
The xgalley package
Galley

The LATEX Project∗

Released 2022-04-20

1 Introduction
In LATEX3 terminology a galley is a rectangular area which receives text and other material
filling it from top. The vertically extend of a galley is normally not restricted: instead
certain chunks are taken off the top of an already partially filled galley to form columns
or similar areas on a page. This process is typically asynchronous but there are ways to
control or change its behaviour.

Examples for galleys are “the main galley”, where the continuous document data
gets formatted into and from which columns and pages are constructed, and “vertical box
galleys”, such as the body of a minipage environment. The latter galleys are typically
not split after formatting, though there can be exceptions.

2 Formatting layers
The present module is mainly concerned with the formatting of text in galleys. The
mechanism by which this is achieved uses four (somewhat) distinct layers, some of which
can be addressed using the templates provided here.

2.1 Layer one: external dimensions
The bottom layer of the system is the external dimensions of the galley. Normally only
the horizontal dimension is fixed externally, while the vertical (filling) dimension is un-
specified. The external dimensions are fixed when starting a new galley, and are therefore
not modifiable within the galley.

There are no templates for setting this layer directly, although the external val-
ues are influenced by other parts of the system (for example when creating minipage
environments).

∗E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org


2.2 Layer two: internal dimensions
The second layer is the internal dimensions of the galley: the measure used for paragraph
text and the position of the paragraph relative to the edges of the galley.

This layer is normally accessed by higher-level templates via the object type measure.
Changes made using level two templates will often extend for large parts of a document
(up to and including the entire document).

2.3 Layer three: paragraph shape
The third layer defines the paragraph shape within the measure as provided by the second
layer. In the absence of any specification for that layer the paragraph shape used will be
that of a rectangular area of the width of the current measure.

There are some restrictions imposed on the shape of a paragraph by the underlying
TEX mechanisms. For example, cut out sections in paragraphs can be specified from the
top of the paragraph but not from the bottom.

2.4 Layer four: formatting inside the paragraph
The forth layer deals with the paragraph formatting aspects such as hyphenation and
justification within the paragraph (this is sometimes referred to as “h&j” or “hj”).

3 Templates
3.1 Layer two: internal dimensions
3.2 The object type ‘measure’
Arg:

Semantics:

Sets the width available to typeset material within the galley. The ⟨left margin⟩ and
⟨right margin⟩ values are used in the adjustment to over-ride any given in the template.
Depending upon the template in use, the margins may be absolute (relative only to the
edges of the galley) or relative (taking account of measure adjustments already made).
The template applies to the galley from the point of us forward, unless over-ridden by
another use of the measure object type.

3.3 The template ‘absolute’ (object type measure)
Attributes:

left-margin (length) The distance from the left edge of the galley to the left edge of
the area for typeset material. A negative value will cause the typeset material to
extend beyond the edge of the galley. Default: 0pt

right-margin (length) The distance from the right edge of the galley to the right edge
of the area for typeset material. A negative value will cause the typeset material
to extend beyond the edge of the galley. Default: 0pt

2



Semantics & Comments:

This template sets up the typesetting area such that typeset material runs from
left-margin away from the left edge of the galley to right-margin away from the
right edge of the galley. Both of these distances are absolute, i.e. no account is taken of
previous measure settings. Either on or both values may be negative, in which case the
typeset material will protrude outside of the edges of the galley.

3.4 The template ‘relative’ (object type measure)
Attributes:

left-margin (length) The distance from the previous left margin of the typeset material
within the galley to the new position of the left margin. A negative value will cause
the new margin to be “outside” of the previous one, and may cause the typeset
material to protrude outside of the edge of the galley. Default: 0pt

right-margin (length) The distance from the previous right margin of the typeset
material within the galley to the new position of the right margin. A negative
value will cause the new margin to be “outside” of the previous one, and may cause
the typeset material to protrude outside of the edge of the galley. Default: 0pt

Semantics & Comments:

This template sets up the typesetting area such that it has margins left-margin and
right-margin within those previously set. For a galley within no previous margins,
this will result in margins relative to the edges of the galley. Within a galley in which
the measure has already been set, using the relative template will indent the typeset
material relative to the existing margins. Either on or both values may be negative, in
which case the typeset material may protrude outside of the edges of the galley.

