\
480 \n // Flag to determine if voxel should be considered for the rendering\
486 \n // Light position in dataset space";
487 for (
int i = 0; i < numInputs; ++i)
492 << i <<
"] = (in_inverseVolumeMatrix[" << (numInputs > 1 ? i + 1 : i) <<
"] *\
493 \n vec4(in_cameraPos, 1.0));\
495 << i <<
"] = normalize(g_lightPosObj[" << i <<
"].xyz - ip_vertexPos);\
497 << i <<
"] = normalize(g_eyePosObjs[" << i <<
"].xyz - ip_vertexPos);\
499 << i <<
"] = normalize(g_ldir[" << i <<
"] + g_vdir[" << i <<
"]);";
503 return shaderStr.str();
513 \n g_skip = false;");
517 bool blankCells = (dataSet->GetCellGhostArray() !=
nullptr);
518 bool blankPoints = (dataSet->GetPointGhostArray() !=
nullptr);
519 if (blankPoints || blankCells)
521 str += std::string(
"\
522 \n // Check whether the neighboring points/cells are blank.\
523 \n // Note the half cellStep because texels are point centered.\
524 \n vec3 xvec = vec3(in_cellStep[0].x/2.0, 0.0, 0.0);\
525 \n vec3 yvec = vec3(0.0, in_cellStep[0].y/2.0, 0.0);\
526 \n vec3 zvec = vec3(0.0, 0.0, in_cellStep[0].z/2.0);\
527 \n vec3 texPosPVec[3];\
528 \n texPosPVec[0] = g_dataPos + xvec;\
529 \n texPosPVec[1] = g_dataPos + yvec;\
530 \n texPosPVec[2] = g_dataPos + zvec;\
531 \n vec3 texPosNVec[3];\
532 \n texPosNVec[0] = g_dataPos - xvec;\
533 \n texPosNVec[1] = g_dataPos - yvec;\
534 \n texPosNVec[2] = g_dataPos - zvec;\
535 \n vec4 blankValue = texture3D(in_blanking, g_dataPos);\
536 \n vec4 blankValueXP = texture3D(in_blanking, texPosPVec[0]);\
537 \n vec4 blankValueYP = texture3D(in_blanking, texPosPVec[1]);\
538 \n vec4 blankValueZP = texture3D(in_blanking, texPosPVec[2]);\
539 \n vec4 blankValueXN = texture3D(in_blanking, texPosNVec[0]);\
540 \n vec4 blankValueYN = texture3D(in_blanking, texPosNVec[1]);\
541 \n vec4 blankValueZN = texture3D(in_blanking, texPosNVec[2]);\
542 \n vec3 blankValuePx;\
543 \n blankValuePx[0] = blankValueXP.x;\
544 \n blankValuePx[1] = blankValueYP.x;\
545 \n blankValuePx[2] = blankValueZP.x;\
546 \n vec3 blankValuePy;\
547 \n blankValuePy[0] = blankValueXP.y;\
548 \n blankValuePy[1] = blankValueYP.y;\
549 \n blankValuePy[2] = blankValueZP.y;\
550 \n vec3 blankValueNx;\
551 \n blankValueNx[0] = blankValueXN.x;\
552 \n blankValueNx[1] = blankValueYN.x;\
553 \n blankValueNx[2] = blankValueZN.x;\
554 \n vec3 blankValueNy;\
555 \n blankValueNy[0] = blankValueXN.y;\
556 \n blankValueNy[1] = blankValueYN.y;\
557 \n blankValueNy[2] = blankValueZN.y;\
561 str += std::string(
"\
562 \n // If the current or neighboring points\
563 \n // (that belong to cells that share this texel) are blanked,\
564 \n // skip the texel. In other words, if point 1 were blank,\
565 \n // texels 0, 1 and 2 would have to be skipped.\
566 \n if (blankValue.x > 0.0 ||\
567 \n any(greaterThan(blankValueNx, vec3(0.0))) ||\
568 \n any(greaterThan(blankValuePx, vec3(0.0))))\
570 \n // skip this texel\
576 str += std::string(
"\
577 \n // If the current or previous cells (that share this texel)\
578 \n // are blanked, skip the texel. In other words, if cell 1\
579 \n // is blanked, texels 1 and 2 would have to be skipped.\
580 \n else if (blankValue.y > 0.0 ||\
581 \n any(greaterThan(blankValuePy, vec3(0.0))) ||\
582 \n any(greaterThan(blankValueNy, vec3(0.0))))\
584 \n // skip this texel\
592 str += std::string(
"\
593 \n // If the current or previous cells (that share this texel)\
594 \n // are blanked, skip the texel. In other words, if cell 1\
595 \n // is blanked, texels 1 and 2 would have to be skipped.\
596 \n if (blankValue.x > 0.0 ||\
597 \n any(greaterThan(blankValueNx, vec3(0.0))) ||\
598 \n any(greaterThan(blankValuePx, vec3(0.0))))\
600 \n // skip this texel\
609 str += std::string(
"\
610 \n g_dataPos = g_intersection;\
621 return std::string();
626 int independentComponents, std::map<int, std::string> gradientTableMap)
629 std::ostringstream ss;
630 if (volProperty->HasGradientOpacity())
632 ss <<
"uniform sampler2D " << ArrayBaseName(gradientTableMap[0]) <<
"[" << noOfComponents
635 bool useLabelGradientOpacity =
636 (volProperty->HasLabelGradientOpacity() && (noOfComponents == 1 || !independentComponents));
637 if (useLabelGradientOpacity)
639 ss <<
"uniform sampler2D in_labelMapGradientOpacity;\n";
642 std::string shaderStr = ss.str();
644 if (volProperty->HasGradientOpacity() && noOfComponents > 0)
646 if (noOfComponents == 1 || !independentComponents)
648 shaderStr += std::string(
"\
649 \nfloat computeGradientOpacity(vec4 grad)\
651 \n return texture2D(" +
652 gradientTableMap[0] +
", vec2(grad.w, 0.0)).r;\
657 shaderStr += std::string(
"\
658 \nfloat computeGradientOpacity(vec4 grad, int component)\
661 for (
int i = 0; i < noOfComponents; ++i)
663 std::ostringstream toString;
665 shaderStr += std::string(
"\
666 \n if (component == " +
667 toString.str() +
")");
669 shaderStr += std::string(
"\
671 \n return texture2D(" +
672 gradientTableMap[i] +
", vec2(grad.w, 0.0)).r;\
676 shaderStr += std::string(
"\
681 if (useLabelGradientOpacity)
683 shaderStr += std::string(
"\
684 \nfloat computeGradientOpacityForLabel(vec4 grad, float label)\
686 \n return texture2D(in_labelMapGradientOpacity, vec2(grad.w, label)).r;\
697 const bool hasLighting = HasLighting(inputs);
698 const bool hasGradientOp = HasGradientOpacity(inputs);
700 std::string shaderStr;
701 if (hasLighting || hasGradientOp)
703 shaderStr += std::string(
704 "// c is short for component\n"
705 "vec4 computeGradient(in vec3 texPos, in int c, in sampler3D volume,in int index)\n"
707 " // Approximate Nabla(F) derivatives with central differences.\n"
708 " vec3 g1; // F_front\n"
709 " vec3 g2; // F_back\n"
710 " vec3 xvec = vec3(in_cellStep[index].x, 0.0, 0.0);\n"
711 " vec3 yvec = vec3(0.0, in_cellStep[index].y, 0.0);\n"
712 " vec3 zvec = vec3(0.0, 0.0, in_cellStep[index].z);\n"
713 " vec3 texPosPvec[3];\n"
714 " texPosPvec[0] = texPos + xvec;\n"
715 " texPosPvec[1] = texPos + yvec;\n"
716 " texPosPvec[2] = texPos + zvec;\n"
717 " vec3 texPosNvec[3];\n"
718 " texPosNvec[0] = texPos - xvec;\n"
719 " texPosNvec[1] = texPos - yvec;\n"
720 " texPosNvec[2] = texPos - zvec;\n"
721 " g1.x = texture3D(volume, vec3(texPosPvec[0]))[c];\n"
722 " g1.y = texture3D(volume, vec3(texPosPvec[1]))[c];\n"
723 " g1.z = texture3D(volume, vec3(texPosPvec[2]))[c];\n"
724 " g2.x = texture3D(volume, vec3(texPosNvec[0]))[c];\n"
725 " g2.y = texture3D(volume, vec3(texPosNvec[1]))[c];\n"
726 " g2.z = texture3D(volume, vec3(texPosNvec[2]))[c];\n"
731 std::string(
" vec4 g1ObjDataPos[3], g2ObjDataPos[3];\n"
732 " for (int i = 0; i < 3; ++i)\n"
734 " g1ObjDataPos[i] = clip_texToObjMat * vec4(texPosPvec[i], 1.0);\n"
735 " if (g1ObjDataPos[i].w != 0.0)\n"
737 " g1ObjDataPos[i] /= g1ObjDataPos[i].w;\n"
739 " g2ObjDataPos[i] = clip_texToObjMat * vec4(texPosNvec[i], 1.0);\n"
740 " if (g2ObjDataPos[i].w != 0.0)\n"
742 " g2ObjDataPos[i] /= g2ObjDataPos[i].w;\n"
746 " for (int i = 0; i < clip_numPlanes && !g_skip; i = i + 6)\n"
748 " vec3 planeOrigin = vec3(in_clippingPlanes[i + 1],\n"
749 " in_clippingPlanes[i + 2],\n"
750 " in_clippingPlanes[i + 3]);\n"
751 " vec3 planeNormal = normalize(vec3(in_clippingPlanes[i + 4],\n"
752 " in_clippingPlanes[i + 5],\n"
753 " in_clippingPlanes[i + 6]));\n"
754 " for (int j = 0; j < 3; ++j)\n"
756 " if (dot(vec3(planeOrigin - g1ObjDataPos[j].xyz), planeNormal) > 0)\n"
758 " g1[j] = in_clippedVoxelIntensity;\n"
760 " if (dot(vec3(planeOrigin - g2ObjDataPos[j].xyz), planeNormal) > 0)\n"
762 " g2[j] = in_clippedVoxelIntensity;\n"
768 shaderStr += std::string(
" // Apply scale and bias to the fetched values.\n"
769 " g1 = g1 * in_volume_scale[index][c] + in_volume_bias[index][c];\n"
770 " g2 = g2 * in_volume_scale[index][c] + in_volume_bias[index][c];\n"
775 std::string(
" // Central differences: (F_front - F_back) / 2h\n"
776 " // This version of computeGradient() is only used for lighting\n"
777 " // calculations (only direction matters), hence the difference is\n"
778 " // not scaled by 2h and a dummy gradient mag is returned (-1.).\n"
779 " return vec4((g1 - g2) / in_cellSpacing[index], -1.0);\n"
784 shaderStr += std::string(
785 " // Scale values the actual scalar range.\n"
786 " float range = in_scalarsRange[4*index+c][1] - in_scalarsRange[4*index+c][0];\n"
787 " g1 = in_scalarsRange[4*index+c][0] + range * g1;\n"
788 " g2 = in_scalarsRange[4*index+c][0] + range * g2;\n"
790 " // Central differences: (F_front - F_back) / 2h\n"
793 " float avgSpacing = (in_cellSpacing[index].x +\n"
794 " in_cellSpacing[index].y + in_cellSpacing[index].z) / 3.0;\n"
795 " vec3 aspect = in_cellSpacing[index] * 2.0 / avgSpacing;\n"
797 " float grad_mag = length(g2);\n"
799 " // Handle normalizing with grad_mag == 0.0\n"
800 " g2 = grad_mag > 0.0 ? normalize(g2) : vec3(0.0);\n"
802 " // Since the actual range of the gradient magnitude is unknown,\n"
803 " // assume it is in the range [0, 0.25 * dataRange].\n"
804 " range = range != 0 ? range : 1.0;\n"
805 " grad_mag = grad_mag / (0.25 * range);\n"
806 " grad_mag = clamp(grad_mag, 0.0, 1.0);\n"
808 " return vec4(g2.xyz, grad_mag);\n"
814 shaderStr += std::string(
815 "vec4 computeGradient(in vec3 texPos, in int c, in sampler3D volume, in int index)\n"
817 " return vec4(0.0);\n"
830 for(int i=0; i<TOTAL_NUMBER_LIGHTS; i++)
832 g_lightDirectionTex[i] = (g_eyeToTexture * vec4(-in_lightDirection[i], 0.0)).xyz;
836 if (numberPositionalLights > 0)
839 for(int i=0; i<NUMBER_POS_LIGHTS; i++)
841 g_lightPositionTex[i] = (g_eyeToTexture * vec4(in_lightPosition[i], 1.0)).xyz;
851 int independentComponents, std::map<int, std::string> opacityTableMap,
int useGradient)
854 std::string functionBody;
855 bool severalIndpt = noOfComponents > 1 && independentComponents;
856 std::string functionSignature = severalIndpt
857 ?
