
pythonimmediate — Library to run Python code∗

user202729

Released 2023/01/09

Abstract
Library to run Python code.

1 Motivation
Just like PerlTEX or PyLuaTEX (and unlike PythonTEX or lt3luabridge), this only requires
a single run, and variables are persistent throughout the run.

Unlike PerlTEX or PyLuaTEX, there’s no restriction on compiler or script required to
run the code.

There’s also debugging functionalities – TEX errors results in Python traceback,
and Python error results in TEX traceback. Errors in code executed with the pycode
environment gives the correct traceback point to the Python line of code in the TEX file.

For advanced users, this package allows the user to manipulate the TEX state directly
from within Python, so you don’t need to write a single line of TEX code.

2 Installation
In addition to the LATEX package, you need the Python pythonimmediate-tex package, in-
stallation instruction can be found at https://pypi.org/project/pythonimmediate-tex/.

Note that not all TEX package versions are compatible with all Python package
versions. This TEX package is compatible with Python package version 0.1.2.

Remember to enable unrestricted1 shell-escape. (there’s a guide on TEX.SE if nec-
essary: https://tex.stackexchange.com/q/598818/250119)

2.1 Installation on Overleaf
At the point of writing, this package can be used on Overleaf.

Nevertheless, you cannot use pip to install Python packages on Overleaf directly,
instead it’s possible to download .zip file, include it in your Overleaf project, and specify
where the package can be found to Python using PYTHONPATH environment variable.

Instruction:

• Download the following files and place it in the root folder of Overleaf:
∗This file describes version 0.1.0, last revised 2023/01/09.
1There’s little point in supporting restricted mode, since it’s possible to execute arbitrary shell com-

mands in Python anyway. If it’s needed to execute untrusted TEX code, separate sandboxing should be
used.

1

https://pypi.org/project/pythonimmediate-tex/
https://tex.stackexchange.com/q/598818/250119

– saveenv.sty
– precattl.sty
– pythonimmediate.sty
– pythonimmediate-tex-0.1.2.zip

The 0.1.2 part should be replaced with the desired version of the Python package.
The .sty files can be downloaded from CTAN at https://ctan.org/pkg/saveenv,
https://ctan.org/pkg/precattl, https://ctan.org/pkg/pythonimmediate re-
spectively.
The .zip file containing Python source code can be downloaded from PyPI: https:
//pypi.org/project/pythonimmediate-tex/#files.

• Write the following in the preamble:

1 \usepackage[abspath]{currfile}
2 \usepackage[python-executable={PYTHONPATH=pythonimmediate-tex-

0.1.2.zip/pythonimmediate-tex-0.1.2/
python3},args={--mode=unnamed-pipe}]{pythonimmediate}

↪→

↪→

As above, replace both occurrences of 0.1.2 with the downloaded version specified
in the zip file above.
Refer to 4.1 for explanation of the abspath option.

For some unknown reason in the default mode on Overleaf (\nonstopmode), when
there’s an error the log file might be truncated, so in that case consider writing
\errorstopmode.

Refer to 4.2 to read the error traceback in case of Python error.
Some construct inside the pycode block might make the code editor on Overleaf

report an error, even though the code is valid. Refer to https://www.overleaf.com/
learn/how-to/Code_Check#Code_Check_Limitations.

3 Usage
3.1 Package options
Normally no options are required. If you’re not sure what they do, just use the default
options.

Arguments to be passed to the Python component of the program. Runargs=

1 python -m pythonimmediate.pytotex --help

on the command-line to view the available options.
The documentation is also available at https://pythonimmediate.readthedocs.

io/en/latest/pythonimmediate.html#module-pythonimmediate.pytotex.
The name/path to the Python executable. Default to python3.python-executable=
Can also be used to provide environment variables to the Python process. An ex-

ample how to do that is explained in 2.1.
Flags to be passed to the Python interpreter. For example pass -O to disable asser-python-flags=

2

https://ctan.org/pkg/saveenv
https://ctan.org/pkg/precattl
https://ctan.org/pkg/pythonimmediate
https://pypi.org/project/pythonimmediate-tex/#files
https://pypi.org/project/pythonimmediate-tex/#files
https://www.overleaf.com/learn/how-to/Code_Check#Code_Check_Limitations
https://www.overleaf.com/learn/how-to/Code_Check#Code_Check_Limitations
https://pythonimmediate.readthedocs.io/en/latest/pythonimmediate.html#module-pythonimmediate.pytotex
https://pythonimmediate.readthedocs.io/en/latest/pythonimmediate.html#module-pythonimmediate.pytotex

tions.
The documentations can be found by running python --help on the command-line,

or visit https://docs.python.org/3/using/cmdline.html.

