
monofill.sty
—

Alignment with Plain Text

or Monospaced Characters∗

Uwe Lück†

October 30, 2012

Abstract

monofill.sty addresses horizontal alignment with plain text as in the result
of LATEX’s \listfiles. In the first instance, it has been developed as the
shared tool to adjust each column with the nicefilelist package. It may
also be useful for alignment in typesetting monospaced characters as in
figure tables, for simulating a typewriter, or for code listings. v0.2 in fact
provides a tool for use with the hardwrap package that in turn has been
made for console output. The implementation also has “philosophical
aspects” in avoiding use of a counter register.

Contents

1 Features and Usage 2
1.1 Summary of Features . 2
1.2 “Philosophical aspects” . 2
1.3 Installing and Calling . 2
1.4 Examples . 3

1.4.1 Typewriter . 3
1.4.2 Figures . 3
1.4.3 Screen Output . 4

2 Package File Header (Legalese) 4

3 User Commands 4

∗This document describes version v0.2 of monofill.sty as of 2012/10/29.
†http://contact-ednotes.sty.de.vu

1

http://ctan.org/pkg/nicefilelist
http://ctan.org/pkg/hardwrap
http://contact-ednotes.sty.de.vu

1 FEATURES AND USAGE 2

4 Internal Commands 6
4.1 Tools . 6
4.2 Field Declaration . 6
4.3 Checking Field . 7
4.4 Trying Alignment . 7

5 Package Option 8

6 \endinput and Version HISTORY 8

7 Credit 9

1 Features and Usage

1.1 Summary of Features

A command \MFfieldtemplate sets the maximum width of a “field” us-
ing a template, with an optional argument for the “filler” token. Then
\MFleftinfield and \MFrightinfield types given (one-line) text and adds
“filler” tokens to the left or right, until the entire number of tokens es the
number of characters in the associated template. So this is a kind of analogue
to \settowidth{\mylength}{〈template〉}, \makebox[\mylength][l]{〈text〉},
and \makebox[\mylength][r]{〈text〉} intended for plain text output, without
typesetting. See Sec. 3 for details.

1.2 “Philosophical aspects”

The package also has “philosophical” aspects: 1. Apart from the declaration of
the width of a “field”, everything is expandable (thinking of application with
blog.sty of the morehype bundle) and thus is a kind of functional programming.
2. Actually, no counter is used, and we seem to count without using the concept
of “number.” Rather, we (a) just generate a new list from a given one such
that both have the same length and (b) compare the lengths of two lists—both
(a) and (b) without determining the length (which would be a number) of any
list.

1.3 Installing and Calling

The file monofill.sty is provided ready, installation only requires putting it some-
where where TEX finds it (which may need updating the filename data base).1

Below the \documentclass line(s) and above \begin{document}, you load
monofill.sty (as usually) by

\usepackage{monofill}

1http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

http://ctan.org/pkg/morehype
http://en.wikipedia.org/wiki/functional programming
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

1 FEATURES AND USAGE 3

For certain uses such as with fileinfo, the package is better loaded by

\RequirePackage{monofill}

1.4 Examples

1.4.1 Typewriter

With both

\MFfieldtemplate[\MFspace]{tt}{leftright}

and

\MFfieldtemplate[\MFenspace]{tt}{leftright}

followed by

\begin{quotation}\tt\noindent

!leftright!\\

!\MFleftinfield{left}{tt}!\\

!\MFrightinfield{right}{tt}!\\

!\MFrightinfield{rightleft}{tt}!

\end{quotation}

I get

!leftright!

!left !

! right!

!rightleft!

1.4.2 Figures

Similarly, with \MFfieldtemplate[\MFenspace]{figs}{0000} and

\begin{quote}\noindent

\MFrightinfield{1}{figs} is one,\\

\MFrightinfield{10}{figs} is ten,\\

\MFrightinfield{100}{figs} is hundred,\\

\MFrightinfield{1000}{figs} is thousand.

\end{quote}

I get

1 is one,
10 is ten,

100 is hundred,
1000 is thousand.

http://ctan.org/pkg/fileinfo

2 PACKAGE FILE HEADER (LEGALESE) 4

1.4.3 Screen Output

Finally, try

\MFfieldtemplate{screen}{0000}

\typeout{\MFrightinfield{1}{screen} is one,}

\typeout{\MFrightinfield{10}{screen} is ten,}

\typeout{\MFrightinfield{100}{screen} is hundred,}

\typeout{\MFrightinfield{1000}{screen} is thousand.}

\typein{OK?}

It works, believe me.