3.5 Layer three: paragraph shape
3.6 The object type ‘parshape’
Arg:

Semantics:

Template of this type define any shaping of the paragraph within the current measure
of the galley. Thus they are used to generate “special” paragraph shapes, for example
placing a cutout in one side of the paragraph. Typically, parshape templates will apply in
a limited sense (to a single paragraph or a defined number of lines). However, parshape
templates may also apply in an “ongoing” manner.

Note that parshape templates do not alter any first-line indent for paragraphs (or
any other “in paragraph” setting). Instead, they define a shape inside which the para-
graph material will be placed.

3



3.7 The template ‘hang’ (object type parshape)
Attributes:

indent (length) The hanging indent from either the left- or right-hand margin (as
determined by on-left-side). Default: 0pt

on-left-side (boolean) If true, causes the hanging indent to be on the left-hand side
of the paragraph. Default: true

lines (integer) The number of lines of full width before hanging begins. Default: 1

Semantics & Comments:

Sets the paragraph shape such that the after a number of full-width lines, specified by
lines, the paragraph is indented by the indent from a margin. If on-left-side is true
this indent will be from the left-hand margin, otherwise it will be from the right. In either
case, the indent is relative to the edge of the current measure and may be negative (in
which case an outdent will result). This template type applies only to a single paragraph.

3.8 The template ‘initial’ (object type parshape)
Attributes:

indent (length) The indent for the initial lines from either the left- or right-hand mar-
gin (as determined by on-left-side). Default: 0pt

on-left-side (boolean) If true, causes the indent to be on the left-hand side of the
paragraph. Default: true

lines (integer) The number of lines of indented lines before full-width line begins.
Default: 2

Semantics & Comments:

Sets the paragraph shape such that the first lines lines are indented by the indent given,
before lines of full width begin. If on-left-side is true this indent will be from the
left-hand margin, otherwise it will be from the right. In either case, the indent is relative
to the edge of the current measure and may be negative (in which case an outdent will
result). This template type applies only to a single paragraph.

3.9 The template ‘std’ (object type parshape)
Attributes:

()

4



Semantics & Comments:

Sets a rectangular paragraph shape which occupies the full width specified by the
measure. It is therefore intended as a “do nothing” template for use where a para-
graph shape is required but where no special formatting is needed. This template type
applies only to a single paragraph.

3.10 Layer four: formatting inside the paragraph
3.11 The object type ‘hyphenation’
Arg:

Semantics:

Controls whether hyphenation is attempted within the current galley. This object type
may also alter the degree to which hyphenation is encouraged by manipulating the un-
derlying TEX parameters. This object type applies to the galley from the point of use
forward.

3.12 The template ‘std’ (object type hyphenation)
Attributes:

enable (boolean) Switches all hyphenation on or off. Default: true

enable-upper-case (boolean) Switches hyphenation on or off for words beginning
with upper case letters. Default: true

penalty (choice) Sets the degree to which TEX is discouraged from undertaking hy-
phenation, from the choices low, medium and high. Default: low

Semantics & Comments:

Determines both whether hyphenation is allowed at all, and if so to what degree it is
discouraged. Setting penalty to high does not prevent hyphenation: this is only done if
enable is set false.

3.13 The object type ‘justification’
Arg:

Semantics:

Controls the nature of justification undertaken within the galley. The template applies
from the point of use forward.

5



3.14 The template ‘std’ (object type justification)
Attributes:

end-skip (skip) The skip inserted to fill the last line of a paragraph.
Default: 0pt plus 1fil

fixed-word-spacing (boolean) Determines whether inter-word spacing has a stretch
component (for non-monospaced fonts. Default: false

indent-width (length) The length of the indent inserted at the start of the first line
of a new paragraph.

left-skip (skip) The skip between the left margin of the galley and the left edge of a
paragraph. Default: 0pt

right-skip (skip) The skip between the right margin of the galley and the right edge
of a paragraph. Default: 0pt

start-skip (skip) The skip inserted in addition to indent-width at the start of a para-
graph. Default: 0pt

Semantics & Comments:

The std template for justification provides rubber lengths at the start and end of the
paragraph and at each side of the paragraph. It also allows for both flexible and fixed
inter-word spacing. The interaction between the settings is demonstrated in the selection
of standard instances provided.

3.14.1 The instance ‘justified’ (template justification/std)

Attribute values:

indent-width 15pt

Layout description & Comments:

Sets paragraphs fully-justified with the first line indented by 15pt.

3.14.2 The instance ‘noindent’ (template justification/std)

Attribute values:

end-skip 15pt plus 1fil
indent-width 0pt

Layout description & Comments:

Sets paragraphs fully-justified with no indent for the first line. To ensure that paragraphs
have some visual distinction, the end-skip is set to insert some space in all cases.

6



3.15 The template ‘single’ (object type justification)
Attributes:

end-skip (skip) The skip inserted to fill the last line of a paragraph.
Default: 0pt plus 1fil

fixed-word-spacing (boolean) Determines whether inter-word spacing has a stretch
component (for non-monospaced fonts. Default: false

indent-width (length) The length of the indent inserted at the start of the first line
of a new paragraph.

left-skip (skip) The skip between the left margin of the galley and the left edge of a
paragraph. Default: 0pt

right-skip (skip) The skip between the right margin of the galley and the right edge
of a paragraph. Default: 0pt

start-skip (skip) The skip inserted in addition to indent-width at the start of a para-
graph. Default: 0pt

stretch-last-line (boolean) Determines whether inter-word spacing in the last line is
stretched. If true, the spacing in the last line is stretched in the by the same factor
as that in the penultimate line. Default: false

Semantics & Comments:

The single template for justification provides rubber lengths at the start and end of the
paragraph and at each side of the paragraph. It also allows for both flexible and fixed
inter-word spacing. The interaction between the settings is demonstrated in the selection
of standard instances provided. The template applies only to a single paragraph.

3.15.1 The instance ‘ragged-left’ (template justification/std)

Attribute values:

end-skip 0pt
fixed-word-spacing true
indent-width 0pt
left-skip 0pt plus 2em
right-skip 0pt

Layout description & Comments:

Typesets material with a ragged left margin such that hyphenation will still occur and
such that very short lines are discouraged. This is similar to the LATEX 2ε ragged2e
RaggedLeft environment.

7



3.15.2 The instance ‘ragged-right’ (template justification/std)

Attribute values:

end-skip 0pt
fixed-word-spacing true
indent-width 0pt
left-skip 0pt
right-skip 0pt plus 2em

Layout description & Comments:

Typesets material with a ragged right margin such that hyphenation will still occur and
such that very short lines are discouraged. This is similar to the LATEX 2ε ragged2e
RaggedLeft environment.

3.15.3 The instance ‘center’ (template justification/std)

Attribute values:

end-skip 0pt
fixed-word-spacing true
indent-width 0pt
left-skip 0pt plus 1fil
right-skip 0pt plus 1fil

Layout description & Comments:

Centres typeset material such that hyphenation is discouraged and short lines are allowed.

3.16 The template ‘compound’ (object type justification)
Attributes:

first-paragraph (instance) Justification for the first paragraph.

other-paragraphs (instance) Justification for the remaining paragraphs.

Semantics & Comments:

Here, both keys should themselves be instances of the justification template. The
compound template is used to set up a single “non-standard” paragraph followed by
“standard” ones. For example, it can be used to ensure that one noindent paragraph is
then followed by std justification.

3.17 The object type ‘line-breaking’
Arg:

8



Semantics:

Controls the line breaking attempted by TEX when typesetting material for the galley.
This does not include whether words are hyphenated, which is handled separately.

3.18 The template ‘std’ (object type line-breaking)
Attributes:

badness (integer) Boundary that if exceeded will cause TEX to report an underfull
line. Default: 1000

binop-penalty (integer) Penalty charged if an inline math formula is broken at a
binary operator. Default: 700

double-hyphen-demerits (integer) Extra demerit charge of two (or more) lines in
succession end in a hyphen. Default: 10000

emergency-stretch (skip) Additional stretch assumed for each line if no better line
breaking can be found without it. This stretch is not actually added to lines, so its
use may result in underfull box warnings. Default: 0pt

final-hyphen-demerits (integer) Extra demerit charge if the second last line is hy-
phenated. Default: 5000

fuzz (length) Boundary below overfull lines are not reported. Default: 0.1pt

mismatch-demerits (integer) Extra demerit charge if two visually incompatible lines
follow each other. Default: 10000

line-penalty (integer) Extra penalty charged per line in the paragraph. By making
this penalty higher TEX will try harder to produce compact paragraphs.Default: 10

pretolerance (integer) Maximum tolerance allowed for individual lines to break the
paragraph without attempting hyphenation. Default: 100

relation-penalty (integer) Penalty charged if an inline math formula is broken at a
relational symbol. Default: 500

tolerance (integer) Maximum tolerance allowed for individual lines when breaking a
paragraph while attempting hyphenation (if this limit can’t be met emergency-stretch
comes into play). Default: 200

Semantics & Comments:

This is an interface to the underlying TEX system for determining line breaking.

3.19 Between paragraphs
3.20 The object type ‘paragraph-breaking’
Arg:

9



Semantics:

This object type determines how TEX determines the behaviour when the paragraph-
breaking algorithm is calculating whether to break up a paragraph. Thus for example
an instance of this object type may prevent breaks within a paragraph, forbid widows or
orphans, etc.

3.21 The template ‘std’ (object type paragraph-breaking)
Attributes:

badness (integer) Boundary that if exceeded will cause TEX to report an underfull
vertical box. Default: 1000

broken-penalty (integer) Penalty for page breaking after a hyphenated line.
Default: 100

club-penalty (integer) Penalty for generating a club line when page breaking.
Default: 150

display-club-penalty (integer) Penalty for breaking between to leave a club line after
display math. Default: 150

display-widow-penalty (integer) Penalty for breaking between to leave a widow line
before display math. Default: 150

fuzz (length) Boundary below which overfull vertical boxes are not reported.
Default: 0.1pt

interline-penalty (integer) Penalty for breaking between lines in a paragraph.
Default: 0

pre-display-penalty (integer) Penalty for breaking between immediately before dis-
play math material. Default: 10000

post-display-penalty (integer) Penalty for breaking between immediately after dis-
play math material. Default: 0

widow-penalty (integer) Penalty for generating a widow line when page breaking.
Default: 150

Semantics & Comments:

This template provides an interface to the underlying TEX mechanism for controlling
page breaking. The template applies on an ongoing basis to all paragraphs after the
template is used.

3.21.1 The instance ‘std’ (template paragraph-breaking/std)

Attribute values:

10



Layout description & Comments:

Sets paragraphs such that they can break with widows and orphans discouraged but not
prevented. Breaks are possible after display math material but no immediately before it.

3.21.2 The instance ‘nobreak’ (template paragraph-breaking/std)

Attribute values:

interline-penalty 10000
post-display-penalty 10000

Layout description & Comments:

Sets paragraphs such that they cannot be broken at all (as far as is possible in TEX).

3.21.3 The instance ‘nolone’ (template paragraph-breaking/std)

Attribute values:

club-penalty 10000
display-widow-penalty10000
widow-penalty 10000

Layout description & Comments:

Sets paragraphs such that they cannot be broken to leave a club or widow line (as far as
is possible in TEX).

3.22 The template ‘single’ (object type paragraph-breaking)
Attributes:

badness (integer) Boundary that if exceeded will cause TEX to report an underfull
vertical box. Default: ⟨none⟩

broken-penalty (integer) Penalty for page breaking after a hyphenated line.
Default: ⟨none⟩

club-penalty (integer) Penalty for generating a club line when page breaking.
Default: ⟨none⟩

display-club-penalty (integer) Penalty for breaking between to leave a club line after
display math. Default: ⟨none⟩

display-widow-penalty (integer) Penalty for breaking between to leave a widow line
before display math. Default: ⟨none⟩

fuzz (length) Boundary below which overfull vertical boxes are not reported.
Default: ⟨none⟩

interline-penalty (integer) Penalty for breaking between lines in a paragraph.
Default: ⟨none⟩

11



pre-display-penalty (integer) Penalty for breaking between immediately before dis-
play math material. Default: ⟨none⟩

post-display-penalty (integer) Penalty for breaking between immediately after dis-
play math material. Default: ⟨none⟩

widow-penalty (integer) Penalty for generating a widow line when page breaking.
Default: ⟨none⟩

Semantics & Comments:

This template provides an interface to the underlying TEX mechanism for controlling
page breaking. The template applies only to the next paragraph, and can thus be used
to achieve effects such as non-breaking paragraphs.

