
Literate Programming:

Prolog Documentation with LATEX

Gerd Neugebauer
Mainzer Str. 8

56321 Rhens (Germany)
Net: gerd@informatik.uni-koblenz.de

This document describes pl version 3.0 as of 1996/05/30.

Introduction

Inspired by the idea behind the web system I felt the need to have a system
to write documented Prolog programs. But instead of having to transform the
common source into program or documentation the central idea was to develop
a method to have one common source which can be interpreted by a Prolog1

system aswell as by LATEX. To achive this goal the LATEX commands are hidden
from Prolog by enclosing them into comments.

The C-Prolog allows two kinds of comments. The first kind starts with a %
and ends at the end of the line. This is also a comment for LATEX. The other
Prolog comment starts with /* and ends with */. This seemed to be the right
way to hide the LATEX documentation commands from the Prolog interpreter.

The only problem was to define a starting sequence to open the first com-
ment. This sequence must be an executable Prolog command as well as a valid
LATEX command. The first approach was to modify both — the Prolog program
and the LATEX style — to find a common statement. The pre 2.0 versions of
the pl style option took this decision. One problem came up when the author
tried to incorporate the module system of Prolog. This system requires that
the first command in a module is the declaration of the module name possibly
together with the list of predicates to be exported. This restriction led to the
approach taken in version 2.0 and later. In modules nearly no change has to be
made. The module declaration is defined as a valid LATEX macro.

1 The LATEX Documentation Driver File

The LATEX main file ties together the whole documentation. This file should con-
tain the \documentclass command together with the appropriate \usepackage
or the \documentsyle command with the style option pl.

1C-Prolog, Quintus-Prolog, or ECLiPSe at that time.

1

The only special command required in
this file is the command \PrologInput.
This command inserts the Prolog file
given as argument at the current po-
sition. The formatting directives de-
scribed below are activated.
The command \PrologInput may occur
several times in this main file. it may
be mixed with simple input or include
commands. \PrologInput can be used
nested, as long as the other requirements
described in this document are fulfilled.

\documentclass[...]{...}

\usepackage{pl}

\begin{document}

...

\PrologInput{file1.pl}

\PrologInput{file2.pl}

...

\PrologInput{filen.pl}

...

\end{document}

The commands meant for the Prolog files can also be used in a plain LATEX
context. Nevertheless those commands have been developed with the applica-
tion of documenting Prolog in mind. The contents of the Prolog files and the
additional macros provided by pl will be described in the next sections.

2 The Prolog Files

2.1 Starting Modules

Prolog files can come in two variants: either it is a Prolog module or a plain
Prolog file. Modules are distinguished from files by a specific first Prolog state-
ment. This module declaration can have the form2

:- module(Name, Exports).

Alternatively it may have the form
:- module_interface(Name).

These module declarations have to be the first Prolog instructions in the
file.

In addition to those Prolog instructions we need to use the rule that the
terminating point (.) of the module declaration is followed immediately by �/*.
Note the single space which is neccesary for the Prolog parser to work properly.

Thus a Prolog module documented with pl starts e.g. with
:- module_interface(Name). /*

Before this line there should be only Prolog comments starting with %.
These comments are also ignored by TEX. Thus they do neither appear in the
documentation nor are the evaluated by Prolog.

2.2 Starting Plain Files

Plain Prolog files are those files not starting with a module declaration. For
technical reasons plain files can not start with code directly but requires a C-
style comment at the beginning. The contents of this comment is typeset by
LATEX.

In generale this restriction seems to be too hard. It is always a good idea
to start a file with some general remarks and comments.

2e.g. in Quintus-Prolog

2

2.3 Ending Prolog Files

The Prolog file should end with
\EndProlog*/
From the Prolog point of view the file consists now of the declaration of a

module (or a dummy predicate). The rest is purely comment. From the LATEX
point of view it contains two macros and nothing in between. Thus everything
in between will be interpreted as LATEX input only.

2.4 Prolog Code

To include additional Prolog statements in this file enclose them in
\PL*/
/*PL
This forces the Prolog system to interpret the code and the LATEX system

to typeset it in a verbatim like environment.
The Prolog code may contain every characters except the string /*PL. For

some reasons which are opaque to me spaces at the binning of a line of Prolog
code are ignored. To force proper indentation you should use tab characters
at the beginning of the line.

Options for the Code Layout

The options are implemented as macros. To change them use \renewcommand.

\PrologModule
Macro to typeset the module definition. In general this may be a section-
ing command producing an appropriate title. It takes two arguments —
the two arguments of the module declaration.