2 Package File Header (Legalese)

1 \NeedsTeXFormat{LaTeX2e}[1994/12/01]

2 \ProvidesPackage{monofill}[2012/10/29 v0.2 monospace alignment (UL)]

3

4 %% Copyright (C) 2012 Uwe Lueck,

5 %% http://www.contact-ednotes.sty.de.vu

6 %% -- author-maintained in the sense of LPPL below --

7 %%

8 %% This file can be redistributed and/or modified under

9 %% the terms of the LaTeX Project Public License; either

10 %% version 1.3c of the License, or any later version.

11 %% The latest version of this license is in

12 %% http://www.latex-project.org/lppl.txt

13 %% We did our best to help you, but there is NO WARRANTY.

14 %%

15 %% Please report bugs, problems, and suggestions via

16 %%

17 %% http://www.contact-ednotes.sty.de.vu

3 User Commands

\MFfieldtemplate[〈fill-element〉]{〈field〉}{〈template〉}

determines the width of fields with id 〈field〉 to be the same as of 〈template〉:

18 \newcommand*{\MFfieldtemplate}[3][\MFfillelement]{%

\@bg delimits the “background” or “filler list”. The field id is stored at the end
ahead.

19 \MF@make@bg#1#3\MF@store@field@bg\@bg{#2}}

\MF@make@bg is defined in Sec. 4.2.

3 USER COMMANDS 5

\MFfillelement

is the default for 〈fill-element〉, defined to be (like) \space here:

20 \newcommand*{\MFfillelement}{} \let\MFfillelement\space

〈fill-element〉must be a “single item” (that TEX converts into a single token, due
to our comparison mechanism), so for using somewhat more complex 〈complex 〉
than \space,

\renewcommand*{\MFfillelement}{〈complex 〉}

must be used instead of the optional argument.—It was very hard for me with
typesetting, what finally worked were \MFspace and \MFenspace as alternative
optional arguments. It is fine for half-quad spaces such as characters with \tt

figures with more Computer Modern fonts:

21 \newcommand*{\MFspace}{\mbox{ }}

22 % \newcommand*{\MFenspace}{\leavevmode\enspace}

23 \newcommand*{\MFenspace}{\mbox{\enspace}}

For using the nicefilelist and hardwrap packges together, I needed the following
\MFotherspace as \MFfillelement—expanding to a character token that is a
blank space according to its character code, but belongs to the “other” category:

24 \newcommand*{\MFotherspace}{} {\@makeother\ \gdef\MFotherspace{ }}

More generally, I guess that this is the perfect “filling element” in text to be
wrapped by hardwrap.

\MFleftinfield{〈text〉}{〈field〉}

returns 〈text〉, followed by 〈fill-elements〉 to get as many elements (characters)
as the 〈template〉 associated with 〈field〉:

25 \newcommand*{\MFleftinfield}{\MF@check@field l}

\MFrightinfield{〈text〉}{〈field〉}

returns the 〈fill-elements〉 before giving 〈text〉:

26 \newcommand*{\MFrightinfield}{\MF@check@field r}

\MF@check@field is defined in Sec. 4.3.

http://ctan.org/pkg/nicefilelist
http://ctan.org/pkg/hardwrap

4 INTERNAL COMMANDS 6

4 Internal Commands

4.1 Tools

We test arguments 〈arg〉 on emptiness by \MF@if@empty{〈arg〉}{〈yes〉}{〈no〉} :

27 \newcommand*{\MF@if@empty}[1]{%

28 \ifx\MF@store@field@bg#1\MF@store@field@bg

29 \expandafter\@firstoftwo

30 \else

31 \expandafter\@secondoftwo

32 \fi}

\MF@field stores the name space for filling jobs:

33 \newcommand*{\MF@field}{MF@field:}

4.2 Field Declaration

\MF@make@bg essentially builds a list of as many filler elements as the tem-
plate has characters, using a loop macro \MF@make@bg. The current list of filler
elements is delimited by \@bg.

34 \def\MF@make@bg#1#2#3\MF@store@field@bg{%

35 \MF@if@empty{#3}%

First case: #2 is the last template element. We run \MF@store@field@bg with
an additional filler element:2

36 {\MF@store@field@bg#1}%

Second case: the filler list gets an additional element, and the loop repeats:

37 {\MF@make@bg#1#3\MF@store@field@bg#1}%

38 }

\MF@store@field@bg〈background〉\@bg{〈field〉} essentially stores the filler list
(“〈background〉”), or more precisely . . .

39 \def\MF@store@field@bg#1\@bg#2{%

Here is the only assignment when the macros run: a command

\MF@field:〈field〉{〈text〉}

is defined.3

40 \@namedef{\MF@field#2}##1{%

41 \MF@reduce@bg##1\rest@t#1\rest@f{##1}{#2}}}

2Another run of \MF@make@bg fails . . .
3This is the common, confusing way to describe such situations. Actually, the definition

assigns a macro meaning to a “named token” whose name is “MF@field:〈field〉”. Typing
\MF@field:〈field〉 won’t work.