"vec4 computeRGBAWithGrad(vec4 scalar, vec4 grad, int component)\n"
858 :
"vec4 computeRGBAWithGrad(vec4 scalar, vec4 grad)\n";
867 "vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
868 "for (int i = 0; i < 4; ++i)\n"
870 " yscalar[i] = yscalar[i] * in_transfer2DYAxis_scale[i] + in_transfer2DYAxis_bias[i];\n"
874 for (
int i = 0; i < noOfComponents; ++i)
876 std::string secondAxis(useGradient
882 functionBody +=
" if(component == " + std::to_string(i) +
885 " return texture2D(" +
886 opacityTableMap[i] +
",\n" +
" vec2(scalar[" + std::to_string(i) +
"], " + secondAxis +
891 else if (noOfComponents == 2 && !independentComponents)
893 std::string secondAxis(useGradient ?
"grad.w" :
"yscalar.y");
895 functionBody +=
" return texture2D(" + opacityTableMap[0] +
898 secondAxis +
"));\n";
906 functionBody +=
" return texture2D(" + opacityTableMap[0] +
908 " vec2(scalar.a, grad.w));\n";
914 " vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
915 " yscalar.r = yscalar.r * in_transfer2DYAxis_scale.r + in_transfer2DYAxis_bias.r;\n"
916 " yscalar = vec4(yscalar.r);\n"
917 " return texture2D(" +
920 " vec2(scalar.a, yscalar.w));\n";
924 resStr = functionSignature +
"{\n" + functionBody +
"}\n";
932 int independentComponents,
int useGradYAxis, std::string position,
bool requestColor =
false)
938 if (inputs.size() > 1)
941 const bool hasGradOp = ::HasGradientOpacity(inputs);
942 resStr +=
" opacity = computeOpacity(vec4(scalar), opacityTF);\n";
947 resStr += std::string(
" gradient = computeGradient(") + position +
", c, volume, index);\n";
948 resStr +=
" opacity *= computeGradientOpacity(gradient, gradTF);\n";
954 vtkGenericWarningMacro(<<
"ComputeOpacityEvaluationCall was called with requestColor, but "
955 "MultiVolume does not support this option yet.");
968 bool indpComps = (noOfComponents > 1 && independentComponents);
969 std::string compArgument = (indpComps) ? std::string(
", c") : std::string();
976 std::string compWeights = indpComps ? std::string(
" * in_componentWeight[c]") :
std::
string();
978 resStr += std::string(
" opacity = computeOpacity(vec4(scalar)") + compArgument +
979 std::string(
")") + compWeights +
";\n";
981 if (hasGradOp || useLabelGradientOpacity)
983 resStr += std::string(
" gradient = computeGradient(") +
position +
984 std::string(
", c, volume, index);\n"
985 " if(gradient.w >= 0.0) {\n") +
986 (hasGradOp ? (std::string(
" opacity *= computeGradientOpacity(gradient") +
987 compArgument +
")" + compWeights +
";\n")
990 + (useLabelGradientOpacity
991 ? (
std::
string(
" opacity *= computeGradientOpacityForLabel(gradient, label);\n"))
1000 " color = texture2D(" + inputs[0].RGBTablesMap[0] +
", vec2(scalar, 0.0)).xyz;\n";
1009 std::string(
" gradient = computeGradient(") +
position +
", c, volume, index);\n";
1011 resStr += std::string(
" vec4 lutRes = computeRGBAWithGrad(vec4(scalar), gradient") +
1012 compArgument + std::string(
");\n");
1014 resStr +=
" opacity = lutRes.a;\n";
1018 resStr +=
" color = lutRes.xyz;\n";
1029 int independentComponents,
int useGradYAxis)
1031 const bool hasLighting = ::HasLighting(inputs);
1032 const bool hasGradientOp = ::HasGradientOpacity(inputs);
1034 std::string functionSignature;
1036 if (inputs.size() > 1)
1040 functionSignature = std::string(
1041 "vec4 computeDensityGradient(in vec3 texPos, in int c, in sampler3D volume, "
1042 "const in sampler2D opacityTF, const in sampler2D gradTF, in int index, float label)\n");
1047 std::string(
"vec4 computeDensityGradient(in vec3 texPos, in int c, in sampler3D volume, "
1048 "const in sampler2D opacityTF, in int index, float label)\n");
1053 functionSignature = std::string(
"vec4 computeDensityGradient(in vec3 texPos, in int c, in "
1054 "sampler3D volume, in int index, float label)\n");
1057 std::string shaderStr;
1058 if (hasLighting || hasGradientOp)
1061 std::string opacityTFcall;
1062 std::string gradComput;
1064 static const std::array<std::pair<const char*, const char*>, 6> results_texPos = { {
1065 {
" g1.x",
"texPosPvec[0]" },
1066 {
" g1.y",
"texPosPvec[1]" },
1067 {
" g1.z",
"texPosPvec[2]" },
1068 {
" g2.x",
"texPosNvec[0]" },
1069 {
" g2.y",
"texPosNvec[1]" },
1070 {
" g2.z",
"texPosNvec[2]" },
1073 shaderStr += std::string(
"// c is short for component\n") + functionSignature +
1075 " // Approximate Nabla(F) derivatives with central differences.\n"
1076 " vec3 g1; // F_front\n"
1077 " vec3 g2; // F_back\n"
1078 " vec3 xvec = vec3(in_cellStep[index].x, 0.0, 0.0);\n"
1079 " vec3 yvec = vec3(0.0, in_cellStep[index].y, 0.0);\n"
1080 " vec3 zvec = vec3(0.0, 0.0, in_cellStep[index].z);\n"
1081 " vec3 texPosPvec[3];\n"
1082 " texPosPvec[0] = texPos + xvec;\n"
1083 " texPosPvec[1] = texPos + yvec;\n"
1084 " texPosPvec[2] = texPos + zvec;\n"
1085 " vec3 texPosNvec[3];\n"
1086 " texPosNvec[0] = texPos - xvec;\n"
1087 " texPosNvec[1] = texPos - yvec;\n"
1088 " texPosNvec[2] = texPos - zvec;\n"
1094 for (
auto& gradComp : results_texPos)
1098 mapper, inputs, noOfComponents, independentComponents, useGradYAxis, gradComp.second);
1099 shaderStr += std::string(
" scalar = texture3D(volume,") + gradComp.second +
1100 std::string(
")[c];\n"
1101 " scalar = scalar * in_volume_scale[index][c] + in_volume_bias[index][c];\n") +
1102 opacityTFcall + gradComp.first +
" = opacity;\n";
1108 std::string(
" vec4 g1ObjDataPos[3], g2ObjDataPos[3];\n"
1109 " for (int i = 0; i < 3; ++i)\n"
1111 " g1ObjDataPos[i] = clip_texToObjMat * vec4(texPosPvec[i], 1.0);\n"
1112 " if (g1ObjDataPos[i].w != 0.0)\n"
1114 " g1ObjDataPos[i] /= g1ObjDataPos[i].w;\n"
1116 " g2ObjDataPos[i] = clip_texToObjMat * vec4(texPosNvec[i], 1.0);\n"
1117 " if (g2ObjDataPos[i].w != 0.0)\n"
1119 " g2ObjDataPos[i] /= g2ObjDataPos[i].w;\n"
1123 " for (int i = 0; i < clip_numPlanes && !g_skip; i = i + 6)\n"
1125 " vec3 planeOrigin = vec3(in_clippingPlanes[i + 1],\n"
1126 " in_clippingPlanes[i + 2],\n"
1127 " in_clippingPlanes[i + 3]);\n"
1128 " vec3 planeNormal = normalize(vec3(in_clippingPlanes[i + 4],\n"
1129 " in_clippingPlanes[i + 5],\n"
1130 " in_clippingPlanes[i + 6]));\n"
1131 " for (int j = 0; j < 3; ++j)\n"
1133 " if (dot(vec3(planeOrigin - g1ObjDataPos[j].xyz), planeNormal) > 0)\n"
1135 " g1[j] = in_clippedVoxelIntensity;\n"
1137 " if (dot(vec3(planeOrigin - g2ObjDataPos[j].xyz), planeNormal) > 0)\n"
1139 " g2[j] = in_clippedVoxelIntensity;\n"
1149 std::string(
" // Central differences: (F_front - F_back) / 2h\n"
1150 " // This version of computeGradient() is only used for lighting\n"
1151 " // calculations (only direction matters), hence the difference is\n"
1152 " // not scaled by 2h and a dummy gradient mag is returned (-1.).\n"
1153 " return vec4((g1 - g2) / in_cellSpacing[index], -1.0);\n"
1158 shaderStr += std::string(
1159 " // Scale values the actual scalar range.\n"
1160 " float range = in_scalarsRange[4*index+c][1] - in_scalarsRange[4*index+c][0];\n"
1161 " g1 = in_scalarsRange[4*index+c][0] + range * g1;\n"
1162 " g2 = in_scalarsRange[4*index+c][0] + range * g2;\n"
1164 " // Central differences: (F_front - F_back) / 2h\n"
1167 " float avgSpacing = (in_cellSpacing[index].x +\n"
1168 " in_cellSpacing[index].y + in_cellSpacing[index].z) / 3.0;\n"
1169 " vec3 aspect = in_cellSpacing[index] * 2.0 / avgSpacing;\n"
1171 " float grad_mag = length(g2);\n"
1173 " // Handle normalizing with grad_mag == 0.0\n"
1174 " g2 = grad_mag > 0.0 ? normalize(g2) : vec3(0.0);\n"
1176 " // Since the actual range of the gradient magnitude is unknown,\n"
1177 " // assume it is in the range [0, 0.25 * dataRange].\n"
1178 " range = range != 0 ? range : 1.0;\n"
1179 " grad_mag = grad_mag / (0.25 * range);\n"
1180 " grad_mag = clamp(grad_mag, 0.0, 1.0);\n"
1182 " return vec4(g2.xyz, grad_mag);\n"
1188 shaderStr += functionSignature +
1190 " return vec4(0.0);\n"
1207float phase_function(float cos_angle)
1216float g_anisotropy2 = in_anisotropy * in_anisotropy;
1218float phase_function(float cos_angle)
1220 float d = 1.0 + g_anisotropy2 - 2.0 * in_anisotropy * cos_angle;
1221 return (1.0 - g_anisotropy2) / (d * sqrt(d));
1231 vtkVolume* vol,
int noOfComponents,
int independentComponents,
int totalNumberOfLights,
1232 int numberPositionalLights,
bool defaultLighting)
1236 std::string shaderStr = std::string(
"\
1237 \nvec4 computeLighting(vec4 color, int component, float label)\
1239 \n vec4 finalColor = vec4(0.0);\n");
1242 int const shadeReqd = volProperty->
GetShade() &&
1250 std::string volumetricCall = volumetricShadow
1251 ?
"\n vol_shadow = volumeShadow(g_dataPos, tex_light.xyz, 0.0, component, in_volume[0], "
1254 std::string volumetricDeclarations =
1255 volumetricShadow ?
