PyArrow Functionality#

pandas can utilize PyArrow to extend functionality and improve the performance of various APIs. This includes:

  • More extensive data types compared to NumPy

  • Missing data support (NA) for all data types

  • Performant IO reader integration

  • Facilitate interoperability with other dataframe libraries based on the Apache Arrow specification (e.g. polars, cuDF)

To use this functionality, please ensure you have installed the minimum supported PyArrow version.

Data Structure Integration#

A Series, Index, or the columns of a DataFrame can be directly backed by a which is similar to a NumPy array. To construct these from the main pandas data structures, you can pass in a string of the type followed by [pyarrow], e.g. "int64[pyarrow]"" into the dtype parameter

In [1]: ser = pd.Series([-1.5, 0.2, None], dtype="float32[pyarrow]")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[1], line 1
----> 1 ser = pd.Series([-1.5, 0.2, None], dtype="float32[pyarrow]")

File /usr/lib/python3/dist-packages/pandas/core/series.py:493, in Series.__init__(self, data, index, dtype, name, copy, fastpath)
    490     index = ensure_index(index)
    492 if dtype is not None:
--> 493     dtype = self._validate_dtype(dtype)
    495 if data is None:
    496     index = index if index is not None else default_index(0)

File /usr/lib/python3/dist-packages/pandas/core/generic.py:516, in NDFrame._validate_dtype(cls, dtype)
    514 """validate the passed dtype"""
    515 if dtype is not None:
--> 516     dtype = pandas_dtype(dtype)
    518     # a compound dtype
    519     if dtype.kind == "V":

File /usr/lib/python3/dist-packages/pandas/core/dtypes/common.py:1624, in pandas_dtype(dtype)
   1621     return dtype
   1623 # registered extension types
-> 1624 result = registry.find(dtype)
   1625 if result is not None:
   1626     if isinstance(result, type):
   1627         # GH 31356, GH 54592

File /usr/lib/python3/dist-packages/pandas/core/dtypes/base.py:576, in Registry.find(self, dtype)
    574 for dtype_type in self.dtypes:
    575     try:
--> 576         return dtype_type.construct_from_string(dtype)
    577     except TypeError:
    578         pass

File /usr/lib/python3/dist-packages/pandas/core/dtypes/dtypes.py:2251, in ArrowDtype.construct_from_string(cls, string)
   2249 base_type = string[:-9]  # get rid of "[pyarrow]"
   2250 try:
-> 2251     pa_dtype = pa.type_for_alias(base_type)
   2252 except ValueError as err:
   2253     has_parameters = re.search(r"[\[\(].*[\]\)]", base_type)

NameError: name 'pa' is not defined

In [2]: ser
Out[2]: 
0     NaN
1     NaN
2     5.0
3     NaN
4     NaN
5     NaN
6    13.0
7     NaN
8     NaN
dtype: float64

In [3]: idx = pd.Index([True, None], dtype="bool[pyarrow]")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[3], line 1
----> 1 idx = pd.Index([True, None], dtype="bool[pyarrow]")

File /usr/lib/python3/dist-packages/pandas/core/indexes/base.py:488, in Index.__new__(cls, data, dtype, copy, name, tupleize_cols)
    485 name = maybe_extract_name(name, data, cls)
    487 if dtype is not None:
--> 488     dtype = pandas_dtype(dtype)
    490 data_dtype = getattr(data, "dtype", None)
    492 refs = None

File /usr/lib/python3/dist-packages/pandas/core/dtypes/common.py:1624, in pandas_dtype(dtype)
   1621     return dtype
   1623 # registered extension types
-> 1624 result = registry.find(dtype)
   1625 if result is not None:
   1626     if isinstance(result, type):
   1627         # GH 31356, GH 54592

File /usr/lib/python3/dist-packages/pandas/core/dtypes/base.py:576, in Registry.find(self, dtype)
    574 for dtype_type in self.dtypes:
    575     try:
--> 576         return dtype_type.construct_from_string(dtype)
    577     except TypeError:
    578         pass