The default is \section{{\tt #1}}

\PrologFile
Same as above but for non module files.

The default is \section{{\tt #1}}

\PrologFont
Macro to select the font used for printing the listing part. This should be
a non-proportional font. The default is \small\tt.

\PrologListFont
Macro to select the font used for printing the export list. The default is
\small\tt.

\PrologListIndent
Macro to select the indentation of the export list. This should be a length.
The default is 2em.

\PrologRuleWidth
Macro to select the width of the rule to seperate Prolog code from text.
This should be a length. The default is 0pt.

3

\PrologNumberFont
Font to be used when typesetting line numbers.

The following flags can be set by simply including the commands in the
LATEX part of the document. Since they are mainly of a global nature the
preamble of the driver file would be a good place for them.

\PrologNumberLinestrue
Turn on line numbering.

\PrologNumberLinesfalse
Turn off line numbering.

\PrologDialectDialect
Declare the dialect of the used Prolog. This is mainly important to make
the syntax of the modules known to pl. Dialect can take one of the follow-
ing values: eclipse, quintus, sixtus, cprolog, swiprolog, sbprolog,
or binprolog.

3 Predicate Templates

Predicate templates provide a nice way to typeset a predicate head with some
additional information. A usual predicate is characterized by the name/arity,
arguments and the file it can be found in. Two boxes are used to contain this
information. The right one contains the file name and the left one contains
the predicate description. The box for the file name has a default width which
will be enlarged if the file name doesn’t fit into it. The predicate description
if surrounded by a frame and formatted in the following way. If the predicate
desciption fits in one line then it is typeset in one line. Otherwise the second
and following lines are indented. This indentation tries to align beneath the
first argument. If the predicate name is very long this might not be desirable.
Thus the indentation has a maximal value which will not be exceeded.

The LATEX part of the file contains the following template
\Predicate pred/1(arg).
Note that the). have no space in between.

Options

The options are implemented as macros. To change them use \renewcommand.

\PredicateFont
Macro containing the font changeing command for the predicate descrip-
tion. The default is \normalsize\tt.

\PredicateSkip
Macro containing the spacing before and after the predicate description.
The default is \smallskip.

4

Succeding Text

�
�
\PredicateSkip \par

Predicate Description File

\PredicateFileFont

\PrologFile

\PredicateFileExtension

��

\PredicateIndent

\PredicateFont

��
\PredicateFileIndent

��
\PredicateFileSep

Preceding Text

�
�
\PredicateSkip \par

Figure 1: The \Predicate command

\PredicateIndent
Macro containing the maximal length of the indentation of the predicate
description. The default is 2em. If this value is very large then the argu-
ments are always aligned beneath the first one.

\PredicateFileFont
Macro containing the font changeing command for the file name. The
default is \small\sf.

\PredicateFileWidth
Macro containing the minimal width of the box containing the file name.
The default is 5em. If this value is 0pt then only the file name determines
the width of the box.

\PredicateFileExtension
Macro containing the extension of the prolog file. This text is typeset
right after the file name stored in \PrologFILE. The default is empty.

\Predicate foo_bar/6(Argument1, Argument2, Argument3,
Argument4, Argument5, Argument6).

foo bar(Argument1, Argument2, Argument3, Argument4,
Argument5, Argument6)

prolog

foo bar(Argument1, Argument2, Argument3,
Argument4, Argument5, Argument6)

very Long Prolog File

\Predicate this_is_a_very_long_predicate/5(
Argument1, Argument2, Argument3, Argument4, Argument5).

this is a very long predicate(Argument1, Argument2,
Argument3, Argument4, Argument5)

prolog

3.1 The Underscore

One thing which occurs very often in program listings is the underscore _. The
problem arises that LATEX uses the underscore only in math mode to denote

5

subscripts. For the comands described above the _ can be simply used as is.
Beware, don’t expect math mode subscript to work there.

The macro \WithUnderscore is provided by pl to execute some commands
where the underscore does have the meaning as plain character.

Example:
It can be highly desirable to protect the index. Otherwise any indexed

predicate containing an underscore would wrack LATEX. This can be done with
a construction like the following one:

\WithUnderscore{\printindex}

3.2 Inline Code

The style option idtt allows to typeset some text using the teletype font (\tt).
The text has simply to be enclosed in |.

The same effect can be achieved with the command \MakeShortVerb defined
in doc.sty. To use this you have to add the style option doc and place the
following command in the preamble:

\MakeShortVerb{|}
Example:
You type |proc_1| and you get proc 1.