"\n float vol_shadow = 1.0;\n vec4 tex_light = vec4(0.0);\n" :
"\n";
1264 std::string(
" vec4 shading_gradient = computeDensityGradient(g_dataPos, component, "
1265 "in_volume[0], 0, label);\n");
1270 shaderStr += std::string(
1271 " vec4 shading_gradient = computeGradient(g_dataPos, component, in_volume[0], 0);\n");
1282 std::string(
" vec4 gradient = computeGradient(g_dataPos, component, in_volume[0], 0);\n");
1287 shaderStr += std::string(
" vec4 gradient = shading_gradient;\n");
1293 if (defaultLighting)
1296 vec3 diffuse = vec3(0.0);
1297 vec3 specular = vec3(0.0);
1298 vec3 normal = shading_gradient.xyz;
1299 float normalLength = length(normal);
1300 if (normalLength > 0.0)
1302 normal = normalize(normal);
1306 normal = vec3(0.0, 0.0, 0.0);
1308 // XXX: normal is oriented inside the volume, so we take -g_ldir/-g_vdir
1309 float nDotL = dot(normal, -g_ldir[0]);
1310 vec3 r = normalize(2.0 * nDotL * normal + g_ldir[0]);
1311 float vDotR = dot(r, -g_vdir[0]);
1312 if (nDotL < 0.0 && in_twoSidedLighting)
1318 diffuse = nDotL * in_diffuse[component] *
1319 in_lightDiffuseColor[0] * color.rgb;
1320 vDotR = max(vDotR, 0.0);
1321 specular = pow(vDotR, in_shininess[component]) *
1322 in_specular[component] *
1323 in_lightSpecularColor[0];
1325 // For the headlight, ignore the light's ambient color
1326 // for now as it is causing the old mapper tests to fail
1327 finalColor.xyz = in_ambient[component] * color.rgb +
1332 else if (totalNumberOfLights > 0)
1335 g_fragWorldPos = g_texToView * vec4(g_dataPos, 1.0);
1336 if (g_fragWorldPos.w != 0.0)
1338 g_fragWorldPos /= g_fragWorldPos.w;
1340 vec3 viewDirection = normalize(-g_fragWorldPos.xyz);
1341 vec3 ambient = vec3(0,0,0);
1342 vec3 diffuse = vec3(0,0,0);
1343 vec3 specular = vec3(0,0,0);
1344 vec3 vertLightDirection;
1345 vec3 normal = normalize((in_textureToEye[0] * vec4(shading_gradient.xyz, 0.0)).xyz);
1349 if (numberPositionalLights > 0)
1352 for (int posNum = 0; posNum < NUMBER_POS_LIGHTS; posNum++)
1354 float attenuation = 1.0;
1355 lightDir = in_lightDirection[posNum];
1356 vertLightDirection = (g_fragWorldPos.xyz - in_lightPosition[posNum]);
1357 float distance = length(vertLightDirection);
1358 vertLightDirection = normalize(vertLightDirection);
1360 (in_lightAttenuation[posNum].x
1361 + in_lightAttenuation[posNum].y * distance
1362 + in_lightAttenuation[posNum].z * distance * distance);
1363 // per OpenGL standard cone angle is 90 or less for a spot light
1364 if (in_lightConeAngle[posNum] <= 90.0)
1366 float coneDot = dot(vertLightDirection, lightDir);
1367 // if inside the cone
1368 if (coneDot >= cos(radians(in_lightConeAngle[posNum])))
1370 attenuation = attenuation * pow(coneDot, in_lightExponent[posNum]);
1378 float nDotL = dot(normal, vertLightDirection);
1379 if (nDotL < 0.0 && in_twoSidedLighting)
1385 float df = max(0.0, attenuation * nDotL);
1386 diffuse += (df * in_lightDiffuseColor[posNum]);
1387 vec3 r = normalize(2.0 * nDotL * normal - vertLightDirection);
1388 float rDotV = dot(-viewDirection, r);
1389 if (rDotV < 0.0 && in_twoSidedLighting)
1395 float sf = attenuation * pow(rDotV, in_shininess[component]);
1396 specular += (sf * in_lightSpecularColor[posNum]);
1399 ambient += in_lightAmbientColor[posNum];
1405 for (int dirNum = NUMBER_POS_LIGHTS; dirNum < TOTAL_NUMBER_LIGHTS; dirNum++)
1407 vertLightDirection = in_lightDirection[dirNum];
1408 float nDotL = dot(normal, vertLightDirection);
1409 if (nDotL < 0.0 && in_twoSidedLighting)
1415 float df = max(0.0, nDotL);
1416 diffuse += (df * in_lightDiffuseColor[dirNum]);
1417 vec3 r = normalize(2.0 * nDotL * normal - vertLightDirection);
1418 float rDotV = dot(-viewDirection, r);
1421 float sf = pow(rDotV, in_shininess[component]);
1422 specular += (sf * in_lightSpecularColor[dirNum]);
1425 ambient += in_lightAmbientColor[dirNum];
1427 finalColor.xyz = in_ambient[component] * ambient +
1428 in_diffuse[component] * diffuse * color.rgb +
1429 in_specular[component] * specular;
1436 shaderStr += std::string(
"\n finalColor = vec4(color.rgb, 0.0);");
1443 std::string blendingFormula = std::string(
" float vol_coef = ") +
1444 (vsBlend < 1.0 ?
"2.0 * in_volumetricScatteringBlending * exp( - 2.0 * "
1445 "in_volumetricScatteringBlending * shading_gradient.w * color.a)"
1446 :
"2.0 * (1.0 - in_volumetricScatteringBlending) * exp( - 2.0 * "
1447 "in_volumetricScatteringBlending * shading_gradient.w * color.a) + 2.0 * "
1448 "in_volumetricScatteringBlending - 1.0") +
1455 "vec3 view_tdir = normalize((g_eyeToTexture * vec4(viewDirection, 0.0)).xyz);\n")) +
1457 vec3 secondary_contrib = vec3(0.0);
1458 vec3 tex_light = vec3(0.0);
1459 shading_gradient.w = length(shading_gradient.xyz);
1460 vec3 diffuse_light = vec3(0.0);
1461 float attenuation = 0.0;
1462 float vol_shadow = 0.0;
1466 if (defaultLighting)
1469 tex_light = (in_inverseTextureDatasetMatrix[0] * in_inverseVolumeMatrix[0] * vec4(in_cameraPos, 1.0)).xyz;
1470 phase = phase_function(-1); // always angle of pi
1471 vol_shadow = volumeShadow(g_dataPos, tex_light, 1.0, component, in_volume[0], 0, label);
1472 secondary_contrib += vol_shadow * phase * color.rgb * in_diffuse[component] * in_lightDiffuseColor[0];
1473 secondary_contrib += in_ambient[component] * in_lightAmbientColor[0];
1478 if (numberPositionalLights > 0)
1481 float dist_light = 0.0;
1482 for(int posNum = 0; posNum < NUMBER_POS_LIGHTS; posNum++)
1484 tex_light = g_lightPositionTex[posNum];
1485 vec3 light_vert = g_fragWorldPos.xyz - in_lightPosition[posNum];
1486 dist_light = length(light_vert);
1487 float light_angle = dot(normalize(light_vert), normalize(in_lightDirection[posNum]));
1488 phase = phase_function(dot(normalize(g_dataPos - tex_light), view_tdir));
1490 (in_lightAttenuation[posNum].x
1491 + in_lightAttenuation[posNum].y * dist_light
1492 + in_lightAttenuation[posNum].z * dist_light * dist_light);
1493 attenuation *= max(0.0, sign(light_angle - cos(radians(in_lightConeAngle[posNum]))))
1494 * pow(light_angle, in_lightExponent[posNum]);
1495 vol_shadow = volumeShadow(g_dataPos, tex_light, 1.0, component, in_volume[0], 0, label);
1496 secondary_contrib += vol_shadow * phase * attenuation * color.rgb * in_diffuse[component] * in_lightDiffuseColor[posNum];
1497 secondary_contrib += in_ambient[component] * in_lightAmbientColor[posNum];
1503 for(int dirNum = NUMBER_POS_LIGHTS; dirNum < TOTAL_NUMBER_LIGHTS; dirNum++)
1505 tex_light = g_lightDirectionTex[dirNum];
1506 phase = phase_function(dot(normalize(-tex_light), view_tdir));
1507 vol_shadow = volumeShadow(g_dataPos, tex_light, 0.0, component, in_volume[0], 0, label);
1508 secondary_contrib += vol_shadow * phase * color.rgb * in_diffuse[component] * in_lightDiffuseColor[dirNum];
1509 secondary_contrib += in_ambient[component] * in_lightAmbientColor[dirNum];
1514 shaderStr += blendingFormula +
1516 finalColor.xyz = (1.0 - vol_coef) * finalColor.xyz + vol_coef * secondary_contrib;
1526 if (noOfComponents == 1 || !independentComponents)
1530 shaderStr += std::string(
"\
1531 \n if (gradient.w >= 0.0 && label == 0.0)\
1533 \n color.a *= computeGradientOpacity(gradient);\
1538 shaderStr += std::string(
"\
1539 \n if (gradient.w >= 0.0 && label > 0.0)\
1541 \n color.a *= computeGradientOpacityForLabel(gradient, label);\
1545 else if (noOfComponents > 1 && independentComponents && volProperty->
HasGradientOpacity())
1547 shaderStr += std::string(
"\
1548 \n if (gradient.w >= 0.0)\
1550 \n for (int i = 0; i < in_noOfComponents; ++i)\
1552 \n color.a = color.a *\
1553 \n computeGradientOpacity(gradient, i) * in_componentWeight[i];\
1559 shaderStr += std::string(
"\
1560 \n finalColor.a = color.a;\
1561 \n return finalColor;\
1570 int vtkNotUsed(totalNumberOfLights),
bool defaultLighting)
1574 std::string shaderStr = std::string();
1579 shaderStr += std::string(
"\
1580 \nvec4 computeLighting(vec3 texPos, vec4 color, const in sampler2D gradientTF, const in sampler3D volume, const in sampler2D opacityTF, const int volIdx, int component)\
1582 \n vec4 finalColor = vec4(0.0);\n");
1586 shaderStr += std::string(
"\
1587 \nvec4 computeLighting(vec3 texPos, vec4 color, const in sampler3D volume, const in sampler2D opacityTF, const int volIdx, int component)\
1589 \n vec4 finalColor = vec4(0.0);\n");
1593 int const shadeReqd = volProperty->
GetShade() &&
1611 shaderStr +=
" vec4 shading_gradient = computeDensityGradient(texPos, component, volume, "
1612 "opacityTF, gradientTF, volIdx, 0.0);\n";
1616 shaderStr +=
" vec4 shading_gradient = computeDensityGradient(texPos, component, volume, "
1617 "opacityTF, volIdx, 0.0);\n";
1623 " vec4 shading_gradient = computeGradient(texPos, component, volume, volIdx);\n";
1632 shaderStr +=
" vec4 gradient = computeGradient(texPos, component, volume, volIdx);\n";
1637 shaderStr +=
" vec4 gradient = shading_gradient;\n";
1641 if (shadeReqd && defaultLighting)
1643 shaderStr += std::string(
"\
1644 \n vec3 diffuse = vec3(0.0);\
1645 \n vec3 specular = vec3(0.0);\
1646 \n vec3 normal = shading_gradient.xyz;\
1647 \n float normalLength = length(normal);\
1648 \n if (normalLength > 0.0)\
1650 \n normal = normalize(normal);\
1654 \n normal = vec3(0.0, 0.0, 0.0);\
1656 \n // normal is oriented inside the volume (because normal = gradient, oriented inside the volume)\
1657 \n // thus we have to take minus everything\
1658 \n float nDotL = dot(normal, -g_ldir[volIdx]);\
1659 \n vec3 r = normalize(2.0 * nDotL * normal + g_ldir[volIdx]);\
1660 \n float vDotR = dot(r, -g_vdir[volIdx]);\
1661 \n if (nDotL < 0.0 && in_twoSidedLighting)\
1665 \n if (nDotL > 0.0)\
1667 \n diffuse = nDotL * in_diffuse[component] *\
1668 \n in_lightDiffuseColor[0] * color.rgb;\
1669 \n vDotR = max(vDotR, 0.0);\
1670 \n specular = pow(vDotR, in_shininess[component]) *\
1671 \n in_specular[component] *\
1672 \n in_lightSpecularColor[0];\
1674 \n // For the headlight, ignore the light's ambient color\
1675 \n // for now as it is causing the old mapper tests to fail\
1676 \n finalColor.xyz = in_ambient[component] * color.rgb +\
1677 \n diffuse + specular;\
1682 shaderStr += std::string(
"\n finalColor = vec4(color.rgb, 0.0);");
1689 if (volProperty->
HasGradientOpacity() && (noOfComponents == 1 || !independentComponents))
1691 shaderStr += std::string(
"\
1692 \n if (gradient.w >= 0.0)\
1694 \n color.a = color.a *\
1695 \n computeGradientOpacity(gradient, gradientTF);\
1700 shaderStr += std::string(
"\
1701 \n finalColor.a = color.a;\
1702 \n return clamp(finalColor, 0.0, 1.0);\
1714 return std::string(
"\
1715 \nvec3 computeRayDirection()\
1717 \n return normalize(ip_vertexPos.xyz - g_eyePosObj.xyz);\
1722 return std::string(
"\
1723 \nuniform vec3 in_projectionDirection;\
1724 \nvec3 computeRayDirection()\
1726 \n return normalize((in_inverseVolumeMatrix[0] *\
1727 \n vec4(in_projectionDirection, 0.0)).xyz);\
1737 if (inputs.size() > 1)
1740 for (
auto& item : inputs)
1742 const auto& prop = item.second.Volume->GetProperty();
1746 auto& map = item.second.RGBTablesMap;
1747 const auto numComp = map.size();
1749 "uniform sampler2D " + ArrayBaseName(map[0]) +
"[" + std::to_string(numComp) +
"];\n";
1757 resStr +=
"uniform sampler2D " + ArrayBaseName(inputs[0].RGBTablesMap[0]) +
"[" +
1758 std::to_string(noOfComponents) +
"];\n";
1768 int independentComponents, std::map<int, std::string> colorTableMap)
1770 std::ostringstream ss;
1772 std::string shaderStr = ss.str();
1773 if (noOfComponents == 1)
1775 shaderStr += std::string(
"\
1776 \nvec4 computeColor(vec4 scalar, float opacity)\
1778 \n return clamp(computeLighting(vec4(texture2D(" +
1779 colorTableMap[0] +
",\
1780 \n vec2(scalar.w, 0.0)).xyz, opacity), 0, 0.0), 0.0, 1.0);\
1784 else if (noOfComponents > 1 && independentComponents)
1786 std::ostringstream toString;
1788 shaderStr += std::string(
"\
1789 \nvec4 computeColor(vec4 scalar, float opacity, int component)\
1792 for (
int i = 0; i < noOfComponents; ++i)
1795 shaderStr += std::string(
"\
1796 \n if (component == " +
1797 toString.str() +
")");
1799 shaderStr += std::string(
"\
1801 \n return clamp(computeLighting(vec4(texture2D(\
1804 shaderStr += std::string(