File /usr/lib/python3/dist-packages/pandas/core/dtypes/dtypes.py:2251, in ArrowDtype.construct_from_string(cls, string)
   2249 base_type = string[:-9]  # get rid of "[pyarrow]"
   2250 try:
-> 2251     pa_dtype = pa.type_for_alias(base_type)
   2252 except ValueError as err:
   2253     has_parameters = re.search(r"[\[\(].*[\]\)]", base_type)

NameError: name 'pa' is not defined

In [4]: idx
Out[4]: [0.0, 1.0, 10.0]

In [5]: df = pd.DataFrame([[1, 2], [3, 4]], dtype="uint64[pyarrow]")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[5], line 1
----> 1 df = pd.DataFrame([[1, 2], [3, 4]], dtype="uint64[pyarrow]")

File /usr/lib/python3/dist-packages/pandas/core/frame.py:704, in DataFrame.__init__(self, data, index, columns, dtype, copy)
    702 allow_mgr = False
    703 if dtype is not None:
--> 704     dtype = self._validate_dtype(dtype)
    706 if isinstance(data, DataFrame):
    707     data = data._mgr

File /usr/lib/python3/dist-packages/pandas/core/generic.py:516, in NDFrame._validate_dtype(cls, dtype)
    514 """validate the passed dtype"""
    515 if dtype is not None:
--> 516     dtype = pandas_dtype(dtype)
    518     # a compound dtype
    519     if dtype.kind == "V":

File /usr/lib/python3/dist-packages/pandas/core/dtypes/common.py:1624, in pandas_dtype(dtype)
   1621     return dtype
   1623 # registered extension types
-> 1624 result = registry.find(dtype)
   1625 if result is not None:
   1626     if isinstance(result, type):
   1627         # GH 31356, GH 54592

File /usr/lib/python3/dist-packages/pandas/core/dtypes/base.py:576, in Registry.find(self, dtype)
    574 for dtype_type in self.dtypes:
    575     try:
--> 576         return dtype_type.construct_from_string(dtype)
    577     except TypeError:
    578         pass

File /usr/lib/python3/dist-packages/pandas/core/dtypes/dtypes.py:2251, in ArrowDtype.construct_from_string(cls, string)
   2249 base_type = string[:-9]  # get rid of "[pyarrow]"
   2250 try:
-> 2251     pa_dtype = pa.type_for_alias(base_type)
   2252 except ValueError as err:
   2253     has_parameters = re.search(r"[\[\(].*[\]\)]", base_type)

NameError: name 'pa' is not defined

In [6]: df
Out[6]: 
     a    b
0  xxx  yyy
1   ¡¡   ¡¡

Note

The string alias "string[pyarrow]" maps to pd.StringDtype("pyarrow") which is not equivalent to specifying dtype=pd.ArrowDtype(pa.string()). Generally, operations on the data will behave similarly except pd.StringDtype("pyarrow") can return NumPy-backed nullable types while pd.ArrowDtype(pa.string()) will return ArrowDtype.

In [7]: import pyarrow as pa
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
Cell In[7], line 1
----> 1 import pyarrow as pa

ModuleNotFoundError: No module named 'pyarrow'

In [8]: data = list("abc")

In [9]: ser_sd = pd.Series(data, dtype="string[pyarrow]")
---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
Cell In[9], line 1
----> 1 ser_sd = pd.Series(data, dtype="string[pyarrow]")

File /usr/lib/python3/dist-packages/pandas/core/series.py:493, in Series.__init__(self, data, index, dtype, name, copy, fastpath)
    490     index = ensure_index(index)
    492 if dtype is not None:
--> 493     dtype = self._validate_dtype(dtype)
    495 if data is None:
    496     index = index if index is not None else default_index(0)

File /usr/lib/python3/dist-packages/pandas/core/generic.py:516, in NDFrame._validate_dtype(cls, dtype)
    514 """validate the passed dtype"""
    515 if dtype is not None:
--> 516     dtype = pandas_dtype(dtype)
    518     # a compound dtype
    519     if dtype.kind == "V":

File /usr/lib/python3/dist-packages/pandas/core/dtypes/common.py:1624, in pandas_dtype(dtype)
   1621     return dtype
   1623 # registered extension types
-> 1624 result = registry.find(dtype)
   1625 if result is not None:
   1626     if isinstance(result, type):
   1627         # GH 31356, GH 54592