3.2 TEX interface
The interface mimics those in popular packages such as PythonTEX or PyLuaTEX.

3.2.1 Inline commands

Evaluate some Python expression, consider the result as a string, then execute the result\py
as TEX command.

TEXhackers note: The command is not expandable, and the argument will be fully
expanded with the active ~ set to \relax, \set@display@protect executed and \escapechar=-
1, then the result passed to Python as a string.

Which, for the users who are not familiar with TEX terminology, roughly means the
following:

• the value can only be used to typeset text, it must not be used to pass “values” to
other LATEX commands.
The following is legal:

1 The value of $1+1$ is $\py{1+1}$.

The following is illegal, as the result (2) can only be used to typeset text, not passed
to another command that expect a “value”:

1 \setcounter{abc}{\py{1+1}}

A possible workaround is:

1 \py{ r'\\setcounter{abc}{' + str(1+1) + '}' }

In this example it works without escaping the {} characters, but if the Python code
has those unbalanced then you can escape them as mentioned below.

• Special characters can be “escaped” simply by prefixing the character with back-
slash.
For example

1 \pyc{assert len('\ \ ')==2}
2 \pyc{assert ord('\\\\')==0x5c}
3 \pyc{assert ord('\%') ==0x25}

In the examples above, Python “sees” (i.e. the Python code being executed is)

1 assert len(' ')==2
2 assert ord('\\')==0x5c
3 assert ord('%') ==0x25

3

https://docs.python.org/3/using/cmdline.html

respectively.

• Macros will be expanded.

1 \def\mycode{1+1}
2 The value of $1+1$ is $\py{\mycode}$.

Execute some Python code provided as an argument (the argument will be inter-\pyc
preted as described above).

The command is not expandable – roughly speaking, you can only use this at “top
level”.

Any output (as described in 3.3.1) will be typesetted.
The difference between \py and \pyc is that the argument of \py should be a Python

expression (suitable for passing into eval() Python function) while the argument of \pyc
should be a Python statement (suitable for passing into exec() Python function).

Therefore,

• \py{1+1} will typeset 2.

• \pyc{1+1} is valid, but will do nothing just like exec("1+1").

• \py{x=1} is invalid.

• \pyc{x=1} is valid and assigns the variable x to be 1.

Same as above, but output (3.3.1) will not be typesetted.\pycq
Given an argument being the file name, execute that file.\pyfile
Performs “string interpolation”, the same way as PythonTEX. (not yet implemented)\pys

3.2.2 Environments

Verbatim-like environment that executes the code inside as Python.pycode
Example usage: The following will typeset 123

1 \begin{pycode}
2 pythonimmediate.print("123")
3 \end{pycode}

Special note: white spaces at the end of lines are preserved.
Any output (as described in 3.3.1) will be typesetted.
Same as above, but output will not be typesetted.pycodeq
Not yet implemented.pysub

3.3 Python interface
The TEX interface is only used to call Python. Apart from that, all the work can be done
on the Python side.

All functions in this section should be imported from pythonimmediate package,
unless specified otherwise.

Currently, all the documentations are moved to the Python package documentation,
see https://pythonimmediate.readthedocs.io/.

Documentation of a few functions are still kept here for convenience, but they might
be outdated. Always refer to the online documentation.

4

https://pythonimmediate.readthedocs.io/

3.3.1 Print to TEX

These functions are used in \pyc command or pycode environment..print_TeX()
.file Unlike most other packages, using print() function in Python will print to the

console (TEX standard output). In order to print TEX code to be executed, you can do
one of

1 pythonimmediate.print_TeX(...)
2 print(..., file=pythonimmediate.file)
3 with contextlib.redirect_stdout(pythonimmediate.file):
4 print(...)