", vec2(\
1806 toString.str() +
"],0.0)).xyz,\
1808 toString.str() +
", 0.0), 0.0, 1.0);\
1816 shaderStr += std::string(
"\n }");
1819 else if (noOfComponents == 2 && !independentComponents)
1821 shaderStr += std::string(
"\
1822 \nvec4 computeColor(vec4 scalar, float opacity)\
1824 \n return clamp(computeLighting(vec4(texture2D(" +
1825 colorTableMap[0] +
",\
1826 \n vec2(scalar.x, 0.0)).xyz,\
1827 \n opacity), 0, 0.0), 0.0, 1.0);\
1833 shaderStr += std::string(
"\
1834 \nvec4 computeColor(vec4 scalar, float opacity)\
1836 \n return clamp(computeLighting(vec4(scalar.xyz, opacity), 0, 0.0), 0.0, 1.0);\
1846 std::ostringstream ss;
1848 std::map<int, std::string> lastColorTableMap;
1849 for (
auto& item : inputs)
1851 auto prop = item.second.Volume->GetProperty();
1854 auto& map = item.second.RGBTablesMap;
1855 lastComponentMode = item.second.ComponentMode;
1856 lastColorTableMap = map;
1861 ss <<
"vec4 computeColor(vec4 scalar, const in sampler2D colorTF)\
1863 \n return clamp(computeLighting(vec4(texture2D(colorTF,\
1864 \n vec2(scalar.w, 0.0)).xyz, opacity), 0), 0.0, 1.0);\
1869 std::ostringstream colorDec;
1870 colorDec <<
" vec3 color = ";
1874 colorDec <<
"scalar.xyz;\n";
1881 colorDec <<
"texture2D(colorTF, vec2(scalar.w, 0.0)).xyz;\n";
1887 <<
"vec4 computeColor(vec3 texPos, vec4 scalar, float opacity, const in sampler2D colorTF, "
1888 "const in sampler2D gradientTF, const in sampler3D volume, const in sampler2D "
1889 "opacityTF, const int volIdx)\n\n"
1891 ss << colorDec.str()
1892 <<
" return clamp(computeLighting(texPos, vec4(color, opacity), gradientTF, volume, "
1894 "volIdx, 0), 0.0, 1.0);\n"
1900 <<
"vec4 computeColor(vec3 texPos, vec4 scalar, float opacity, const in sampler2D colorTF, "
1901 "const in sampler3D volume, const in sampler2D opacityTF, const int volIdx)\n\n"
1903 ss << colorDec.str()
1904 <<
" return clamp(computeLighting(texPos, vec4(color, opacity), volume, opacityTF,"
1905 "volIdx, 0), 0.0, 1.0);\n"
1917 std::ostringstream ss;
1918 for (
auto& item : inputs)
1920 auto prop = item.second.Volume->GetProperty();
1924 auto& map = item.second.OpacityTablesMap;
1925 const auto numComp = map.size();
1926 ss <<
"uniform sampler2D " << ArrayBaseName(map[0]) <<
"[" << numComp <<
"];\n";
1929 ss <<
"float computeOpacity(vec4 scalar, const in sampler2D opacityTF)\n"
1931 " return texture2D(opacityTF, vec2(scalar.w, 0)).r;\n"
1940 std::ostringstream ss;
1942 for (
auto& item : inputs)
1944 auto prop = item.second.Volume->GetProperty();
1948 auto& map = item.second.GradientOpacityTablesMap;
1949 const auto numComp = map.size();
1950 ss <<
"uniform sampler2D " << ArrayBaseName(map[0]) <<
"[" << numComp <<
"];\n";
1953 ss <<
"float computeGradientOpacity(vec4 grad, const in sampler2D gradientTF)\n"
1955 " return texture2D(gradientTF, vec2(grad.w, 0.0)).r;\n"
1963 int independentComponents, std::map<int, std::string> opacityTableMap)
1965 std::ostringstream ss;
1966 ss <<
"uniform sampler2D " << ArrayBaseName(opacityTableMap[0]) <<
"[" << noOfComponents
1969 std::string shaderStr = ss.str();
1970 if (noOfComponents > 1 && independentComponents)
1972 shaderStr += std::string(
"\
1973 \nfloat computeOpacity(vec4 scalar, int component)\
1976 for (
int i = 0; i < noOfComponents; ++i)
1978 std::ostringstream toString;
1980 shaderStr += std::string(
"\
1981 \n if (component == " +
1982 toString.str() +
")");
1984 shaderStr += std::string(
"\
1986 \n return texture2D(" +
1987 opacityTableMap[i]);
1989 shaderStr += std::string(
",vec2(scalar[" + toString.str() +
"], 0)).r;\
1993 shaderStr += std::string(
"\n}");
1996 else if (noOfComponents == 2 && !independentComponents)
1998 shaderStr += std::string(
"\
1999 \nfloat computeOpacity(vec4 scalar)\
2001 \n return texture2D(" +
2002 opacityTableMap[0] +
", vec2(scalar.y, 0)).r;\
2008 shaderStr += std::string(
"\
2009 \nfloat computeOpacity(vec4 scalar)\
2011 \n return texture2D(" +
2012 opacityTableMap[0] +
", vec2(scalar.w, 0)).r;\
2020 int vtkNotUsed(independentComponents), std::map<int, std::string> colorTableMap)
2022 if (noOfComponents == 1)
2026 "vec4 computeColor(vec4 scalar, float opacity)\n"
2028 " vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
2029 " yscalar.r = yscalar.r * in_transfer2DYAxis_scale.r + in_transfer2DYAxis_bias.r;\n"
2030 " yscalar = vec4(yscalar.r);\n"
2031 " vec4 color = texture2D(" +
2034 " vec2(scalar.w, yscalar.w));\n"
2035 " return computeLighting(color, 0, 0);\n"
2038 return std::string(
"vec4 computeColor(vec4 scalar, float opacity)\n"
2040 " return vec4(0, 0, 0, 0)\n"
2047 int independentComponents, std::map<int, std::string> colorTableMap,
int useGradient)
2053 if (noOfComponents == 1)
2056 return std::string(
"vec4 computeColor(vec4 scalar, float opacity)\n"
2058 " vec4 color = texture2D(" +
2061 " vec2(scalar.w, g_gradients_0[0].w));\n"
2062 " return computeLighting(color, 0, 0);\n"
2065 else if (noOfComponents > 1 && independentComponents)
2068 std::string shaderStr;
2069 shaderStr += std::string(
"vec4 computeColor(vec4 scalar, float opacity, int component)\n"
2072 for (
int i = 0; i < noOfComponents; ++i)
2074 std::ostringstream toString;
2076 std::string
const num = toString.str();
2077 shaderStr += std::string(
" if (component == " + num +
2080 " vec4 color = texture2D(" +
2084 num +
"], g_gradients_0[" + num +
2086 " return computeLighting(color, " +
2091 shaderStr += std::string(
"}\n");
2095 else if (noOfComponents == 2 && !independentComponents)
2098 return std::string(
"vec4 computeColor(vec4 scalar, float opacity)\n"
2100 " vec4 color = texture2D(" +
2103 " vec2(scalar.x, g_gradients_0[0].w));\n"
2104 " return computeLighting(color, 0, 0.0);\n"
2109 return std::string(
"vec4 computeColor(vec4 scalar, float opacity)\n"
2111 " return computeLighting(vec4(scalar.xyz, opacity), 0, 0.0);\n"
2119 std::ostringstream ss;
2120 for (
auto& item : inputs)
2122 auto prop = item.second.Volume->GetProperty();
2126 auto& map = item.second.TransferFunctions2DMap;
2127 const auto numComp = map.size();
2128 ss <<
"uniform sampler2D " << ArrayBaseName(map[0]) <<
"[" << numComp <<
"];\n";
2131 std::string result = ss.str() +
2132 std::string(
"uniform sampler3D in_transfer2DYAxis;\n"
2133 "uniform vec4 in_transfer2DYAxis_scale;\n"
2134 "uniform vec4 in_transfer2DYAxis_bias;\n");
2142 int independentComponents, std::map<int, std::string> opacityTableMap,
int useGradient)
2144 std::ostringstream toString;
2145 if (noOfComponents > 1 && independentComponents)
2148 toString <<
"float computeOpacity(vec4 scalar, int component)\n"
2153 <<
"vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
2154 "for (int i = 0; i < 4; ++i)\n"
2156 " yscalar[i] = yscalar[i] * in_transfer2DYAxis_scale[i] + in_transfer2DYAxis_bias[i];\n"
2158 if (noOfComponents == 1)
2160 toString <<
"yscalar = vec4(yscalar.r);\n";
2164 for (
int i = 0; i < noOfComponents; ++i)
2168 toString <<
" if (component == " << i
2171 " return texture2D("
2172 << opacityTableMap[i]
2175 << i <<
"], g_gradients_0[" << i
2181 toString <<
" if (component == " << i
2184 " return texture2D("
2185 << opacityTableMap[i]
2188 << i <<
"], yscalar[" << i
2197 else if (noOfComponents == 2 && !independentComponents)
2202 toString <<
"float computeOpacity(vec4 scalar)\n"
2204 " return texture2D(" +
2205 opacityTableMap[0] +
2207 " vec2(scalar.y, g_gradients_0[0].w)).a;\n"
2213 toString <<
"float computeOpacity(vec4 scalar)\n"
2215 " return texture2D(" +
2216 opacityTableMap[0] +
2218 " vec2(scalar.y, yscalar.y)).a;\n"
2228 toString <<
"float computeOpacity(vec4 scalar)\n"
2230 " return texture2D(" +
2231 opacityTableMap[0] +
2233 " vec2(scalar.a, g_gradients_0[0].w)).a;\n"
2240 <<
"float computeOpacity(vec4 scalar)\n"
2242 " vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
2243 " yscalar.r = yscalar.r * in_transfer2DYAxis_scale.r + in_transfer2DYAxis_bias.r;\n"
2244 " yscalar = vec4(yscalar.r);\n"
2245 " return texture2D(" +
2246 opacityTableMap[0] +
2248 " vec2(scalar.a, yscalar.w)).a;\n"
2252 return toString.str();
2257 vtkVolume* vtkNotUsed(vol),
int noOfComponents,
int independentComponents,
2261 std::string declarations;
2262 std::string functionSignature;
2263 std::string opacityEval;
2264 std::string rayInit;
2266 const size_t numInputs = inputs.size();
2267 const bool hasGradOp = ::HasGradientOpacity(inputs);
2272 functionSignature =
"float volumeShadow(vec3 sample_position, vec3 light_pos_dir, float is_Pos, "
2273 " in int c, in sampler3D volume, " +
2274 (numInputs > 1 ? std::string(
"in sampler2D opacityTF, ") : std::string()) +
2275 (numInputs > 1 && hasGradOp ? std::string(
"in sampler2D gradTF, ") : std::string()) +
2276 "int index, float label)\n";
2281 vec3 direction = vec3(0.0);
2282 vec3 norm_dir = vec3(0.0);
2283 float maxdist = 0.0;
2286 float opacity = 0.0;
2290 float sampled_dist = 0.0;
2291 vec3 sampled_point = vec3(0.0);
2296 // direction is light_pos_dir when light is directional
2297 // and light_pos_dir - sample_position when positional
2298 direction = light_pos_dir - is_Pos * sample_position;
2299 norm_dir = normalize(direction);
2300 // introduce little offset to avoid sampling shadows at the exact
2302 sample_position += g_lengthStep * norm_dir;
2303 direction = light_pos_dir - is_Pos * sample_position;
2304 ray.origin = sample_position;
2307 ray.invDir = 1.0/ray.dir;
2308 if(!BBoxIntersect(vec3(0.0), vec3(1.0), ray, hit))
2310 // it can happen around the bounding box
2313 if(hit.tmax < g_lengthStep)
2315 // if we're too close to the bounding box
2318 // in case of directional light, we want direction not to be normalized but to go
2319 // all the way to the bbox
2320 direction *= pow(hit.tmax / length(direction), 1.0 - is_Pos);
2321 maxdist = min(hit.tmax, length(direction));
2322 maxdist = min(in_giReach, maxdist);
2323 if(maxdist < EPSILON) return 1.0;
2329 opacityEval +=
" scalar = texture3D(volume, sampled_point)[c];\n"
2330 " scalar = scalar * in_volume_scale[index][c] + in_volume_bias[index][c];\n";
2332 mapper, inputs, noOfComponents, independentComponents, useGradYAxis,
"sampled_point",
true);
2334 resStr += functionSignature +
"{\n" + declarations + rayInit +
2336 float current_dist = 0.0;
2337 float current_step = g_lengthStep;
2338 float clamped_step = 0.0;
2339 while(current_dist < maxdist)
2341 clamped_step = min(maxdist - current_dist, current_step);
2342 sampled_dist = current_dist + clamped_step * g_jitterValue;
2343 sampled_point = sample_position + sampled_dist * norm_dir;
2347 shadow *= 1.0 - opacity;
2348 current_dist += current_step;
2361 return std::string();
2370 return std::string(
"\
2371 \n bool l_firstValue;\
2372 \n vec4 l_maxValue;");
2376 return std::string(
"\
2377 \n bool l_firstValue;\
2378 \n vec4 l_minValue;");
2382 return std::string(
"\
2383 \n uvec4 l_numSamples;\
2384 \n vec4 l_avgValue;");
2388 return std::string(
"\
2389 \n vec4 l_sumValue;");
2393 return std::string(
"\
2394 \n int l_initialIndex = 0;\
2395 \n float l_normValues[NUMBER_OF_CONTOURS + 2];");
2399 return std::string();
2409 return std::string(
"\
2410 \n // We get data between 0.0 - 1.0 range\
2411 \n l_firstValue = true;\
2412 \n l_maxValue = vec4(0.0);");
2416 return std::string(
"\
2417 \n //We get data between 0.0 - 1.0 range\
2418 \n l_firstValue = true;\
2419 \n l_minValue = vec4(1.0);");
2423 return std::string(
"\
2424 \n //We get data between 0.0 - 1.0 range\
2425 \n l_avgValue = vec4(0.0);\
2426 \n // Keep track of number of samples\
2427 \n l_numSamples = uvec4(0);");
2431 return std::string(
"\
2432 \n //We get data between 0.0 - 1.0 range\
2433 \n l_sumValue = vec4(0.0);");
2437 return std::string(
"\
2438 \n#if NUMBER_OF_CONTOURS\
2439 \n l_normValues[0] = -1e20; //-infinity\
2440 \n l_normValues[NUMBER_OF_CONTOURS+1] = +1e20; //+infinity\
2441 \n for (int i = 0; i < NUMBER_OF_CONTOURS; i++)\
2443 \n l_normValues[i+1] = (in_isosurfacesValues[i] - in_scalarsRange[0].x) / \
2444 \n (in_scalarsRange[0].y - in_scalarsRange[0].x);\
2451 return std::string();
2459 const int numInputs =
static_cast<int>(inputs.size());
2460 const int comp = numInputs == 1 ?
