networkx.algorithms.similarity.simrank_similarity_numpy¶
- 
simrank_similarity_numpy(G, source=None, target=None, importance_factor=0.9, max_iterations=100, tolerance=0.0001)[source]¶ Calculate SimRank of nodes in
Gusing matrices withnumpy.The SimRank algorithm for determining node similarity is defined in 1.
- Parameters
 G (NetworkX graph) – A NetworkX graph
source (node) – If this is specified, the returned dictionary maps each node
vin the graph to the similarity betweensourceandv.target (node) – If both
sourceandtargetare specified, the similarity value betweensourceandtargetis returned. Iftargetis specified butsourceis not, this argument is ignored.importance_factor (float) – The relative importance of indirect neighbors with respect to direct neighbors.
max_iterations (integer) – Maximum number of iterations.
tolerance (float) – Error tolerance used to check convergence. When an iteration of the algorithm finds that no similarity value changes more than this amount, the algorithm halts.
- Returns
 similarity – If
sourceandtargetare bothNone, this returns a Matrix containing SimRank scores of the nodes.If
sourceis notNonebuttargetis, this returns an Array containing SimRank scores ofsourceand that node.If neither
sourcenortargetisNone, this returns the similarity value for the given pair of nodes.- Return type
 numpy matrix, numpy array or float
Examples
>>> from numpy import array >>> G = nx.cycle_graph(4) >>> sim = nx.simrank_similarity_numpy(G)
References
- 1
 G. Jeh and J. Widom. “SimRank: a measure of structural-context similarity”, In KDD’02: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 538–543. ACM Press, 2002.