File /usr/lib/python3/dist-packages/pandas/core/dtypes/base.py:576, in Registry.find(self, dtype)
    574 for dtype_type in self.dtypes:
    575     try:
--> 576         return dtype_type.construct_from_string(dtype)
    577     except TypeError:
    578         pass

File /usr/lib/python3/dist-packages/pandas/core/arrays/string_.py:177, in StringDtype.construct_from_string(cls, string)
    175     return cls(storage="python")
    176 elif string == "string[pyarrow]":
--> 177     return cls(storage="pyarrow")
    178 elif string == "string[pyarrow_numpy]":
    179     return cls(storage="pyarrow_numpy")

File /usr/lib/python3/dist-packages/pandas/core/arrays/string_.py:131, in StringDtype.__init__(self, storage)
    126     raise ValueError(
    127         f"Storage must be 'python', 'pyarrow' or 'pyarrow_numpy'. "
    128         f"Got {storage} instead."
    129     )
    130 if storage in ("pyarrow", "pyarrow_numpy") and pa_version_under10p1:
--> 131     raise ImportError(
    132         "pyarrow>=10.0.1 is required for PyArrow backed StringArray."
    133     )
    134 self.storage = storage

ImportError: pyarrow>=10.0.1 is required for PyArrow backed StringArray.

In [10]: ser_ad = pd.Series(data, dtype=pd.ArrowDtype(pa.string()))
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[10], line 1
----> 1 ser_ad = pd.Series(data, dtype=pd.ArrowDtype(pa.string()))

NameError: name 'pa' is not defined

In [11]: ser_ad.dtype == ser_sd.dtype
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[11], line 1
----> 1 ser_ad.dtype == ser_sd.dtype

NameError: name 'ser_ad' is not defined

In [12]: ser_sd.str.contains("a")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[12], line 1
----> 1 ser_sd.str.contains("a")

NameError: name 'ser_sd' is not defined

In [13]: ser_ad.str.contains("a")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[13], line 1
----> 1 ser_ad.str.contains("a")

NameError: name 'ser_ad' is not defined

For PyArrow types that accept parameters, you can pass in a PyArrow type with those parameters into ArrowDtype to use in the dtype parameter.

In [14]: import pyarrow as pa
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
Cell In[14], line 1
----> 1 import pyarrow as pa

ModuleNotFoundError: No module named 'pyarrow'

In [15]: list_str_type = pa.list_(pa.string())
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[15], line 1
----> 1 list_str_type = pa.list_(pa.string())

NameError: name 'pa' is not defined

In [16]: ser = pd.Series([["hello"], ["there"]], dtype=pd.ArrowDtype(list_str_type))
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[16], line 1
----> 1 ser = pd.Series([["hello"], ["there"]], dtype=pd.ArrowDtype(list_str_type))

NameError: name 'list_str_type' is not defined

In [17]: ser
Out[17]: 
0     NaN
1     NaN
2     5.0
3     NaN
4     NaN
5     NaN
6    13.0
7     NaN
8     NaN
dtype: float64
In [18]: from datetime import time

In [19]: idx = pd.Index([time(12, 30), None], dtype=pd.ArrowDtype(pa.time64("us")))
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[19], line 1
----> 1 idx = pd.Index([time(12, 30), None], dtype=pd.ArrowDtype(pa.time64("us")))

NameError: name 'pa' is not defined

In [20]: idx
Out[20]: [0.0, 1.0, 10.0]
In [21]: from decimal import Decimal

In [22]: decimal_type = pd.ArrowDtype(pa.decimal128(3, scale=2))
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[22], line 1
----> 1 decimal_type = pd.ArrowDtype(pa.decimal128(3, scale=2))

NameError: name 'pa' is not defined

In [23]: data = [[Decimal("3.19"), None], [None, Decimal("-1.23")]]

In [24]: df = pd.DataFrame(data, dtype=decimal_type)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[24], line 1
----> 1 df = pd.DataFrame(data, dtype=decimal_type)

NameError: name 'decimal_type' is not defined

In [25]: df
Out[25]: 
     a    b
0  xxx  yyy
1   ¡¡   ¡¡

If you already have an or , you can pass it into arrays.ArrowExtensionArray to construct the associated Series, Index or DataFrame object.