3.22.1 The instance ‘single-std’ (template paragraph-breaking/single)

Attribute values:

Layout description & Comments:

Sets the next paragraph such that it can break with widows and orphans discouraged
but not prevented. Breaks are possible after display math material but no immediately
before it.

3.22.2 The instance ‘single-nobreak’ (template paragraph-breaking/single)

Attribute values:

interline-penalty 10000
post-display-penalty 10000

Layout description & Comments:

Sets the next paragraph such that it cannot be broken at all (as far as is possible in TEX).

3.22.3 The instance ‘single-noclub’ (template paragraph-breaking/single)

Attribute values:

club-penalty 10000
display-club-penalty 10000

Layout description & Comments:

Sets the next paragraph such that it cannot be broken to leave a club line (as far as is
possible in TEX).

12



3.22.4 The instance ‘single-nolone’ (template paragraph-breaking/single)

Attribute values:

club-penalty 10000
display-club-penalty 10000
display-widow-penalty 10000
widow-penalty 10000

Layout description & Comments:

Sets the next paragraph such that it cannot be broken to leave a club or widow line (as
far as is possible in TEX).

3.22.5 The instance ‘single-nowidow’ (template paragraph-breaking/single)

Attribute values:

display-widow-penalty 10000
widow-penalty 10000

Layout description & Comments:

Sets the next paragraph such that it cannot be broken to leave a widow line (as far as is
possible in TEX).

13


	1 Introduction
	2 Formatting layers
	2.1 Layer one: external dimensions
	2.2 Layer two: internal dimensions
	2.3 Layer three: paragraph shape
	2.4 Layer four: formatting inside the paragraph

	3 Templates
	3.1 Layer two: internal dimensions
	3.2 The object type `measure'
	3.3 The template `absolute' (object type measure)
	3.4 The template `relative' (object type measure)
	3.5 Layer three: paragraph shape
	3.6 The object type `parshape'
	3.7 The template `hang' (object type parshape)
	3.8 The template `initial' (object type parshape)
	3.9 The template `std' (object type parshape)
	3.10 Layer four: formatting inside the paragraph
	3.11 The object type `hyphenation'
	3.12 The template `std' (object type hyphenation)
	3.13 The object type `justification'
	3.14 The template `std' (object type justification)
	3.14.1 The instance `justified' (template justification/std)
	3.14.2 The instance `noindent' (template justification/std)

	3.15 The template `single' (object type justification)
	3.15.1 The instance `ragged-left' (template justification/std)
	3.15.2 The instance `ragged-right' (template justification/std)
	3.15.3 The instance `center' (template justification/std)

	3.16 The template `compound' (object type justification)
	3.17 The object type `line-breaking'
	3.18 The template `std' (object type line-breaking)
	3.19 Between paragraphs
	3.20 The object type `paragraph-breaking'
	3.21 The template `std' (object type paragraph-breaking)
	3.21.1 The instance `std' (template paragraph-breaking/std)
	3.21.2 The instance `nobreak' (template paragraph-breaking/std)
	3.21.3 The instance `nolone' (template paragraph-breaking/std)

	3.22 The template `single' (object type paragraph-breaking)
	3.22.1 The instance `single-std' (template paragraph-breaking/single)
	3.22.2 The instance `single-nobreak' (template paragraph-breaking/single)
	3.22.3 The instance `single-noclub' (template paragraph-breaking/single)
	3.22.4 The instance `single-nolone' (template paragraph-breaking/single)
	3.22.5 The instance `single-nowidow' (template paragraph-breaking/single)