Note that in quiet environments, pythonimmediate.file is None, the second variant
using print() will print to stdout instead of suppress output. The third variant works
as expected.

All output will be buffered until the whole Python code finishes executing. In order
to typeset the text immediately use one of the advanced commands.

Same as LATEX’s \newcommand and \renewcommand. Can be used as follows:.newcommand()
.renewcommand()

1 from pythonimmediate import newcommand, renewcommand
2

3 @newcommand
4 def function():
5 ...
6 # define |\function| in TeX
7

8 @newcommand("controlsequencename")
9 def function():

10 ...
11 # define |\controlsequencename| in TeX
12

13 def function():
14 ...
15 newcommand("controlsequencename", function)

There are those functions that is mostly understandable to an inexperienced LATEX.get_arg_str()
.get_optional_arg_str()

.get_verb_arg()
.get_multiline_verb_arg()

.peek_next_char()
.get_next_char()

user, and should be sufficient for a lot of programming works.
This is an example of how the functions could be used. The name should be mostly

self-explanatory.

1 \documentclass{article}
2 \usepackage{pythonimmediate}
3 \begin{document}
4 \begin{pycode}
5 from pythonimmediate import newcommand, peek_next_char, get_next_char,

get_arg_str↪→

6 from pythonimmediate import print_TeX as print
7 @newcommand
8 def innerproduct():

5

9 s = get_arg_str() # in the example below this will have the value
'\mathbf{a},\mathbf{b}'↪→

10 x, y = s.split(",") # it's just a Python string, manipulate
normally (but be careful of comma inside braces, parse the
string yourself)

↪→

↪→

11 print(r"\left\langle" + x + r"\middle|" + y + r"\right\rangle")
12

13 @newcommand
14 def fx():
15 if peek_next_char() == "_":
16 get_next_char()
17 subscript = get_arg_str()
18 print("f_{" + subscript + "}(x)")
19 else:
20 print("f(x)")
21

22 @newcommand
23 def sumManyArgs():
24 s = 0
25 while peek_next_char() == "{":
26 i = get_arg_str()
27 s += int(i)
28 print(str(s))
29 \end{pycode}
30 $1+2+3 = \sumManyArgs{1}{2}{3}$
31

32 $\innerproduct{\mathbf{a},\mathbf{b}}=1$
33

34 $\fx = 1$, $\fx_i = 2$, $\fx_{ij} = 3$
35 \end{document}

It will typeset:

1 + 2 + 3 = 6
〈a|b〉 = 1
f(x) = 1, fi(x) = 2, fij(x) = 3

Similar to some functions above, except that the argument is fully expanded and.get_arg_estr()
.get_optional_arg_estr() “escapes” of common characters are handled correctly, similar to how \py command

(3.2.1) reads its arguments.
Takes a string and execute it immediately. (so that any .execute() will be executed.execute()

before any .print_TeX())
Assuming TEX is in errorstopmode (i.e. errors halt TEX execution), any error in

TEX will create an error in Python and the traceback should point to the correct line of
code.

For example, in the following code

1 \documentclass{article}
2 \usepackage{tikz}

6

3 \usepackage{pythonimmediate}
4 \begin{document}
5

6 \begin{tikzpicture}
7 \begin{pycode}
8 from pythonimmediate import execute
9 execute(r'\draw (0, 0) to (1, 1);')

10 execute(r'\draw (2, 2) to (p);')
11 execute(r'\draw (3, 3) to (4, 4);')
12 \end{pycode}
13 \end{tikzpicture}
14

15 \end{document}

each \draw command will be executed immediately when the Python .execute() func-
tion is executed, and as the second line throws an error, the Python traceback will point
to that line.

4 Troubleshooting
4.1 “Source file not found!” error message
In order to obtain the exact code with trailing spaces and produce error traceback point
to the correct TEX file, the Python code need to know the full path to the current TEX
file for the pycode environment.

Nevertheless, this is difficult and does not always work (refer to the documentation
of currfile for details), so this message is issued when the file cannot be found.