In [26]: pa_array = pa.array(
   ....:     [{"1": "2"}, {"10": "20"}, None],
   ....:     type=pa.map_(pa.string(), pa.string()),
   ....: )
   ....: 
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[26], line 1
----> 1 pa_array = pa.array(
      2     [{"1": "2"}, {"10": "20"}, None],
      3     type=pa.map_(pa.string(), pa.string()),
      4 )

NameError: name 'pa' is not defined

In [27]: ser = pd.Series(pd.arrays.ArrowExtensionArray(pa_array))
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[27], line 1
----> 1 ser = pd.Series(pd.arrays.ArrowExtensionArray(pa_array))

NameError: name 'pa_array' is not defined

In [28]: ser
Out[28]: 
0     NaN
1     NaN
2     5.0
3     NaN
4     NaN
5     NaN
6    13.0
7     NaN
8     NaN
dtype: float64

To retrieve a pyarrow from a Series or Index, you can call the pyarrow array constructor on the Series or Index.

In [29]: ser = pd.Series([1, 2, None], dtype="uint8[pyarrow]")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[29], line 1
----> 1 ser = pd.Series([1, 2, None], dtype="uint8[pyarrow]")

File /usr/lib/python3/dist-packages/pandas/core/series.py:493, in Series.__init__(self, data, index, dtype, name, copy, fastpath)
    490     index = ensure_index(index)
    492 if dtype is not None:
--> 493     dtype = self._validate_dtype(dtype)
    495 if data is None:
    496     index = index if index is not None else default_index(0)

File /usr/lib/python3/dist-packages/pandas/core/generic.py:516, in NDFrame._validate_dtype(cls, dtype)
    514 """validate the passed dtype"""
    515 if dtype is not None:
--> 516     dtype = pandas_dtype(dtype)
    518     # a compound dtype
    519     if dtype.kind == "V":

File /usr/lib/python3/dist-packages/pandas/core/dtypes/common.py:1624, in pandas_dtype(dtype)
   1621     return dtype
   1623 # registered extension types
-> 1624 result = registry.find(dtype)
   1625 if result is not None:
   1626     if isinstance(result, type):
   1627         # GH 31356, GH 54592

File /usr/lib/python3/dist-packages/pandas/core/dtypes/base.py:576, in Registry.find(self, dtype)
    574 for dtype_type in self.dtypes:
    575     try:
--> 576         return dtype_type.construct_from_string(dtype)
    577     except TypeError:
    578         pass

File /usr/lib/python3/dist-packages/pandas/core/dtypes/dtypes.py:2251, in ArrowDtype.construct_from_string(cls, string)
   2249 base_type = string[:-9]  # get rid of "[pyarrow]"
   2250 try:
-> 2251     pa_dtype = pa.type_for_alias(base_type)
   2252 except ValueError as err:
   2253     has_parameters = re.search(r"[\[\(].*[\]\)]", base_type)

NameError: name 'pa' is not defined

In [30]: pa.array(ser)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[30], line 1
----> 1 pa.array(ser)

NameError: name 'pa' is not defined

In [31]: idx = pd.Index(ser)

In [32]: pa.array(idx)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[32], line 1
----> 1 pa.array(idx)

NameError: name 'pa' is not defined

To convert a to a DataFrame, you can call the method with types_mapper=pd.ArrowDtype.

In [33]: table = pa.table([pa.array([1, 2, 3], type=pa.int64())], names=["a"])
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[33], line 1
----> 1 table = pa.table([pa.array([1, 2, 3], type=pa.int64())], names=["a"])

NameError: name 'pa' is not defined

In [34]: df = table.to_pandas(types_mapper=pd.ArrowDtype)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-34-64ec62289cb4> in ?()
----> 1 df = table.to_pandas(types_mapper=pd.ArrowDtype)

/usr/lib/python3/dist-packages/pandas/core/generic.py in ?(self, name)
   6295             and name not in self._accessors
   6296             and self._info_axis._can_hold_identifiers_and_holds_name(name)
   6297         ):
   6298             return self[name]
-> 6299         return object.__getattribute__(self, name)