2462 (!independentComponents ? 1 : numInputs)
2467 std::ostringstream toShader;
2468 for (
const auto& item : inputs)
2470 auto& input = item.second;
2471 if (input.Volume->GetProperty()->HasGradientOpacity())
2473 toShader <<
"vec4 " << input.GradientCacheName <<
"[" << comp <<
"];\n";
2477 return toShader.str();
2482 int noOfComponents = 1,
int independentComponents = 0)
2484 std::ostringstream shader;
2485 if (independentComponents)
2487 if (noOfComponents == 1)
2489 shader <<
"g_gradients_0[0] = computeGradient(g_dataPos, 0, in_volume[0], 0);\n";
2494 shader <<
"for (int comp = 0; comp < in_noOfComponents; comp++)\n"
2496 " g_gradients_0[comp] = computeGradient(g_dataPos, comp, in_volume[0], 0);\n"
2502 shader <<
"g_gradients_0[0] = computeGradient(g_dataPos, 0, in_volume[0], 0);\n";
2505 return shader.str();
2512 std::ostringstream toShaderStr;
2513 toShaderStr <<
" if (!g_skip)\n"
2523 for (
auto& item : inputs)
2525 auto& input = item.second;
2526 auto property = input.Volume->GetProperty();
2528 const auto idx = i + 1;
2533 " texPos = (in_cellToPoint[" << idx <<
"] * in_inverseTextureDatasetMatrix[" << idx
2534 <<
"] * in_inverseVolumeMatrix[" << idx
2536 " in_volumeMatrix[0] * in_textureDatasetMatrix[0] * "
2537 "vec4(g_dataPos.xyz, 1.0)).xyz;\n"
2538 " if ((all(lessThanEqual(texPos, vec3(1.0))) &&\n"
2539 " all(greaterThanEqual(texPos, vec3(0.0)))))\n"
2541 " vec4 scalar = texture3D(in_volume["
2544 " scalar = scalar * in_volume_scale["
2545 << i <<
"] + in_volume_bias[" << i <<
"];\n";
2548 if (property->GetIndependentComponents())
2550 toShaderStr <<
" scalar = vec4(scalar.r);\n";
2553 toShaderStr <<
" g_srcColor = vec4(0.0);\n";
2557 std::string gradientopacity_param = (
property->HasGradientOpacity())
2558 ? input.GradientOpacityTablesMap[0] + std::string(
", ")
2561 toShaderStr <<
" g_srcColor.a = computeOpacity(scalar,"
2562 << input.OpacityTablesMap[0]
2564 " if (g_srcColor.a > 0.0)\n"
2566 " g_srcColor = computeColor(texPos, scalar, g_srcColor.a, "
2567 << input.RGBTablesMap[0] <<
", " << gradientopacity_param <<
"in_volume[" << i
2568 <<
"], " << input.OpacityTablesMap[0] <<
", " << i <<
");\n";
2570 if (property->HasGradientOpacity())
2572 const auto& grad = input.GradientCacheName;
2573 toShaderStr <<
" " << grad <<
"[0] = computeGradient(texPos, 0, "
2574 <<
"in_volume[" << i <<
"], " << i
2578 <<
"[0].w >= 0.0)\n"
2580 " g_srcColor.a *= computeGradientOpacity("
2581 << grad <<
"[0], " << input.GradientOpacityTablesMap[0]
2588 const auto& grad = input.GradientCacheName;
2591 " " << grad <<
"[0] = computeGradient(texPos, 0, "
2592 <<
"in_volume[" << i <<
"], " << i
2594 " g_srcColor = texture2D("
2595 << input.TransferFunctions2DMap[0] <<
", vec2(scalar.r, "
2596 << input.GradientCacheName
2598 " if (g_srcColor.a > 0.0)\n"
2603 <<
" g_srcColor.rgb *= g_srcColor.a;\n"
2604 " g_fragColor = (1.0f - g_fragColor.a) * g_srcColor + g_fragColor;\n"
2613 toShaderStr <<
" }\n";
2615 return toShaderStr.str();
2621 int noOfComponents,
int independentComponents = 0)
2625 std::string shaderStr;
2627 shaderStr += std::string(
"\
2634 shaderStr += std::string(
"\
2635 \n // Compute IJK vertex position for current sample in the rectilinear grid\
2636 \n vec4 dataPosWorld = in_volumeMatrix[0] * in_textureDatasetMatrix[0] * vec4(g_dataPos, 1.0);\
2637 \n dataPosWorld = dataPosWorld / dataPosWorld.w;\
2638 \n dataPosWorld.w = 1.0;\
2639 \n ivec3 ijk = ivec3(0);\
2640 \n vec3 ijkTexCoord = vec3(0.0);\
2641 \n vec3 pCoords = vec3(0.0);\
2642 \n vec3 xPrev, xNext, tmp;\
2643 \n int sz = textureSize(in_coordTexs, 0);\
2644 \n vec4 dataPosWorldScaled = dataPosWorld * vec4(in_coordsScale, 1.0) +\
2645 \n vec4(in_coordsBias, 1.0);\
2646 \n for (int j = 0; j < 3; ++j)\
2648 \n xPrev = texture1D(in_coordTexs, 0.0).xyz;\
2649 \n xNext = texture1D(in_coordTexs, (in_coordTexSizes[j] - 1) / sz).xyz;\
2650 \n if (xNext[j] < xPrev[j])\
2656 \n for (int i = 0; i < int(in_coordTexSizes[j]); i++)\
2658 \n xNext = texture1D(in_coordTexs, (i + 0.5) / sz).xyz;\
2659 \n if (dataPosWorldScaled[j] >= xPrev[j] && dataPosWorldScaled[j] < xNext[j])\
2662 \n pCoords[j] = (dataPosWorldScaled[j] - xPrev[j]) / (xNext[j] - xPrev[j]);\
2665 \n else if (dataPosWorldScaled[j] == xNext[j])\
2668 \n pCoords[j] = 1.0;\
2673 \n ijkTexCoord[j] = (ijk[j] + pCoords[j]) / in_coordTexSizes[j];\
2675 \n scalar = texture3D(in_volume[0], sign(in_cellSpacing[0]) * ijkTexCoord);\
2680 shaderStr += std::string(
"\
2681 \n scalar = texture3D(in_volume[0], g_dataPos);\
2686 if (noOfComponents == 1)
2688 shaderStr += std::string(
"\
2689 \n scalar.r = scalar.r * in_volume_scale[0].r + in_volume_bias[0].r;\
2690 \n scalar = vec4(scalar.r);");
2695 shaderStr += std::string(
"\
2696 \n scalar = scalar * in_volume_scale[0] + in_volume_bias[0];");
2701 if (noOfComponents > 1)
2703 if (!independentComponents)
2705 shaderStr += std::string(
"\
2706 \n if (l_maxValue.w < scalar.w || l_firstValue)\
2708 \n l_maxValue = scalar;\
2711 \n if (l_firstValue)\
2713 \n l_firstValue = false;\
2718 shaderStr += std::string(
"\
2719 \n for (int i = 0; i < in_noOfComponents; ++i)\
2721 \n if (l_maxValue[i] < scalar[i] || l_firstValue)\
2723 \n l_maxValue[i] = scalar[i];\
2726 \n if (l_firstValue)\
2728 \n l_firstValue = false;\
2734 shaderStr += std::string(
"\
2735 \n if (l_maxValue.w < scalar.x || l_firstValue)\
2737 \n l_maxValue.w = scalar.x;\
2740 \n if (l_firstValue)\
2742 \n l_firstValue = false;\
2748 if (noOfComponents > 1)
2750 if (!independentComponents)
2752 shaderStr += std::string(
"\
2753 \n if (l_minValue.w > scalar.w || l_firstValue)\
2755 \n l_minValue = scalar;\
2758 \n if (l_firstValue)\
2760 \n l_firstValue = false;\
2765 shaderStr += std::string(
"\
2766 \n for (int i = 0; i < in_noOfComponents; ++i)\
2768 \n if (l_minValue[i] < scalar[i] || l_firstValue)\
2770 \n l_minValue[i] = scalar[i];\
2773 \n if (l_firstValue)\
2775 \n l_firstValue = false;\
2781 shaderStr += std::string(
"\
2782 \n if (l_minValue.w > scalar.x || l_firstValue)\
2784 \n l_minValue.w = scalar.x;\
2787 \n if (l_firstValue)\
2789 \n l_firstValue = false;\
2795 if (noOfComponents > 1 && independentComponents)
2797 shaderStr += std::string(
"\
2798 \n for (int i = 0; i < in_noOfComponents; ++i)\
2800 \n // Get the intensity in volume scalar range\
2801 \n float intensity = in_scalarsRange[i][0] +\
2802 \n (in_scalarsRange[i][1] -\
2803 \n in_scalarsRange[i][0]) * scalar[i];\
2804 \n if (in_averageIPRange.x <= intensity &&\
2805 \n intensity <= in_averageIPRange.y)\
2807 \n l_avgValue[i] += computeOpacity(scalar, i) * scalar[i];\
2808 \n ++l_numSamples[i];\
2814 shaderStr += std::string(
"\
2815 \n // Get the intensity in volume scalar range\
2816 \n float intensity = in_scalarsRange[0][0] +\
2817 \n (in_scalarsRange[0][1] -\
2818 \n in_scalarsRange[0][0]) * scalar.x;\
2819 \n if (in_averageIPRange.x <= intensity &&\
2820 \n intensity <= in_averageIPRange.y)\
2822 \n l_avgValue.x += computeOpacity(scalar) * scalar.x;\
2823 \n ++l_numSamples.x;\
2829 if (noOfComponents > 1 && independentComponents)
2831 shaderStr += std::string(
"\
2832 \n for (int i = 0; i < in_noOfComponents; ++i)\
2834 \n float opacity = computeOpacity(scalar, i);\
2835 \n l_sumValue[i] = l_sumValue[i] + opacity * scalar[i];\
2840 shaderStr += std::string(
"\
2841 \n float opacity = computeOpacity(scalar);\
2842 \n l_sumValue.x = l_sumValue.x + opacity * scalar.x;");
2847 shaderStr += std::string(
"\
2848 \n#if NUMBER_OF_CONTOURS\
2849 \n int maxComp = 0;");
2851 std::string compParamStr;
2852 if (noOfComponents > 1 && independentComponents)
2854 shaderStr += std::string(
"\
2855 \n for (int i = 1; i < in_noOfComponents; ++i)\
2857 \n if (in_componentWeight[i] > in_componentWeight[maxComp])\
2860 compParamStr =
", maxComp";
2862 shaderStr += std::string(
"\
2863 \n if (g_currentT == 0)\
2865 \n l_initialIndex = findIsoSurfaceIndex(scalar[maxComp], l_normValues);\
2870 \n bool shade = false;\
2871 \n l_initialIndex = clamp(l_initialIndex, 0, NUMBER_OF_CONTOURS);\
2872 \n if (scalar[maxComp] < l_normValues[l_initialIndex])\
2874 \n s = l_normValues[l_initialIndex];\
2875 \n l_initialIndex--;\
2878 \n if (scalar[maxComp] > l_normValues[l_initialIndex+1])\
2880 \n s = l_normValues[l_initialIndex+1];\
2881 \n l_initialIndex++;\
2884 \n if (shade == true)\
2886 \n vec4 vs = vec4(s);\
2887 \n g_srcColor.a = computeOpacity(vs " +
2889 \n g_srcColor = computeColor(vs, g_srcColor.a " +
2891 \n g_srcColor.rgb *= g_srcColor.a;\
2892 \n g_fragColor = (1.0f - g_fragColor.a) * g_srcColor + g_fragColor;\
2899 shaderStr += std::string(
"\
2900 \n // test if the intersection is inside the volume bounds\
2901 \n if (any(greaterThan(g_dataPos, vec3(1.0))) || any(lessThan(g_dataPos, vec3(0.0))))\
2905 \n float opacity = computeOpacity(scalar);\
2906 \n g_fragColor = computeColor(scalar, opacity);\
2907 \n g_fragColor.rgb *= opacity;\
2908 \n g_exit = true;");
2912 if (noOfComponents > 1 && independentComponents)
2914 shaderStr += std::string(
"\
2915 \n vec4 color[4]; vec4 tmp = vec4(0.0);\
2916 \n float totalAlpha = 0.0;\
2917 \n for (int i = 0; i < in_noOfComponents; ++i)\
2923 shaderStr += std::string(
"\
2924 \n // Data fetching from the red channel of volume texture\
2925 \n float opacity = computeOpacity(scalar, i);\
2926 \n if (opacity > 0.0)\
2928 \n g_srcColor.a = opacity;\
2934 shaderStr += std::string(
"\
2935 \n // Data fetching from the red channel of volume texture\
2936 \n color[i][3] = computeOpacity(scalar, i);\
2937 \n color[i] = computeColor(scalar, color[i][3], i);\
2938 \n totalAlpha += color[i][3] * in_componentWeight[i];\
2940 \n if (totalAlpha > 0.0)\
2942 \n for (int i = 0; i < in_noOfComponents; ++i)\
2944 \n // Only let visible components contribute to the final color\
2945 \n if (in_componentWeight[i] <= 0) continue;\
2947 \n tmp.x += color[i].x * color[i].w * in_componentWeight[i];\
2948 \n tmp.y += color[i].y * color[i].w * in_componentWeight[i];\
2949 \n tmp.z += color[i].z * color[i].w * in_componentWeight[i];\
2950 \n tmp.w += ((color[i].w * color[i].w)/totalAlpha);\
2953 \n g_fragColor = (1.0f - g_fragColor.a) * tmp + g_fragColor;");