Bugs and Problems

• The bugs and problems of earlier releases have been corrected.

• The documentation needs polishing.

6

A Sample

%%^^A%%%
%%^^A This is a sample file to demonstrate the use of the \LaTeX style option
%%^^A pl.sty.
%%^^A
%%^^A The ^^A is just used to make it printable with the documentation.
%%^^A doc.sty insists on it. Otherwise a single % would have been enough.
%%^^A
%%^^A written by gene 11/94
%%^^A%%%

:- module(sample). /*

This is a dummy module to show the possibilities of the \LaTeX{} style
option pl.
We define a predicate. It looks like

\Predicate select/3(Member, List, Rest).

This predicate describes the relation of the three arguments which fulfill
$\mbox{\it Member}\in\mbox{\it List}$\/ and $\mbox{\it Rest}=\mbox{\it
List}\backslash\mbox{\it Member}$.

And here comes the implementation:
\PL*/
select(Member,[Member|Rest],Rest).
select(Member,[Head|List],[Head|Rest]) :-

select(Member,List,Rest).
/*PL

\Predicate in/2(Member, List).

This predicate is a reimplementation of the predicate \verb|member/2|
using the \verb|select/3| predicate.

\PL*/
in(Member,List) :-

select(Member,List,_).
/*PL
Now we are done with the example.
\EndProlog*/

7

4 The Module sample.pl

This is a dummy module to show the possibilities of the LATEX style option
pl. We define a predicate. It looks like

select(Member, List, Rest) sample.pl

This predicate describes the relation of the three arguments which fulfill
Member ∈ List and Rest = List\Member.

And here comes the implementation:

:- module(sample).
select(Member,[Member|Rest],Rest).
select(Member,[Head|List],[Head|Rest]) :-

select(Member,List,Rest).

in(Member, List) sample.pl

This predicate is a reimplementation of the predicate member/2 using the
select/3 predicate.

in(Member,List) :-
select(Member,List,_).

Now we are done with the example.

8

5 The Implementation

1 \ifx\documentclass\relax \else
2 \ProvidesPackage{pl}[\filedate\space gene (\fileversion)]
3 \fi

5.1 Options and Defaults

First of all we define the macros containing the default values for certain options.
The user may redefine them with \renewcommand to adapt them to the personal
preferences.

4 \def\PrologFont{\small\tt}

The macro \PrologFont contains the font changing command executed to type-
set the Prolog code in the verbatim-like environment.

5 \def\PrologIndent{2em}

The macro \PrologIndent contains the indentation of the Prolog code in the
verbatim-like environment.

6 \def\PrologNumberFont{\tiny\rm}

The macro \PrologNumberFont contains the font changing command used to
typeset the line numbers (if enabled) in the verbatim-like environment.

7 \def\PrologRuleWidth{0pt}

The macro \PrologRuleWidth contains the width of the rule seperating Prolog
code and text.

8 \def\PrologListFont{\small\tt}

The macro \PrologListFont contains the font changing command to typeset
a Prolog list (exports).

9 \def\PrologListIndent{2em}

The macro \PrologListIndent contains the indentation for a Prolog list (ex-
ports).

10 \def\PrologModule#1#2{\section{The Module {\tt #1}}}

The macro \PrologModule contains the command which is called at the begin-
ning of a module. The first argument is the name of the module. The second
argument is the list of exports.

This macro is supposed to be redefined by the user with \renewcommand.

11 \def\PrologFile#1#2{\section{The File {\tt #1}}}

The macro \PrologFile contains the command which is called at the beginning
of a non-module Prolog file. The first argument is the name of the module. The
second argument is usually empty.

This macro is supposed to be redefined by the user with \renewcommand.

12 \def\PredicateFont{\tt}

9

The macro \PredicateFont contains the font switching command used in
\Predicate for the body of the predicate description.

13 \def\PredicateFileFont{\small\sf}

The macro \PredicateFileFont contains the font switching command used in
\Predicate for the file name

14 \def\PredicateSkip{\smallskip}

The macro \PredicateSkip contains the skip command executed before and
after \Predicate.

15 \def\PredicateIndent{5em}

The macro \PredicateIndent contains length of the maximal indentation in
the macro \Predicate.

16 \def\PredicateFileExtension{}

The macro \PredicateFileExtension contains the text appended to file name
in the \Predicate command.

17 \def\PredicateFileWidth{5em}

The macro \PredicateFileWidth contains the minimum width of the file name
in the \Predicate command. Shorter file names are padded to this length.