AttributeError: 'DataFrame' object has no attribute 'to_pandas'

In [35]: df
Out[35]: 
     a    b
0  xxx  yyy
1   ¡¡   ¡¡

In [36]: df.dtypes
Out[36]: 
a    object
b    object
dtype: object

Operations#

PyArrow data structure integration is implemented through pandas’ ExtensionArray interface; therefore, supported functionality exists where this interface is integrated within the pandas API. Additionally, this functionality is accelerated with PyArrow compute functions where available. This includes:

  • Numeric aggregations

  • Numeric arithmetic

  • Numeric rounding

  • Logical and comparison functions

  • String functionality

  • Datetime functionality

The following are just some examples of operations that are accelerated by native PyArrow compute functions.

In [37]: import pyarrow as pa
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
Cell In[37], line 1
----> 1 import pyarrow as pa

ModuleNotFoundError: No module named 'pyarrow'

In [38]: ser = pd.Series([-1.545, 0.211, None], dtype="float32[pyarrow]")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[38], line 1
----> 1 ser = pd.Series([-1.545, 0.211, None], dtype="float32[pyarrow]")

File /usr/lib/python3/dist-packages/pandas/core/series.py:493, in Series.__init__(self, data, index, dtype, name, copy, fastpath)
    490     index = ensure_index(index)
    492 if dtype is not None:
--> 493     dtype = self._validate_dtype(dtype)
    495 if data is None:
    496     index = index if index is not None else default_index(0)

File /usr/lib/python3/dist-packages/pandas/core/generic.py:516, in NDFrame._validate_dtype(cls, dtype)
    514 """validate the passed dtype"""
    515 if dtype is not None:
--> 516     dtype = pandas_dtype(dtype)
    518     # a compound dtype
    519     if dtype.kind == "V":

File /usr/lib/python3/dist-packages/pandas/core/dtypes/common.py:1624, in pandas_dtype(dtype)
   1621     return dtype
   1623 # registered extension types
-> 1624 result = registry.find(dtype)
   1625 if result is not None:
   1626     if isinstance(result, type):
   1627         # GH 31356, GH 54592

File /usr/lib/python3/dist-packages/pandas/core/dtypes/base.py:576, in Registry.find(self, dtype)
    574 for dtype_type in self.dtypes:
    575     try:
--> 576         return dtype_type.construct_from_string(dtype)
    577     except TypeError:
    578         pass

File /usr/lib/python3/dist-packages/pandas/core/dtypes/dtypes.py:2251, in ArrowDtype.construct_from_string(cls, string)
   2249 base_type = string[:-9]  # get rid of "[pyarrow]"
   2250 try:
-> 2251     pa_dtype = pa.type_for_alias(base_type)
   2252 except ValueError as err:
   2253     has_parameters = re.search(r"[\[\(].*[\]\)]", base_type)

NameError: name 'pa' is not defined

In [39]: ser.mean()
Out[39]: np.float64(9.0)

In [40]: ser + ser
Out[40]: 
0     NaN
1     NaN
2    10.0
3     NaN
4     NaN
5     NaN
6    26.0
7     NaN
8     NaN
dtype: float64

In [41]: ser > (ser + 1)
Out[41]: 
0    False
1    False
2    False
3    False
4    False
5    False
6    False
7    False
8    False
dtype: bool

In [42]: ser.dropna()
Out[42]: 
2     5.0
6    13.0
dtype: float64

In [43]: ser.isna()
Out[43]: 
0     True
1     True
2    False
3     True
4     True
5     True
6    False
7     True
8     True
dtype: bool

In [44]: ser.fillna(0)
Out[44]: 
0     0.0
1     0.0
2     5.0
3     0.0
4     0.0
5     0.0
6    13.0
7     0.0
8     0.0
dtype: float64
In [45]: ser_str = pd.Series(["a", "b", None], dtype=pd.ArrowDtype(pa.string()))
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[45], line 1
----> 1 ser_str = pd.Series(["a", "b", None], dtype=pd.ArrowDtype(pa.string()))

NameError: name 'pa' is not defined

In [46]: ser_str.str.startswith("a")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[46], line 1
----> 1 ser_str.str.startswith("a")