4 INTERNAL COMMANDS 7

4.3 Checking Field

\MF@check@field{〈align〉}{〈text〉}{〈field〉} runs \MF@field:〈field〉{〈text〉}
from above, provided the latter has been defined (by \MFfieldtemplate). The
〈align〉 command is appended.

42 \newcommand*{\MF@check@field}[3]{%

43 \@ifundefined{\MF@field#3}%

44 % {\PackageError{field "#3" not defined}%

45 % {use \string\MFfieldtemplate}}%

With v0.1, I thought about errors and warnings properly only more below . . .

46 {\MF@field@undeclared{#2}{#3}}%

47 {\csname\MF@field#3\endcsname{#2}#1}}

\MF@field@undeclared{〈text〉}{〈field〉} just outputs 〈text〉.

48 \newcommand*{\MF@field@undeclared}[2]{#1}

A proper message is problematic in pure expansion as on screen or in .log

files. Package option fake-undefined (Sec. 5) offers another “cheap” solution.
(TODO)

4.4 Trying Alignment

\MF@reduce@bg〈r-text〉\rest@t〈r-fill〉\rest@f{〈text〉}{〈field〉}〈align〉
is invoked by that \MF@field:〈field〉 that \MF@store@field@bg defines as
above. It takes away one element both from the (remaining) 〈text〉 (delim-
ited by \rest@t) and the filler list (delimited by \rest@f). The full 〈text〉 has
been stored ahead.

49 \def\MF@reduce@bg#1#2\rest@t#3#4\rest@f{%

50 \MF@if@empty{#2}%

51 {\MF@if@empty{#4}%

When we have removed the last elements of both lists at the same time, we just
return 〈text〉:

52 \@firstofthree

When we have removed the last element of 〈text〉, and there still is a filler
element, we perform the alignment:

53 {\MF@fine@align{#4}}}%

54 {\MF@if@empty{#4}%

When we have removed the last filler element, and a 〈text〉 element is still
present, we return 〈text〉, maybe together with a warning:

55 \MF@bad@align

5 PACKAGE OPTION 8

When neither #1 nor #3 have been the last elements in their lists, we run
\MF@reduce@bg on the remaining lists:

56 {\MF@reduce@bg#2\rest@t#4\rest@f}}}

\@firstofthree{〈use〉}{〈skip〉}{〈skip〉} may be known or not . . .

57 \long\def\@firstofthree#1#2#3{#1}

\MF@fine@align{〈filler〉}{〈text〉}{〈field〉}〈align〉 . . .

58 \newcommand*{\MF@fine@align}[4]{\if r#4#1#2\else#2#1\fi}

\MF@bad@align{〈text〉}{〈field〉}{〈align〉}
at present is similar to \@firstofthree. In a future package version, we may
add some warning or so for cases where it is useful—while it is not useful to
write code for warnings to screen and .log (the originally intended use of the
package). We offer a “cheap” possibility of throwing some error by package
option fake-undefined —see Sec. 5

59 \newcommand*{\MF@bad@align}[3]{#1}

Actually, in v0.1 \MF@check@field appends the 〈field〉 argument hoping it
could be used in a warning.

5 Package Option

With applications like \listfiles, it may be useful to get an “undefined” error
where the name of the undefined command is a kind of “secret message” . . .

60 \DeclareOption{fake-undefined}{%

#1 is 〈text〉 and will be output, #2 is 〈field〉, cf. above.

61 \def\MF@field@undeclared#1#2{#1\monofillFieldUndeclared}

62 \def\MF@bad@align#1#2#3{#1\monofillFieldTooSmall}}

63 \ProcessOptions

6 \endinput and Version HISTORY

64 \endinput

VERSION HISTORY

65 v0.1 2012/03/18 started

66 2012/03/19 completed

67 v0.1a 2012/03/29 doc.: \medbreak (fix); \strong

68 v0.2 2012/10/29 \MFotherspace; doc. slightly reformatted

69

7 CREDIT 9

7 Credit

The package actually is motivated by good ideas of Martin Münch’s about ex-
tending the longnamefilelist package.

http://ctan.org/author/id/muench-hm
http://ctan.org/pkg/longnamefilelist

	Features and Usage
	Summary of Features
	``Philosophical aspects"
	Installing and Calling
	Examples
	Typewriter
	Figures
	Screen Output

	Package File Header (Legalese)
	User Commands
	Internal Commands
	Tools
	Field Declaration
	Checking Field
	Trying Alignment

	Package Option
	\endinput and Version HISTORY
	Credit