18 \def\PredicateFileSep{1em}

The macro \PredicateFileSep contains the width of the separating space
between the predicate description and the file name.

19 \def\PredicateBoxSep{3pt}

The macro \PredicateBoxSep contains the amount of space between the box
and contents in the \Predicate command. This is similar to \fboxsep in
LATEX.

20 \def\PredicateBoxRule{0.5pt}

The macro \PredicateBoxRule contains the line thickness of box in the
\Predicate command. This is similar to \fboxrule in LATEX.

21 \def\PredicateIndex#1{\index{#1}}

The macro \PredicateIndex contains the command which is called to put a
predicate into an index. The argument is the string to index.

This macro may be redefined by the user with \renewcommand.

22 \newif\ifPrologNumberLines

switch to enable line numbering

10

5.2 Internals

23 \def\PrologEXPORTS{}

The macro \PrologEXPORTS contains the current list of exports.
24 \def\PrologFILE{}

The macro \PrologFILE contains the current module or file name. This is not
supposed to be set by the user. Nevertheless there might be occasions where
this is neccesary (e.g. in the documentation of this style option).
5.3 Configuration Commands

The different Prolog dialects have different ways to declare modules. Thus pl
needs to know which dialect is currently used. This influences how PrologInput
handles the first Prolog clause.

25 \def\PrologDialect#1{%
26 \@ifundefined{PL@start@module@#1}%
27 {\message{*** Prolog dialect #1 is undefined. Ignored.}}%
28 {\gdef\PL@Dialect{#1}}}
29 \def\PL@Dialect{eclipse}

The command \PrologDialect can be used to declare the Prolog dialect used.
The value is stored in the macro \PL@Dialect for later use. This is only done
if an appropriate macro to handle a module are defined.

30 \gdef\PL@@delayed{}

Keep some characters which were read in advance.

31 \newcount\PL@line

We allocate a new counter for the line number of Prolog code (if enabled).

5.4 Typesetting Prolog Code

Prolog code is typeset is a verbatim-like way. For this purpose a modified version
of the verbatim environment from the TEX book is used. For an explanation
see pages 380–382 in the TEX book.

32 \gdef\PL@code@setup{\PrologFont\parskip=0ex\parindent=0pt
33 \ifx\PL@@delayed\empty\else%
34 \parbox{\PrologIndent}{%
35 \ifPrologNumberLines \PrologNumberFont \the\PL@line%
36 \global\advance\PL@line1
37 \else\ \fi}\PL@@delayed%
38 \gdef\PL@@delayed{}\par
39 \fi%
40 \def\par{\leavevmode\egroup\box0\endgraf}
41 \def\do##1{\catcode‘##1=12 }\dospecials
42 \obeyspaces
43 \obeylines
44 % \catcode‘\‘=\other
45 \catcode‘\^^I=13
46 \everypar{\parbox{\PrologIndent}{%
47 \ifPrologNumberLines \PrologNumberFont \the\PL@line%

11

48 \global\advance\PL@line1
49 \fi
50 \hfill}\PL@code@startbox}}

51 \def\PL@code@startbox{\setbox0=\hbox\bgroup}

52 {\catcode‘\^^I=13
53 \gdef^^I{\leavevmode\egroup
54 \dimen0=\wd0 % the width so far, or since the previous tab
55 \setbox1=\hbox{\PrologFont\space}\dimen1=8\wd1
56 \divide\dimen0 by\dimen1
57 \multiply\dimen0 by\dimen1 % compute previous multiple of tab
58 \advance\dimen0 by\dimen1 % advance to next multiple of tab
59 \wd0=\dimen0 \box0 \PL@code@startbox}%
60 }
61 {\obeyspaces\global\let =\ }

62 \def\PL*/{\PL@PL@init%
63 \begingroup
64 \PL@code@setup
65 \PL@doPL}

| is temporary escape character to catch the end /*PL

66 {\catcode‘\|=0 \catcode‘\\=12
67 |obeylines|gdef|PL@doPL^^M#1/*PL{#1|endgroup|PL@PL@exit}}

Initialization macro
68 \def\PL@PL@init{%
69 \ifdim\PrologRuleWidth>0pt%
70 \par\noindent\rule{\textwidth}{\PrologRuleWidth}\par%
71 \else\medskip\par\fi}

72 \def\PL@PL@exit{%
73 \ifdim\PrologRuleWidth>0pt%
74 \vspace{-2ex}\noindent\rule{\textwidth}{\PrologRuleWidth}\par%
75 \else\smallskip\par\fi}