2959 shaderStr += std::string(
"\
2960 \n g_srcColor = vec4(0.0);\
2961 \n g_srcColor.a = computeOpacity(scalar);");
2967 shaderStr += std::string(
"\
2968 \n g_srcColor = vec4(0.0);\
2969 \n g_srcColor.a = computeOpacity(scalar);\
2970 \n if (g_srcColor.a > 0.0)\
2972 \n g_srcColor = computeColor(scalar, g_srcColor.a);");
2975 shaderStr += std::string(
"\
2976 \n // Opacity calculation using compositing:\
2977 \n // Here we use front to back compositing scheme whereby\
2978 \n // the current sample value is multiplied to the\
2979 \n // currently accumulated alpha and then this product\
2980 \n // is subtracted from the sample value to get the\
2981 \n // alpha from the previous steps. Next, this alpha is\
2982 \n // multiplied with the current sample colour\
2983 \n // and accumulated to the composited colour. The alpha\
2984 \n // value from the previous steps is then accumulated\
2985 \n // to the composited colour alpha.\
2986 \n g_srcColor.rgb *= g_srcColor.a;\
2987 \n g_fragColor = (1.0f - g_fragColor.a) * g_srcColor + g_fragColor;");
2991 shaderStr += std::string(
"\
2998 shaderStr += std::string();
3001 shaderStr += std::string(
"\
3010 return std::string(
"\
3011 \n // Special coloring mode which renders the Prop Id in fragments that\
3012 \n // have accumulated certain level of opacity. Used during the selection\
3013 \n // pass vtkHardwareSelection::ACTOR_PASS.\
3014 \n if (g_fragColor.a > 3.0/ 255.0)\
3016 \n gl_FragData[0] = vec4(in_propId, 1.0);\
3020 \n gl_FragData[0] = vec4(0.0);\
3029 return std::string(
"\
3030 \n // Special coloring mode which renders the voxel index in fragments that\
3031 \n // have accumulated certain level of opacity. Used during the selection\
3032 \n // pass vtkHardwareSelection::ID_LOW24.\
3033 \n if (g_fragColor.a > 3.0/ 255.0)\
3035 \n uvec3 volumeDim = uvec3(in_textureExtentsMax - in_textureExtentsMin);\
3036 \n uvec3 voxelCoords = uvec3(volumeDim * g_dataPos);\
3037 \n // vtkHardwareSelector assumes index 0 to be empty space, so add uint(1).\
3038 \n uint idx = volumeDim.x * volumeDim.y * voxelCoords.z +\
3039 \n volumeDim.x * voxelCoords.y + voxelCoords.x + uint(1);\
3040 \n gl_FragData[0] = vec4(float(idx % uint(256)) / 255.0,\
3041 \n float((idx / uint(256)) % uint(256)) / 255.0,\
3042 \n float((idx / uint(65536)) % uint(256)) / 255.0, 1.0);\
3046 \n gl_FragData[0] = vec4(0.0);\
3055 return std::string(
"\
3056 \n // Special coloring mode which renders the voxel index in fragments that\
3057 \n // have accumulated certain level of opacity. Used during the selection\
3058 \n // pass vtkHardwareSelection::ID_MID24.\
3059 \n if (g_fragColor.a > 3.0/ 255.0)\
3061 \n uvec3 volumeDim = uvec3(in_textureExtentsMax - in_textureExtentsMin);\
3062 \n uvec3 voxelCoords = uvec3(volumeDim * g_dataPos);\
3063 \n // vtkHardwareSelector assumes index 0 to be empty space, so add uint(1).\
3064 \n uint idx = volumeDim.x * volumeDim.y * voxelCoords.z +\
3065 \n volumeDim.x * voxelCoords.y + voxelCoords.x + uint(1);\
3066 \n idx = ((idx & 0xff000000) >> 24);\
3067 \n gl_FragData[0] = vec4(float(idx % uint(256)) / 255.0,\
3068 \n float((idx / uint(256)) % uint(256)) / 255.0,\
3069 \n float(idx / uint(65536)) / 255.0, 1.0);\
3073 \n gl_FragData[0] = vec4(0.0);\
3080 vtkVolume* vtkNotUsed(vol),
int noOfComponents,
int independentComponents = 0)
3088 return std::string();
3092 if (noOfComponents > 1 && independentComponents)
3094 return std::string(
"\
3095 \n g_srcColor = vec4(0);\
3096 \n for (int i = 0; i < in_noOfComponents; ++i)\
3098 \n vec4 tmp = computeColor(l_maxValue, computeOpacity(l_maxValue, i), i);\
3099 \n g_srcColor[0] += tmp[0] * tmp[3] * in_componentWeight[i];\
3100 \n g_srcColor[1] += tmp[1] * tmp[3] * in_componentWeight[i];\
3101 \n g_srcColor[2] += tmp[2] * tmp[3] * in_componentWeight[i];\
3102 \n g_srcColor[3] += tmp[3] * in_componentWeight[i];\
3104 \n g_fragColor = g_srcColor;");
3108 return std::string(
"\
3109 \n g_srcColor = computeColor(l_maxValue,\
3110 \n computeOpacity(l_maxValue));\
3111 \n g_fragColor.rgb = g_srcColor.rgb * g_srcColor.a;\
3112 \n g_fragColor.a = g_srcColor.a;");
3117 if (noOfComponents > 1 && independentComponents)
3119 return std::string(
"\
3120 \n g_srcColor = vec4(0);\
3121 \n for (int i = 0; i < in_noOfComponents; ++i)\
3123 \n vec4 tmp = computeColor(l_minValue, computeOpacity(l_minValue, i), i);\
3124 \n g_srcColor[0] += tmp[0] * tmp[3] * in_componentWeight[i];\
3125 \n g_srcColor[1] += tmp[1] * tmp[3] * in_componentWeight[i];\
3126 \n g_srcColor[2] += tmp[2] * tmp[3] * in_componentWeight[i];\
3127 \n g_srcColor[2] += tmp[3] * tmp[3] * in_componentWeight[i];\
3129 \n g_fragColor = g_srcColor;");
3133 return std::string(
"\
3134 \n g_srcColor = computeColor(l_minValue,\
3135 \n computeOpacity(l_minValue));\
3136 \n g_fragColor.rgb = g_srcColor.rgb * g_srcColor.a;\
3137 \n g_fragColor.a = g_srcColor.a;");
3142 if (noOfComponents > 1 && independentComponents)
3144 return std::string(
"\
3145 \n for (int i = 0; i < in_noOfComponents; ++i)\
3147 \n if (l_numSamples[i] == uint(0))\
3151 \n l_avgValue[i] = l_avgValue[i] * in_componentWeight[i] /\
3152 \n l_numSamples[i];\
3155 \n l_avgValue[0] += l_avgValue[i];\
3158 \n l_avgValue[0] = clamp(l_avgValue[0], 0.0, 1.0);\
3159 \n g_fragColor = vec4(vec3(l_avgValue[0]), 1.0);");
3163 return std::string(
"\
3164 \n if (l_numSamples.x == uint(0))\
3170 \n l_avgValue.x /= l_numSamples.x;\
3171 \n l_avgValue.x = clamp(l_avgValue.x, 0.0, 1.0);\
3172 \n g_fragColor = vec4(vec3(l_avgValue.x), 1.0);\
3178 if (noOfComponents > 1 && independentComponents)
3181 return std::string(
"\
3182 \n l_sumValue.x *= in_componentWeight.x;\
3183 \n for (int i = 1; i < in_noOfComponents; ++i)\
3185 \n l_sumValue.x += l_sumValue[i] * in_componentWeight[i];\
3187 \n l_sumValue.x = clamp(l_sumValue.x, 0.0, 1.0);\
3188 \n g_fragColor = vec4(vec3(l_sumValue.x), 1.0);");
3192 return std::string(
"\
3193 \n l_sumValue.x = clamp(l_sumValue.x, 0.0, 1.0);\
3194 \n g_fragColor = vec4(vec3(l_sumValue.x), 1.0);");
3199 return std::string();
3207 return std::string();
3214 return std::string(
"\
3215 \n const float g_opacityThreshold = 1.0 - 1.0 / 255.0;");
3222 return std::string(
"\
3223 \n uniform vec3 in_propId;");
3230 std::string shaderStr;
3231 shaderStr += std::string(
"\
3232 \n // Flag to indicate if the raymarch loop should terminate \
3233 \n bool stop = false;\
3235 \n g_terminatePointMax = 0.0;\
3237 \n vec4 l_depthValue = texture2D(in_depthSampler, fragTexCoord);\
3239 \n if(gl_FragCoord.z >= l_depthValue.x)\
3244 \n // color buffer or max scalar buffer have a reduced size.\
3245 \n fragTexCoord = (gl_FragCoord.xy - in_windowLowerLeftCorner) *\
3246 \n in_inverseOriginalWindowSize;\
3254 if (sliceFunc->
IsA(
"vtkPlane"))
3256 shaderStr += std::string(
"\
3258 \n // Intersection with plane\
3259 \n float t = intersectRayPlane(ip_vertexPos, rayDir);\
3260 \n vec4 intersection = vec4(ip_vertexPos + t * rayDir, 1.0);\
3261 \n g_intersection = (in_inverseTextureDatasetMatrix[0] * intersection).xyz;\
3262 \n vec4 intersDC = in_projectionMatrix * in_modelViewMatrix * in_volumeMatrix[0] * intersection;\
3263 \n intersDC.xyz /= intersDC.w;\
3264 \n vec4 intersWin = NDCToWindow(intersDC.x, intersDC.y, intersDC.z);\
3265 \n if(intersWin.z >= l_depthValue.x)\
3273 vtkErrorWithObjectMacro(
3274 sliceFunc,
"Implicit function type is not supported by this mapper.");
3279 shaderStr += std::string(
"\
3280 \n // Compute max number of iterations it will take before we hit\
3281 \n // the termination point\
3283 \n // Abscissa of the point on the depth buffer along the ray.\
3284 \n // point in texture coordinates\
3285 \n vec4 rayTermination = WindowToNDC(gl_FragCoord.x, gl_FragCoord.y, l_depthValue.x);\
3287 \n // From normalized device coordinates to eye coordinates.\
3288 \n // in_projectionMatrix is inversed because of way VT\
3289 \n // From eye coordinates to texture coordinates\
3290 \n rayTermination = ip_inverseTextureDataAdjusted *\
3291 \n in_inverseVolumeMatrix[0] *\
3292 \n in_inverseModelViewMatrix *\
3293 \n in_inverseProjectionMatrix *\
3295 \n g_rayTermination = rayTermination.xyz / rayTermination.w;\
3297 \n // Setup the current segment:\
3298 \n g_dataPos = g_rayOrigin;\
3299 \n g_terminatePos = g_rayTermination;\
3301 \n g_terminatePointMax = length(g_terminatePos.xyz - g_dataPos.xyz) /\
3302 \n length(g_dirStep);\
3303 \n g_currentT = 0.0;");
3312 return std::string(
"\
3313 \n if(any(greaterThan(max(g_dirStep, vec3(0.0))*(g_dataPos - in_texMax[0]),vec3(0.0))) ||\
3314 \n any(greaterThan(min(g_dirStep, vec3(0.0))*(g_dataPos - in_texMin[0]),vec3(0.0))))\
3319 \n // Early ray termination\
3320 \n // if the currently composited colour alpha is already fully saturated\
3321 \n // we terminated the loop or if we have hit an obstacle in the\
3322 \n // direction of they ray (using depth buffer) we terminate as well.\
3323 \n if((g_fragColor.a > g_opacityThreshold) || \
3324 \n g_currentT >= g_terminatePointMax)\
3335 return std::string();
3342 return std::string();
3351 return std::string();
3354 return std::string(
"\
3355 \nuniform float in_croppingPlanes[6];\
3356 \nuniform int in_croppingFlags [32];\
3357 \nfloat croppingPlanesTexture[6];\
3359 \n// X: axis = 0, Y: axis = 1, Z: axis = 2\
3360 \n// cp Cropping plane bounds (minX, maxX, minY, maxY, minZ, maxZ)\
3361 \nint computeRegionCoord(float cp[6], vec3 pos, int axis)\
3363 \n int cpmin = axis * 2;\
3364 \n int cpmax = cpmin + 1;\
3366 \n if (pos[axis] < cp[cpmin])\
3370 \n else if (pos[axis] >= cp[cpmin] &&\
3371 \n pos[axis] < cp[cpmax])\
3375 \n else if (pos[axis] >= cp[cpmax])\
3382 \nint computeRegion(float cp[6], vec3 pos)\
3384 \n return (computeRegionCoord(cp, pos, 0) +\
3385 \n (computeRegionCoord(cp, pos, 1) - 1) * 3 +\
3386 \n (computeRegionCoord(cp, pos, 2) - 1) * 9);\
3396 return std::string();
3399 return std::string(
"\
3400 \n // Convert cropping region to texture space\
3401 \n mat4 datasetToTextureMat = in_inverseTextureDatasetMatrix[0];\
3403 \n vec4 tempCrop = vec4(in_croppingPlanes[0], 0.0, 0.0, 1.0);\
3404 \n tempCrop = datasetToTextureMat * tempCrop;\