In that case try the following fixes:

• Include \usepackage[abspath]{currfile} at the start of the document, after the
\documentclass line. (this option is not included by default because it’s easy to
get package clash, and usually currfile without the abspath option works fine –
unless custom jobname is used)

• Explicitly override currfilename or currfileabspath – for example

1 \def\currfilename{main.tex}

Technically this is an abuse of the currfile package API, but it usually works re-
gardless.

4.2 “Python error” error message
In case of Python error, the Python traceback is included in the terminal and TEX log
file.

Search for “Python error traceback” before the error line in the log file.
On Overleaf, you can either view the log file (“Raw logs” section) or the traceback

on stderr (download output.stderr file)

7

4.3 “TEX error” error message
If an error occur in TEX, traceback cannot be included in the log file.

Besides, this can only be detected in \errorstopmode. Such an error will always
halt TEX, and Python will be force-exited after printing the error traceback.

On Overleaf, download output.stderr file to read the traceback.

5 Implementation note
Communication between TEX and Python are done by opening two pseudo-files from the
output of a Python process textopy (similar to \ior_shell_open:Nn) and to the input
of another Python process pytotex (this would be \iow_shell_open:Nn, if LATEX3 have
such a function).

There are various methods for the 2 Python child processes to communicate with
each other. After some initial bootstrapping to setup the communication, we can consider
only the textopy script, the other merely serves as the bridge to send input to TEX.

The communication protocol is a little complicated, since it must support nesting
bidirectional execution of TEX and Python.

Besides, I believe it’s not possible to make a “background listener” on the TEX side,
so it must keep track of whether a command should be read from Python and executed.

Currently, exception handling (throwing a Python exception in a nested Python
function, catch it in the outer Python function) is not supported.

These are some examples of what could happen in the communication protocol.

execute Python code: print(1)

execute TEX code: 1T E
X

Python

Nevertheless, there may be more complicated cases where the Python code itself
may call TEX code before actually returns:

execute Python code: print(var(a)*2)

execute TEX code: sendtopy(a); execute another command

123

execute TEX code: 123123

T E
X

Python

Or:

8

execute Python code: tex.exec(a=456); print(var(a)*2)

execute TEX code: a=456; sendtopy(done); execute another command

done

execute TEX code: sendtopy(a); execute another command

456

456456

T E
X

Python

The Python side must not just listen for “done” command back, but must potentially
call a nested loop.

The exact protocol is:

• “execute Python code” sends from TEX to Python has a single line “i〈handler
name〉”, followed by any number of arguments (depends on the handler).
Refer to the define_TeX_call_Python internal function for details.

• “done” sends from TEX to Python has the format “r〈optional return value as a
string in a single line〉”.
This is sent by executing TEX command \pythonimmediatecontinue, which takes
a single argument to be e-expanded using \write as the “return value”.

• “execute TEX code” sends from Python to TEX must only be sent when the TEX
side listens for a command. It consist of a single line specify the “command name”,
which TEX will execute the command named __run_〈command name〉: which
must already be defined on the TEX side.
The command itself might contain additional code to execute more code, e.g. by
reading more lines from Python.
Refer to the define_Python_call_TeX internal function for details.

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\.execute() . 6
\.file . 5
\.get_arg_estr() 6
\.get_arg_str() 5
\.get_multiline_verb_arg() 5
\.get_next_char() 5
\.get_optional_arg_estr() 6
\.get_optional_arg_str() 5
\.get_verb_arg() 5

\.newcommand() 5
\.peek_next_char() 5
\.print_TeX() . 5
\.renewcommand() 5

E
environments:

pycode . 4
pycodeq . 4
pysub . 4

9

P
\py . 3
\pyc . 4
pycode (environment) 4
pycodeq (environment) 4

\pycq . 4
\pyfile . 4
\pys . 4
pysub (environment) 4

10

	1 Motivation
	2 Installation
	2.1 Installation on Overleaf

	3 Usage
	3.1 Package options
	3.2 TeX interface
	3.2.1 Inline commands
	3.2.2 Environments

	3.3 Python interface
	3.3.1 Print to TeX

	4 Troubleshooting
	4.1 "Source file not found!" error message
	4.2 "Python error" error message
	4.3 "TeX error" error message

	5 Implementation note
	Index
	Symbols
	E
	P