NameError: name 'ser_str' is not defined
In [47]: from datetime import datetime

In [48]: pa_type = pd.ArrowDtype(pa.timestamp("ns"))
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[48], line 1
----> 1 pa_type = pd.ArrowDtype(pa.timestamp("ns"))

NameError: name 'pa' is not defined

In [49]: ser_dt = pd.Series([datetime(2022, 1, 1), None], dtype=pa_type)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[49], line 1
----> 1 ser_dt = pd.Series([datetime(2022, 1, 1), None], dtype=pa_type)

NameError: name 'pa_type' is not defined

In [50]: ser_dt.dt.strftime("%Y-%m")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[50], line 1
----> 1 ser_dt.dt.strftime("%Y-%m")

NameError: name 'ser_dt' is not defined

I/O Reading#

PyArrow also provides IO reading functionality that has been integrated into several pandas IO readers. The following functions provide an engine keyword that can dispatch to PyArrow to accelerate reading from an IO source.

In [51]: import io

In [52]: data = io.StringIO("""a,b,c
   ....:    1,2.5,True
   ....:    3,4.5,False
   ....: """)
   ....: 

In [53]: df = pd.read_csv(data, engine="pyarrow")
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
File /usr/lib/python3/dist-packages/pandas/compat/_optional.py:140, in import_optional_dependency(name, extra, errors, min_version)
    139 try:
--> 140     module = importlib.import_module(name)
    141 except ImportError:

File /usr/lib/python3.13/importlib/__init__.py:88, in import_module(name, package)
     87         level += 1
---> 88 return _bootstrap._gcd_import(name[level:], package, level)

File <frozen importlib._bootstrap>:1387, in _gcd_import(name, package, level)

File <frozen importlib._bootstrap>:1360, in _find_and_load(name, import_)

File <frozen importlib._bootstrap>:1324, in _find_and_load_unlocked(name, import_)

ModuleNotFoundError: No module named 'pyarrow'

During handling of the above exception, another exception occurred:

ImportError                               Traceback (most recent call last)
Cell In[53], line 1
----> 1 df = pd.read_csv(data, engine="pyarrow")

File /usr/lib/python3/dist-packages/pandas/io/parsers/readers.py:1026, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)
   1013 kwds_defaults = _refine_defaults_read(
   1014     dialect,
   1015     delimiter,
   (...)
   1022     dtype_backend=dtype_backend,
   1023 )
   1024 kwds.update(kwds_defaults)
-> 1026 return _read(filepath_or_buffer, kwds)

File /usr/lib/python3/dist-packages/pandas/io/parsers/readers.py:626, in _read(filepath_or_buffer, kwds)
    623     return parser
    625 with parser:
--> 626     return parser.read(nrows)

File /usr/lib/python3/dist-packages/pandas/io/parsers/readers.py:1911, in TextFileReader.read(self, nrows)
   1908 if self.engine == "pyarrow":
   1909     try:
   1910         # error: "ParserBase" has no attribute "read"
-> 1911         df = self._engine.read()  # type: ignore[attr-defined]
   1912     except Exception:
   1913         self.close()

File /usr/lib/python3/dist-packages/pandas/io/parsers/arrow_parser_wrapper.py:244, in ArrowParserWrapper.read(self)
    233 def read(self) -> DataFrame:
    234     """
    235     Reads the contents of a CSV file into a DataFrame and
    236     processes it according to the kwargs passed in the
   (...)
    242         The DataFrame created from the CSV file.
    243     """
--> 244     pa = import_optional_dependency("pyarrow")
    245     pyarrow_csv = import_optional_dependency("pyarrow.csv")
    246     self._get_pyarrow_options()

File /usr/lib/python3/dist-packages/pandas/compat/_optional.py:143, in import_optional_dependency(name, extra, errors, min_version)
    141 except ImportError:
    142     if errors == "raise":
--> 143         raise ImportError(msg)
    144     return None
    146 # Handle submodules: if we have submodule, grab parent module from sys.modules

ImportError: Missing optional dependency 'pyarrow'.  Use pip or conda to install pyarrow.