3405 \n if (tempCrop[3] != 0.0)\
3407 \n tempCrop[0] /= tempCrop[3];\
3409 \n croppingPlanesTexture[0] = tempCrop[0];\
3411 \n tempCrop = vec4(in_croppingPlanes[1], 0.0, 0.0, 1.0);\
3412 \n tempCrop = datasetToTextureMat * tempCrop;\
3413 \n if (tempCrop[3] != 0.0)\
3415 \n tempCrop[0] /= tempCrop[3];\
3417 \n croppingPlanesTexture[1] = tempCrop[0];\
3419 \n tempCrop = vec4(0.0, in_croppingPlanes[2], 0.0, 1.0);\
3420 \n tempCrop = datasetToTextureMat * tempCrop;\
3421 \n if (tempCrop[3] != 0.0)\
3423 \n tempCrop[1] /= tempCrop[3];\
3425 \n croppingPlanesTexture[2] = tempCrop[1];\
3427 \n tempCrop = vec4(0.0, in_croppingPlanes[3], 0.0, 1.0);\
3428 \n tempCrop = datasetToTextureMat * tempCrop;\
3429 \n if (tempCrop[3] != 0.0)\
3431 \n tempCrop[1] /= tempCrop[3];\
3433 \n croppingPlanesTexture[3] = tempCrop[1];\
3435 \n tempCrop = vec4(0.0, 0.0, in_croppingPlanes[4], 1.0);\
3436 \n tempCrop = datasetToTextureMat * tempCrop;\
3437 \n if (tempCrop[3] != 0.0)\
3439 \n tempCrop[2] /= tempCrop[3];\
3441 \n croppingPlanesTexture[4] = tempCrop[2];\
3443 \n tempCrop = vec4(0.0, 0.0, in_croppingPlanes[5], 1.0);\
3444 \n tempCrop = datasetToTextureMat * tempCrop;\
3445 \n if (tempCrop[3] != 0.0)\
3447 \n tempCrop[2] /= tempCrop[3];\
3449 \n croppingPlanesTexture[5] = tempCrop[2];");
3458 return std::string();
3461 return std::string(
"\
3462 \n // Determine region\
3463 \n int regionNo = computeRegion(croppingPlanesTexture, g_dataPos);\
3465 \n // Do & operation with cropping flags\
3466 \n // Pass the flag that its Ok to sample or not to sample\
3467 \n if (in_croppingFlags[regionNo] == 0)\
3469 \n // Skip this voxel\
3478 return std::string();
3485 return std::string();
3494 return std::string();
3497 return std::string(
"\
3498 \n /// We support only 8 clipping planes for now\
3499 \n /// The first value is the size of the data array for clipping\
3500 \n /// planes (origin, normal)\
3501 \n uniform float in_clippingPlanes[49];\
3502 \n uniform float in_clippedVoxelIntensity;\
3504 \n int clip_numPlanes;\
3505 \n vec3 clip_rayDirObj;\
3506 \n mat4 clip_texToObjMat;\
3507 \n mat4 clip_objToTexMat;\
3509 \n// Tighten the sample range as needed to account for clip planes. \
3510 \n// Arguments are in texture coordinates. \
3511 \n// Returns true if the range is at all valid after clipping. If not, \
3512 \n// the fragment should be discarded. \
3513 \nbool AdjustSampleRangeForClipping(inout vec3 startPosTex, inout vec3 stopPosTex) \
3515 \n vec4 startPosObj = vec4(0.0);\
3517 \n startPosObj = clip_texToObjMat * vec4(startPosTex - g_rayJitter, 1.0);\
3518 \n startPosObj = startPosObj / startPosObj.w;\
3519 \n startPosObj.w = 1.0;\
3522 \n vec4 stopPosObj = vec4(0.0);\
3524 \n stopPosObj = clip_texToObjMat * vec4(stopPosTex, 1.0);\
3525 \n stopPosObj = stopPosObj / stopPosObj.w;\
3526 \n stopPosObj.w = 1.0;\
3529 \n for (int i = 0; i < clip_numPlanes; i = i + 6)\
3531 \n vec3 planeOrigin = vec3(in_clippingPlanes[i + 1],\
3532 \n in_clippingPlanes[i + 2],\
3533 \n in_clippingPlanes[i + 3]);\
3534 \n vec3 planeNormal = normalize(vec3(in_clippingPlanes[i + 4],\
3535 \n in_clippingPlanes[i + 5],\
3536 \n in_clippingPlanes[i + 6]));\
3538 \n // Abort if the entire segment is clipped:\
3539 \n // (We can do this before adjusting the term point, since it'll \
3540 \n // only move further into the clipped area)\
3541 \n float startDistance = dot(planeNormal, planeOrigin - startPosObj.xyz);\
3542 \n float stopDistance = dot(planeNormal, planeOrigin - stopPosObj.xyz);\
3543 \n bool startClipped = startDistance > 0.0;\
3544 \n bool stopClipped = stopDistance > 0.0;\
3545 \n if (startClipped && stopClipped)\
3550 \n float rayDotNormal = dot(clip_rayDirObj, planeNormal);\
3551 \n bool frontFace = rayDotNormal > 0.0;\
3553 \n // Move the start position further from the eye if needed:\
3554 \n if (frontFace && // Observing from the clipped side (plane's front face)\
3555 \n startDistance > 0.0) // Ray-entry lies on the clipped side.\
3557 \n // Scale the point-plane distance to the ray direction and update the\
3559 \n float rayScaledDist = startDistance / rayDotNormal;\
3560 \n startPosObj = vec4(startPosObj.xyz + rayScaledDist * clip_rayDirObj, 1.0);\
3561 \n vec4 newStartPosTex = clip_objToTexMat * vec4(startPosObj.xyz, 1.0);\
3562 \n newStartPosTex /= newStartPosTex.w;\
3563 \n startPosTex = newStartPosTex.xyz;\
3564 \n startPosTex += g_rayJitter;\
3567 \n // Move the end position closer to the eye if needed:\
3568 \n if (!frontFace && // Observing from the unclipped side (plane's back face)\
3569 \n stopDistance > 0.0) // Ray-entry lies on the unclipped side.\
3571 \n // Scale the point-plane distance to the ray direction and update the\
3572 \n // termination point.\
3573 \n float rayScaledDist = stopDistance / rayDotNormal;\
3574 \n stopPosObj = vec4(stopPosObj.xyz + rayScaledDist * clip_rayDirObj, 1.0);\
3575 \n vec4 newStopPosTex = clip_objToTexMat * vec4(stopPosObj.xyz, 1.0);\
3576 \n newStopPosTex /= newStopPosTex.w;\
3577 \n stopPosTex = newStopPosTex.xyz;\
3581 \n if (any(greaterThan(startPosTex, in_texMax[0])) ||\
3582 \n any(lessThan(startPosTex, in_texMin[0])))\
3598 return std::string();
3601 std::string shaderStr;
3604 shaderStr = std::string(
"\
3605 \n vec4 tempClip = in_volumeMatrix[0] * vec4(rayDir, 0.0);\
3606 \n if (tempClip.w != 0.0)\
3608 \n tempClip = tempClip/tempClip.w;\
3609 \n tempClip.w = 1.0;\
3611 \n clip_rayDirObj = normalize(tempClip.xyz);");
3615 shaderStr = std::string(
"\
3616 clip_rayDirObj = normalize(in_projectionDirection);");
3619 shaderStr += std::string(
"\
3620 \n clip_numPlanes = int(in_clippingPlanes[0]);\
3621 \n clip_texToObjMat = in_volumeMatrix[0] * in_textureDatasetMatrix[0];\
3622 \n clip_objToTexMat = in_inverseTextureDatasetMatrix[0] * in_inverseVolumeMatrix[0];\
3624 \n // Adjust for clipping.\
3625 \n if (!AdjustSampleRangeForClipping(g_rayOrigin, g_rayTermination))\
3626 \n { // entire ray is clipped.\
3630 \n // Update the segment post-clip:\
3631 \n g_dataPos = g_rayOrigin;\
3632 \n g_terminatePos = g_rayTermination;\
3633 \n g_terminatePointMax = length(g_terminatePos.xyz - g_dataPos.xyz) /\
3634 \n length(g_dirStep);\
3644 return std::string();
3651 return std::string();
3659 if (!mask || !maskInput)
3661 return std::string();
3665 return std::string(
"uniform sampler3D in_mask;");
3676 return std::string();
3680 return std::string(
"\
3681 \nvec4 maskValue = texture3D(in_mask, g_dataPos);\
3682 \nif(maskValue.r <= 0.0)\
3696 return std::string();
3700 return std::string(
"\
3701 \nuniform float in_maskBlendFactor;\
3702 \nuniform sampler2D in_labelMapTransfer;\
3703 \nuniform float in_mask_scale;\
3704 \nuniform float in_mask_bias;\
3705 \nuniform int in_labelMapNumLabels;\
3717 return std::string();
3721 std::string shaderStr = std::string(
"\
3722 \nvec4 scalar = texture3D(in_volume[0], g_dataPos);");
3725 if (noOfComponents == 1)
3727 shaderStr += std::string(
"\
3728 \n scalar.r = scalar.r * in_volume_scale[0].r + in_volume_bias[0].r;\
3729 \n scalar = vec4(scalar.r);");
3734 shaderStr += std::string(
"\
3735 \n scalar = scalar * in_volume_scale[0] + in_volume_bias[0];");
3741 return shaderStr + std::string(
"\
3742 \nif (in_maskBlendFactor == 0.0)\
3744 \n g_srcColor.a = computeOpacity(scalar);\
3745 \n if (g_srcColor.a > 0)\
3747 \n g_srcColor = computeColor(scalar, g_srcColor.a);\
3752 \n float opacity = computeOpacity(scalar);\
3753 \n // Get the mask value at this same location\
3754 \n vec4 maskValue = texture3D(in_mask, g_dataPos);\
3755 \n maskValue.r = maskValue.r * in_mask_scale + in_mask_bias;\
3756 \n // Quantize the height of the labelmap texture over number of labels\
3757 \n if (in_labelMapNumLabels > 0)\
3760 \n floor(maskValue.r * in_labelMapNumLabels) /\
3761 \n in_labelMapNumLabels;\
3765 \n maskValue.r = 0.0;\
3767 \n if(maskValue.r == 0.0)\
3769 \n g_srcColor.a = opacity;\
3770 \n if (g_srcColor.a > 0)\
3772 \n g_srcColor = computeColor(scalar, g_srcColor.a);\
3777 \n g_srcColor = texture2D(in_labelMapTransfer,\
3778 \n vec2(scalar.r, maskValue.r));\
3779 \n if (g_srcColor.a > 0)\
3781 \n g_srcColor = computeLighting(g_srcColor, 0, maskValue.r);\
3783 \n if (in_maskBlendFactor < 1.0)\
3785 \n vec4 color = opacity > 0 ? computeColor(scalar, opacity) : vec4(0);\
3786 \n g_srcColor = (1.0 - in_maskBlendFactor) * color +\
3787 \n in_maskBlendFactor * g_srcColor;\
3798 return std::string(
"uniform bool in_clampDepthToBackface;\n"
3799 "vec3 l_opaqueFragPos;\n"
3800 "bool l_updateDepth;\n");
3807 return std::string(
"\
3808 \n l_opaqueFragPos = vec3(-1.0);\
3809 \n if(in_clampDepthToBackface)\
3811 \n l_opaqueFragPos = g_dataPos;\
3813 \n l_updateDepth = true;");
3820 return std::string(
"\
3821 \n if(!g_skip && g_srcColor.a > 0.0 && l_updateDepth)\
3823 \n l_opaqueFragPos = g_dataPos;\
3824 \n l_updateDepth = false;\
3832 return std::string(
"\
3833 \n if (l_opaqueFragPos == vec3(-1.0))\
3835 \n gl_FragData[1] = vec4(1.0);\
3839 \n vec4 depthValue = in_projectionMatrix * in_modelViewMatrix *\
3840 \n in_volumeMatrix[0] * in_textureDatasetMatrix[0] *\
3841 \n vec4(l_opaqueFragPos, 1.0);\
3842 \n depthValue /= depthValue.w;\
3843 \n gl_FragData[1] = vec4(vec3(0.5 * (gl_DepthRange.far -\
3844 \n gl_DepthRange.near) * depthValue.z + 0.5 *\
3845 \n (gl_DepthRange.far + gl_DepthRange.near)), 1.0);\
3853 return std::string(
"\
3854 \n vec3 l_isoPos = g_dataPos;");
3861 return std::string(
"\
3862 \n if(!g_skip && g_srcColor.a > 0.0)\
3864 \n l_isoPos = g_dataPos;\
3865 \n g_exit = true; g_skip = true;\
3873 return std::string(
"\
3874 \n vec4 depthValue = in_projectionMatrix * in_modelViewMatrix *\
3875 \n in_volumeMatrix[0] * in_textureDatasetMatrix[0] *\
3876 \n vec4(l_isoPos, 1.0);\
3877 \n gl_FragData[0] = vec4(l_isoPos, 1.0);\
3878 \n gl_FragData[1] = vec4(vec3((depthValue.z/depthValue.w) * 0.5 + 0.5),\
3886 return std::string(
"\
3887 \n initializeRayCast();\
3888 \n castRay(-1.0, -1.0);\
3889 \n finalizeRayCast();");
3894 const std::vector<std::string>& varNames,
size_t usedNames)
3896 std::string shader =
"\n";
3897 for (
size_t i = 0; i < usedNames; i++)
3899 shader +=
"uniform sampler2D " + varNames[i] +
";\n";
3906 const std::vector<std::string>& varNames,
size_t usedNames)
3908 std::string shader =
"\n";
3909 for (
size_t i = 0; i < usedNames; i++)
3911 std::stringstream ss;
3913 shader +=
" gl_FragData[" + ss.str() +
"] = texture2D(" + varNames[i] +
", texCoord);\n";
3915 shader +=
" return;\n";
3918VTK_ABI_NAMESPACE_END
virtual vtkPlaneCollection * GetClippingPlanes()
Get/Set the vtkPlaneCollection which specifies the clipping planes.
virtual vtkTypeBool GetParallelProjection()
Set/Get the value of the ParallelProjection instance variable.
static vtkDataSet * SafeDownCast(vtkObjectBase *o)
vtkUnsignedCharArray * GetCellGhostArray()
Get the array that defines the ghost type of each cell.
vtkUnsignedCharArray * GetPointGhostArray()
Gets the array that defines the ghost type of each point.
virtual vtkTypeBool GetUseDepthPass()
If UseDepthPass is on, the mapper will use two passes.
virtual vtkTypeBool GetUseJittering()
If UseJittering is on, each ray traversal direction will be perturbed slightly using a noise-texture ...
static vtkGPUVolumeRayCastMapper * SafeDownCast(vtkObjectBase *o)
int GetInputCount()
Number of currently active ports.
virtual float GetVolumetricScatteringBlending()
This parameter controls the blending between surfacic approximation and volumetric multi-scattering.
topologically and geometrically regular array of data
abstract interface for implicit functions
virtual vtkTypeBool IsA(const char *type)
Return 1 if this class is the same type of (or a subclass of) the named class.
OpenGL implementation of volume rendering through ray-casting.
static vtkOpenGLGPUVolumeRayCastMapper * SafeDownCast(vtkObjectBase *o)
std::map< int, vtkVolumeInputHelper > VolumeInputMap
virtual int GetCurrentPass()
static vtkRectilinearGrid * SafeDownCast(vtkObjectBase *o)
abstract specification for renderers
vtkCamera * GetActiveCamera()
Get the current camera.
Hold a reference to a vtkObjectBase instance.
Abstract class for a volume mapper.
virtual bool GetComputeNormalFromOpacity()
If enabled, the volume(s) whose shading is enabled will use the gradient of opacity instead of the sc...
virtual vtkDataSet * GetInput()
Set/Get the input data.
virtual vtkTypeBool GetCropping()
Turn On/Off orthogonal cropping.
@ AVERAGE_INTENSITY_BLEND
@ MAXIMUM_INTENSITY_BLEND
@ MINIMUM_INTENSITY_BLEND
virtual int GetBlendMode()
Set/Get the blend mode.
represents the common properties for rendering a volume.
virtual int GetDisableGradientOpacity(int index)
Enable/Disable the gradient opacity function for the given component.
virtual float GetScatteringAnisotropy()
Get/Set the volume's scattering anisotropy.
bool HasLabelGradientOpacity()
virtual int GetUseClippedVoxelIntensity()
Set/Get whether to use a fixed intensity value for voxels in the clipped space for gradient calculati...
bool HasGradientOpacity(int index=0)
Check whether or not we have the gradient opacity.
int GetShade(int index)
Set/Get the shading of a volume.
virtual int GetTransferFunctionMode()
Color-opacity transfer function mode.
Creates and manages the volume texture rendered by vtkOpenGLGPUVolumeRayCastMapper.
represents a volume (data & properties) in a rendered scene
virtual vtkVolumeProperty * GetProperty()
Set/Get the volume property.
std::string ClippingDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string ComputeGradientOpacity1DDecl(vtkVolume *vol, int noOfComponents, int independentComponents, std::map< int, std::string > gradientTableMap)
std::string WorkerImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string TerminationExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ClippingDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string TerminationImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeDensityGradientDeclaration(vtkOpenGLGPUVolumeRayCastMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int noOfComponents, int independentComponents, int useGradYAxis)
std::string BinaryMaskDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int vtkNotUsed(maskType))
std::string PickingIdLow24PassExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string CroppingDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string ComputeLightingDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vol, int noOfComponents, int independentComponents, int totalNumberOfLights, int numberPositionalLights, bool defaultLighting)
std::string PhaseFunctionDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vol)
std::string ComputeColorDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > colorTableMap)
std::string CroppingImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string ShadingExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents=0)
std::string BaseExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeOpacityMultiDeclaration(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string BaseDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol), bool multipleInputs)
std::string ComputeTextureCoordinates(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string DepthPassInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string TerminationInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vol)
std::string ComputeMatricesInit(vtkOpenGLGPUVolumeRayCastMapper *vtkNotUsed(mapper), int numberPositionalLights)
std::string RenderToImageInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeClipPositionImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string RenderToImageImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeOpacityDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > opacityTableMap)
std::string PreComputeGradientsImpl(vtkRenderer *vtkNotUsed(ren), vtkVolume *vtkNotUsed(vol), int noOfComponents=1, int independentComponents=0)
std::string ClippingExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeGradientDeclaration(vtkOpenGLGPUVolumeRayCastMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string PickingIdHigh24PassExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string TerminationDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string PickingActorPassExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string RenderToImageDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string BaseDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int totalNumberOfLights, int numberPositionalLights, bool defaultLighting, int noOfComponents, int independentComponents)
std::string BaseImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string RenderToImageExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ShadingDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ShadingSingleInput(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int maskType, int noOfComponents, int independentComponents=0)
std::string ShadingMultipleInputs(vtkVolumeMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string CompositeMaskDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int maskType)
std::string ComputeColorUniforms(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int noOfComponents, vtkVolumeProperty *volProp)
std::string ComputeRayDirectionDeclaration(vtkRenderer *ren, vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int vtkNotUsed(noOfComponents))
std::string ImageSampleDeclarationFrag(const std::vector< std::string > &varNames, size_t usedNames)
std::string BaseInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, bool defaultLighting)
std::string DepthPassImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string GradientCacheDec(vtkRenderer *vtkNotUsed(ren), vtkVolume *vtkNotUsed(vol), vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int independentComponents=0)
std::string Transfer2DDeclaration(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string ClippingImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string CroppingDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeRGBA2DWithGradientDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > opacityTableMap, int useGradient)
std::string ComputeColorMultiDeclaration(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, bool useGradientTF)
std::string ImageSampleImplementationFrag(const std::vector< std::string > &varNames, size_t usedNames)
std::string CroppingInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string CompositeMaskImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int maskType, int noOfComponents)
std::string ComputeColor2DYAxisDeclaration(int noOfComponents, int vtkNotUsed(independentComponents), std::map< int, std::string > colorTableMap)
std::string CroppingExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ClippingInit(vtkRenderer *ren, vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string ComputeLightingMultiDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vol, int noOfComponents, int independentComponents, int vtkNotUsed(totalNumberOfLights), bool defaultLighting)
std::string TerminationDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ShadingDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string PickingActorPassDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ShadingInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string BinaryMaskImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int maskType)
std::string DepthPassExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeOpacity2DDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > opacityTableMap, int useGradient)
std::string ComputeOpacityEvaluationCall(vtkOpenGLGPUVolumeRayCastMapper *vtkNotUsed(mapper), vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int noOfComponents, int independentComponents, int useGradYAxis, std::string position, bool requestColor=false)
std::string ComputeColor2DDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > colorTableMap, int useGradient)
std::string ComputeGradientOpacityMulti1DDecl(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string ComputeVolumetricShadowDec(vtkOpenGLGPUVolumeRayCastMapper *mapper, vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int useGradYAxis)