Dirty hack. make : active to catch :- use a group to hide the changes
76 \def\PL@INIT{\begingroup\catcode‘:=13\catcode‘/=13}

77 \def\PL@EXIT{\endgroup}

we make : active and include the file
78 \gdef\PrologInput{%
79 \begingroup
80 \catcode‘_=12
81 \PL@Input
82 }

83 \PL@INIT
84 \gdef\PL@Input#1{%
85 \gdef\PrologFILE{#1}%
86 \gdef\PrologMODULE{}%
87 \gdef\PrologEXPORTS{}%
88 \global\PL@line=1%
89 \endgroup
90 \PL@INIT%

12

91 \let:=\PL@COLON
92 \let/=\PL@SLASH
93 \input{#1}%
94 \gdef\PrologFILE{}%
95 \gdef\PrologMODULE{}%
96 \gdef\PrologEXPORTS{}%
97 }
98 \PL@EXIT

5.5 End a File of Prolog Code

At the end of a file there is a */ which terminates the last comment for Prolog.
Those two characters are stripped away by the macro \EndProlog.

99 \def\EndProlog#1*/{}

5.6 Definition for Various File Types

5.6.1 Defininitions for Non-Module Files

A file can start with /*. This case is handled by making the / active and binding
it to the command \PL@SLASH. This command checks if the next character is a
*. In this case the catcodes of / and : can be restored to their defaults. This
is done by \PL@EXIT.

Finally the underscore _ is made active and \PL@start@star is called to do
the rest.

100 \def\PL@SLASH{\@ifnextchar*{%
101 \PL@EXIT
102 \PL@US@start
103 \PL@SLASH@STAR}{/}}

104 \def\PL@SLASH@STAR*{%
105 \PrologFile{\PrologFILE}{}%
106 \PL@US@end}

107 \def\PL@COLON{\@ifnextchar-{\PL@goal}{: }}

108 \def\PL@goal-{%
109 \PL@EXIT
110 \PL@US@start
111 \@ifnextchar m{\csname PL@start@module@\PL@Dialect\endcsname}%
112 {\@ifnextchar t{\PL@start@true}%
113 {\csname PL@start@file@\PL@Dialect\endcsname}}}

114 \def\PL@start@true true. /*{%
115 \PrologFile{\PrologFILE}{}%
116 \PL@US@end}

5.6.2 Defininitions for ECLiPSe-Prolog

The beginning of a module file in eclipse can be in one of the following forms:

:- module interface(Module)

13

:- module(Module)

We strip away the actual predicate name getting the rest in the macro
parameter #1. The complete module declaration is stored in the macro
\PL@delayed to be inserted later.

117 \def\PL@start@module@eclipse module#1(#2). /*{%
118 \global\PL@line=1
119 \gdef\PL@@delayed{:- module#1(#2).}
120 \gdef\PrologMODULE{#2}%
121 \catcode‘\,=13 %
122 \PrologModule{\PrologFILE}{}%
123 \PL@US@end}

5.6.3 Definitions for Quintus-Prolog

The beginning of a module file in Quintus is in the following form:

:- module(Module,Exports)

124 \def\PL@start@module@quintus module(#1,{%
125 \global\PL@line=1
126 \gdef\PrologFILE{#1}%
127 \catcode‘\,=13 %
128 \PL@start@module@quintus@}

129 \def\PL@start@module@quintus@[#1]). /*{%
130 \gdef\PrologEXPORTS{#1}%
131 \PrologModule{\PrologFILE}{#1}%
132 \PL@US@end}

5.6.4 Definitions for C-Prolog

I don’t know if C-Prolog has a module system nowadays. The last time I
checked it had none. If nobody has a better idea I use Quintus Prolog syntax
in this case even it does not make any sense.

133 \let\PL@start@module@cprolog=\PL@start@module@quintus

5.6.5 Definitions for Sixtus-Prolog

I don’t know what’s used in Sixtus-Prolog. So I use the same value as for
eclipse.

134 \let\PL@start@module@sixtus=\PL@start@module@eclipse

5.6.6 Definitions for SWI-Prolog

Fortunately the module system of SWI-Prolog is compatible with the module
system of Quintus Prolog. So we just use the definition here again.

135 \let\PL@start@module@swiprolog=\PL@start@module@quintus

14

5.6.7 Definitions for SB-Prolog

I don’t know if C-Prolog has a module system nowadays. The last time I
checked it had none. If nobody has a better idea I use Quintus Prolog syntax
in this case even it does not make any sense.

136 \let\PL@start@module@sbprolog=\PL@start@module@quintus

5.6.8 Definitions for bin-Prolog

I don’t know what’s used in bin-Prolog. So I use the same value as for eclipse.

137 \let\PL@start@module@binprolog=\PL@start@module@eclipse

5.7 Typeset a Boxed Predicate Description

The first step is to protect the underscores in the predicate names and the
arguments.

138 \def\Predicate{\PL@US@start\Predicate@}

The syntax is oriented towards Prolog syntax. The name and the arity of
the predicate may not contain / or (.

139 \def\Predicate@#1/#2(#3).{%
140 \PredicateSkip\par\noindent%
141 {\setbox1=\hbox{\PredicateFileFont \PrologFILE\PredicateFileExtension}%
142 \fboxrule=\PredicateBoxRule%
143 \fboxsep=\PredicateBoxSep%
144 \fbox{\PredicateIndex{#1/#2}%
145 \dimen255=\wd1
146 \ifdim\dimen255<\PredicateFileWidth \dimen255=\PredicateFileWidth \fi
147 \dimen255=-\dimen255
148 \advance\dimen255 by-\PredicateFileSep
149 \advance\dimen255 by \textwidth
150 \parbox{\dimen255}{\raggedright
151 \setbox0=\hbox{\normalsize\PredicateFont #1(}
152 \dimen254=\wd0
153

154 \ifdim\dimen254>\PredicateIndent \dimen254=\PredicateIndent\fi
155 \dimen253=\dimen255 \advance\dimen253 by -\dimen254
156 \parshape=2 0mm \dimen255 \dimen254 \dimen253
157 \normalsize\PredicateFont #1\ifx\@empty#3 \else(#3)\fi
158 }}%
159 \hfill \box1\PredicateSkip\par
160 }\PL@US@end}

5.8 Typeset a List of Prolog Predicates

161 \def\PrologList{\par\noindent%
162 \PL@US@start
163 \PrologListFont
164 \catcode‘\,=13%
165 \parindent=\PrologListIndent\parskip=0pt\par
166 \PL@List}

15

167 {\catcode‘\,=13
168 \gdef\PL@List[#1]{%
169 \def,{\par}%
170 #1
171 \PL@US@end\par}
172 }

173 \def\PrologListEXPORTS{\PrologList[\PrologEXPORTS]}

5.9 Special Treatment of the Underscore

We define two macros to activate and deactivate the underscore respectively.
Those two macros have to come in pairs always. The first one opens a group to
protect the changes. The closing macro simply closes the group, thus undoing
the effects of the first macro.

174 \def\PL@US@start{\begingroup\catcode‘_=13 }
175 \def\PL@US@end{\endgroup }

176 \def\WithUnderscore{\begingroup\catcode‘_=13 \With@Underscore}
177 \def\With@Underscore#1{#1\endgroup}

5.10 Misc

A spin off product of this style file is a macro to include a file verbosely. Such
a macro is also provided by the verbatim package and others. Nevertheless I
have left it in.

178 \def\Listing#1{\par\begingroup%
179 \PL@line=1%
180 \PL@code@setup%
181 \input{#1}%
182 \endgroup}

6 Backward Compatibility Mode: pcode.sty

For backward compatibility some macros are defined in a style file under the
old name pcode.sty. The new style file has to be acessible under the new name
pl.sty. This file is loaded before some macros are defined.

183 \ifx\PrologFont\relax\else\input pl.sty\fi

In former versions mainly the Prolog dialect Quintus has been supported.
Thus a boolean was enough to tell apart the dialects Quintus and eclipse —
which came next. This is emulated with the next two macros.

184 \def\PrologQuintustrue{\PrologDialect{quintus}}
185 \def\PrologQuintusfalse{\PrologDialect{eclipse}}

The macro \WithUnderscore was named \WithActiveUnderscore in a for-
mer version of pcode.sty. The Active part of the name was missleading for
users. Thus it has been removed. The old name is made an alias for the new
one.

186 \let\WithActiveUnderscore=\WithUnderscore

16

In an ancient version of pcode.sty the macro \EndProlog was named
\StopProlog. Thus we make an alias for the old name.

187 \let\StopProlog=\EndProlog

Make \PL@INIT usable for the user as well. I don’t know where this might
be used. It has been in the old version, so I put it into the compatibility mode.

188 \let\PrologInit=\PL@INIT

17