In [54]: df
Out[54]: 
     a    b
0  xxx  yyy
1   ¡¡   ¡¡

By default, these functions and all other IO reader functions return NumPy-backed data. These readers can return PyArrow-backed data by specifying the parameter dtype_backend="pyarrow". A reader does not need to set engine="pyarrow" to necessarily return PyArrow-backed data.

In [55]: import io

In [56]: data = io.StringIO("""a,b,c,d,e,f,g,h,i
   ....:     1,2.5,True,a,,,,,
   ....:     3,4.5,False,b,6,7.5,True,a,
   ....: """)
   ....: 

In [57]: df_pyarrow = pd.read_csv(data, dtype_backend="pyarrow")
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
File /usr/lib/python3/dist-packages/pandas/compat/_optional.py:140, in import_optional_dependency(name, extra, errors, min_version)
    139 try:
--> 140     module = importlib.import_module(name)
    141 except ImportError:

File /usr/lib/python3.13/importlib/__init__.py:88, in import_module(name, package)
     87         level += 1
---> 88 return _bootstrap._gcd_import(name[level:], package, level)

File <frozen importlib._bootstrap>:1387, in _gcd_import(name, package, level)

File <frozen importlib._bootstrap>:1360, in _find_and_load(name, import_)

File <frozen importlib._bootstrap>:1324, in _find_and_load_unlocked(name, import_)

ModuleNotFoundError: No module named 'pyarrow'

During handling of the above exception, another exception occurred:

ImportError                               Traceback (most recent call last)
Cell In[57], line 1
----> 1 df_pyarrow = pd.read_csv(data, dtype_backend="pyarrow")

File /usr/lib/python3/dist-packages/pandas/io/parsers/readers.py:1026, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)
   1013 kwds_defaults = _refine_defaults_read(
   1014     dialect,
   1015     delimiter,
   (...)
   1022     dtype_backend=dtype_backend,
   1023 )
   1024 kwds.update(kwds_defaults)
-> 1026 return _read(filepath_or_buffer, kwds)

File /usr/lib/python3/dist-packages/pandas/io/parsers/readers.py:620, in _read(filepath_or_buffer, kwds)
    617 _validate_names(kwds.get("names", None))
    619 # Create the parser.
--> 620 parser = TextFileReader(filepath_or_buffer, **kwds)
    622 if chunksize or iterator:
    623     return parser

File /usr/lib/python3/dist-packages/pandas/io/parsers/readers.py:1620, in TextFileReader.__init__(self, f, engine, **kwds)
   1617     self.options["has_index_names"] = kwds["has_index_names"]
   1619 self.handles: IOHandles | None = None
-> 1620 self._engine = self._make_engine(f, self.engine)

File /usr/lib/python3/dist-packages/pandas/io/parsers/readers.py:1898, in TextFileReader._make_engine(self, f, engine)
   1895     raise ValueError(msg)
   1897 try:
-> 1898     return mapping[engine](f, **self.options)
   1899 except Exception:
   1900     if self.handles is not None:

File /usr/lib/python3/dist-packages/pandas/io/parsers/c_parser_wrapper.py:92, in CParserWrapper.__init__(self, src, **kwds)
     89     kwds["dtype_backend"] = "numpy"
     90 if kwds["dtype_backend"] == "pyarrow":
     91     # Fail here loudly instead of in cython after reading
---> 92     import_optional_dependency("pyarrow")
     93 self._reader = parsers.TextReader(src, **kwds)
     95 self.unnamed_cols = self._reader.unnamed_cols

File /usr/lib/python3/dist-packages/pandas/compat/_optional.py:143, in import_optional_dependency(name, extra, errors, min_version)
    141 except ImportError:
    142     if errors == "raise":
--> 143         raise ImportError(msg)
    144     return None
    146 # Handle submodules: if we have submodule, grab parent module from sys.modules

ImportError: Missing optional dependency 'pyarrow'.  Use pip or conda to install pyarrow.

In [58]: df_pyarrow.dtypes
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[58], line 1
----> 1 df_pyarrow.dtypes

NameError: name 'df_pyarrow' is not defined

Several non-IO reader functions can also use the dtype_backend argument to return PyArrow-backed data including: