BioBlend
About
BioBlend is a Python library for interacting with the Galaxy API.
BioBlend is supported and tested on:
Python 3.7 - 3.11
Galaxy release 19.05 and later.
BioBlend's goal is to make it easier to script and automate the running of Galaxy analyses and administering of a Galaxy server. In practice, it makes it possible to do things like this:
Interact with Galaxy via a straightforward API:
from bioblend.galaxy import GalaxyInstance gi = GalaxyInstance('<Galaxy IP>', key='your API key') libs = gi.libraries.get_libraries() gi.workflows.show_workflow('workflow ID') wf_invocation = gi.workflows.invoke_workflow('workflow ID', inputs)
Interact with Galaxy via an object-oriented API:
from bioblend.galaxy.objects import GalaxyInstance gi = GalaxyInstance("URL", "API_KEY") wf = gi.workflows.list()[0] hist = gi.histories.list()[0] inputs = hist.get_datasets()[:2] input_map = dict(zip(wf.input_labels, inputs)) params = {"Paste1": {"delimiter": "U"}} wf_invocation = wf.invoke(input_map, params=params)
About the library name
The library was originally called just Blend
but we
renamed it
to reflect more of its domain and a make it bit more unique so it can be easier to find.
The name was intended to be short and easily pronounceable. In its original
implementation, the goal was to provide a lot more support for CloudMan
and other integration capabilities, allowing them to be blended together
via code. BioBlend
fitted the bill.
Installation
Stable releases of BioBlend are best installed via pip
from PyPI:
$ python3 -m pip install bioblend
Alternatively, the most current source code from our Git repository can be installed with:
$ python3 -m pip install git+https://github.com/galaxyproject/bioblend
After installing the library, you will be able to simply import it into your
Python environment with import bioblend
. For details on the available functionality,
see the API documentation.
BioBlend requires a number of Python libraries. These libraries are installed
automatically when BioBlend itself is installed, regardless whether it is installed
via PyPi or by running python3 setup.py install
command. The current list of
required libraries is always available from setup.py in the source code
repository.
If you also want to run tests locally, some extra libraries are required. To install them, run:
$ python3 setup.py test
Usage
To get started using BioBlend, install the library as described above. Once the library becomes available on the given system, it can be developed against. The developed scripts do not need to reside in any particular location on the system.
It is probably best to take a look at the example scripts in docs/examples
source
directory and browse the API documentation. Beyond that, it's up to your creativity :).
Development
Anyone interested in contributing or tweaking the library is more then welcome to do so. To start, simply fork the Git repository on Github and start playing with it. Then, issue pull requests.
API Documentation
BioBlend's API focuses around and matches the services it wraps. Thus, there are two top-level sets of APIs, each corresponding to a separate service and a corresponding step in the automation process. Note that each of the service APIs can be used completely independently of one another.
Effort has been made to keep the structure and naming of those API's consistent across the library but because they do bridge different services, some discrepancies may exist. Feel free to point those out and/or provide fixes.
For Galaxy, an alternative object-oriented API is also available. This API provides an explicit modeling of server-side Galaxy instances and their relationships, providing higher-level methods to perform operations such as retrieving all datasets for a given history, etc. Note that, at the moment, the oo API is still incomplete, providing access to a more restricted set of Galaxy modules with respect to the standard one.
Galaxy API
API used to manipulate genomic analyses within Galaxy, including data management and workflow execution.
API documentation for interacting with Galaxy
GalaxyInstance
Config
Contains possible interaction dealing with Galaxy configuration.
- class bioblend.galaxy.config.ConfigClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- get_config() dict
Get a list of attributes about the Galaxy instance. More attributes will be present if the user is an admin.
- Return type:
list
- Returns:
A list of attributes. For example:
{'allow_library_path_paste': False, 'allow_user_creation': True, 'allow_user_dataset_purge': True, 'allow_user_deletion': False, 'enable_unique_workflow_defaults': False, 'ftp_upload_dir': '/SOMEWHERE/galaxy/ftp_dir', 'ftp_upload_site': 'galaxy.com', 'library_import_dir': 'None', 'logo_url': None, 'support_url': 'https://galaxyproject.org/support', 'terms_url': None, 'user_library_import_dir': None, 'wiki_url': 'https://galaxyproject.org/'}
- get_version() dict
Get the current version of the Galaxy instance.
- Return type:
dict
- Returns:
Version of the Galaxy instance For example:
{'extra': {}, 'version_major': '17.01'}
- module: str = 'configuration'
- reload_toolbox() None
Reload the Galaxy toolbox (but not individual tools)
- Return type:
None
- Returns:
None
- whoami() dict
Return information about the current authenticated user.
- Return type:
dict
- Returns:
Information about current authenticated user For example:
{'active': True, 'deleted': False, 'email': 'user@example.org', 'id': '4aaaaa85aacc9caa', 'last_password_change': '2021-07-29T05:34:54.632345', 'model_class': 'User', 'username': 'julia'}
Datasets
Contains possible interactions with the Galaxy Datasets
- class bioblend.galaxy.datasets.DatasetClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- download_dataset(dataset_id: str, file_path: None = None, use_default_filename: bool = True, require_ok_state: bool = True, maxwait: float = 12000) bytes
- download_dataset(dataset_id: str, file_path: str, use_default_filename: bool = True, require_ok_state: bool = True, maxwait: float = 12000) str
Download a dataset to file or in memory. If the dataset state is not ‘ok’, a
DatasetStateException
will be thrown, unlessrequire_ok_state=False
.- Parameters:
dataset_id (str) – Encoded dataset ID
file_path (str) – If this argument is provided, the dataset will be streamed to disk at that path (should be a directory if
use_default_filename=True
). If the file_path argument is not provided, the dataset content is loaded into memory and returned by the method (Memory consumption may be heavy as the entire file will be in memory).use_default_filename (bool) – If
True
, the exported file will be saved asfile_path/%s
, where%s
is the dataset name. IfFalse
,file_path
is assumed to contain the full file path including the filename.require_ok_state (bool) – If
False
, datasets will be downloaded even if not in an ‘ok’ state, issuing aDatasetStateWarning
rather than raising aDatasetStateException
.maxwait (float) – Total time (in seconds) to wait for the dataset state to become terminal. If the dataset state is not terminal within this time, a
DatasetTimeoutException
will be thrown.
- Return type:
bytes or str
- Returns:
If a
file_path
argument is not provided, returns the file content. Otherwise returns the local path of the downloaded file.
- get_datasets(limit: int = 500, offset: int = 0, name: str | None = None, extension: str | List[str] | None = None, state: str | List[str] | None = None, visible: bool | None = None, deleted: bool | None = None, purged: bool | None = None, tool_id: str | None = None, tag: str | None = None, history_id: str | None = None, create_time_min: str | None = None, create_time_max: str | None = None, update_time_min: str | None = None, update_time_max: str | None = None, order: str = 'create_time-dsc') List[Dict[str, Any]]
Get the latest datasets, or select another subset by specifying optional arguments for filtering (e.g. a history ID).
Since the number of datasets may be very large,
limit
andoffset
parameters are required to specify the desired range.If the user is an admin, this will return datasets for all the users, otherwise only for the current user.
- Parameters:
limit (int) – Maximum number of datasets to return.
offset (int) – Return datasets starting from this specified position. For example, if
limit
is set to 100 andoffset
to 200, datasets 200-299 will be returned.name (str) – Dataset name to filter on.
extension (str or list of str) – Dataset extension (or list of extensions) to filter on.
state (str or list of str) – Dataset state (or list of states) to filter on.
visible (bool) – Optionally filter datasets by their
visible
attribute.deleted (bool) – Optionally filter datasets by their
deleted
attribute.purged (bool) – Optionally filter datasets by their
purged
attribute.tool_id (str) – Tool ID to filter on.
tag (str) – Dataset tag to filter on.
history_id (str) – Encoded history ID to filter on.
create_time_min (str) – Show only datasets created after the provided time and date, which should be formatted as
YYYY-MM-DDTHH-MM-SS
.create_time_max (str) – Show only datasets created before the provided time and date, which should be formatted as
YYYY-MM-DDTHH-MM-SS
.update_time_min (str) – Show only datasets last updated after the provided time and date, which should be formatted as
YYYY-MM-DDTHH-MM-SS
.update_time_max (str) – Show only datasets last updated before the provided time and date, which should be formatted as
YYYY-MM-DDTHH-MM-SS
.order (str) – One or more of the following attributes for ordering datasets:
create_time
(default),extension
,hid
,history_id
,name
,update_time
. Optionally,-asc
or-dsc
(default) can be appended for ascending and descending order respectively. Multiple attributes can be stacked as a comma-separated list of values, e.g.create_time-asc,hid-dsc
.
- Return type:
list
- Param:
A list of datasets
- gi: GalaxyInstance
- module: str = 'datasets'
- publish_dataset(dataset_id: str, published: bool = False) Dict[str, Any]
Make a dataset publicly available or private. For more fine-grained control (assigning different permissions to specific roles), use the
update_permissions()
method.- Parameters:
dataset_id (str) – dataset ID
published (bool) – Whether to make the dataset published (
True
) or private (False
).
- Return type:
dict
- Returns:
Details of the updated dataset
Note
This method works only on Galaxy 19.05 or later.
- show_dataset(dataset_id: str, deleted: bool = False, hda_ldda: Literal['hda', 'ldda'] = 'hda') Dict[str, Any]
Get details about a given dataset. This can be a history or a library dataset.
- Parameters:
dataset_id (str) – Encoded dataset ID
deleted (bool) – Whether to return results for a deleted dataset
hda_ldda (str) – Whether to show a history dataset (‘hda’ - the default) or library dataset (‘ldda’).
- Return type:
dict
- Returns:
Information about the HDA or LDDA
- update_permissions(dataset_id: str, access_ids: list | None = None, manage_ids: list | None = None, modify_ids: list | None = None) dict
Set access, manage or modify permissions for a dataset to a list of roles.
- Parameters:
dataset_id (str) – dataset ID
access_ids (list) – role IDs which should have access permissions for the dataset.
manage_ids (list) – role IDs which should have manage permissions for the dataset.
modify_ids (list) – role IDs which should have modify permissions for the dataset.
- Return type:
dict
- Returns:
Current roles for all available permission types.
Note
This method works only on Galaxy 19.05 or later.
- wait_for_dataset(dataset_id: str, maxwait: float = 12000, interval: float = 3, check: bool = True) Dict[str, Any]
Wait until a dataset is in a terminal state.
- Parameters:
dataset_id (str) – dataset ID
maxwait (float) – Total time (in seconds) to wait for the dataset state to become terminal. If the dataset state is not terminal within this time, a
DatasetTimeoutException
will be raised.interval (float) – Time (in seconds) to wait between 2 consecutive checks.
check (bool) – Whether to check if the dataset terminal state is ‘ok’.
- Return type:
dict
- Returns:
Details of the given dataset.
- exception bioblend.galaxy.datasets.DatasetStateException
- exception bioblend.galaxy.datasets.DatasetStateWarning
- exception bioblend.galaxy.datasets.DatasetTimeoutException
Dataset collections
- class bioblend.galaxy.dataset_collections.CollectionDescription(name: str, type: str = 'list', elements: List[CollectionElement | SimpleElement] | Dict[str, Any] | None = None)
- to_dict() Dict[str, str | List]
- class bioblend.galaxy.dataset_collections.CollectionElement(name: str, type: str = 'list', elements: List[CollectionElement | SimpleElement] | Dict[str, Any] | None = None)
- to_dict() Dict[str, str | List]
- class bioblend.galaxy.dataset_collections.DatasetCollectionClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- download_dataset_collection(dataset_collection_id: str, file_path: str) Dict[str, Any]
Download a history dataset collection as an archive.
- Parameters:
dataset_collection_id (str) – Encoded dataset collection ID
file_path (str) – The path to which the archive will be downloaded
- Return type:
dict
- Returns:
Information about the downloaded archive.
Note
This method downloads a
zip
archive for Galaxy 21.01 and later. For earlier versions of Galaxy this method downloads atgz
archive.
- gi: GalaxyInstance
- module: str = 'dataset_collections'
- show_dataset_collection(dataset_collection_id: str, instance_type: str = 'history') Dict[str, Any]
Get details of a given dataset collection of the current user
- Parameters:
dataset_collection_id (str) – dataset collection ID
instance_type (str) – instance type of the collection - ‘history’ or ‘library’
- Return type:
dict
- Returns:
element view of the dataset collection
- wait_for_dataset_collection(dataset_collection_id: str, maxwait: float = 12000, interval: float = 3, proportion_complete: float = 1.0, check: bool = True) Dict[str, Any]
Wait until all or a specified proportion of elements of a dataset collection are in a terminal state.
- Parameters:
dataset_collection_id (str) – dataset collection ID
maxwait (float) – Total time (in seconds) to wait for the dataset states in the dataset collection to become terminal. If not all datasets are in a terminal state within this time, a
DatasetCollectionTimeoutException
will be raised.interval (float) – Time (in seconds) to wait between two consecutive checks.
proportion_complete (float) – Proportion of elements in this collection that have to be in a terminal state for this method to return. Must be a number between 0 and 1. For example: if the dataset collection contains 2 elements, and proportion_complete=0.5 is specified, then wait_for_dataset_collection will return as soon as 1 of the 2 datasets is in a terminal state. Default is 1, i.e. all elements must complete.
check (bool) – Whether to check if all the terminal states of datasets in the dataset collection are ‘ok’. This will raise an Exception if a dataset is in a terminal state other than ‘ok’.
- Return type:
dict
- Returns:
Details of the given dataset collection.
- class bioblend.galaxy.dataset_collections.HistoryDatasetCollectionElement(name: str, id: str)
- class bioblend.galaxy.dataset_collections.HistoryDatasetElement(name: str, id: str)
- class bioblend.galaxy.dataset_collections.LibraryDatasetElement(name: str, id: str)
Datatypes
Contains possible interactions with the Galaxy Datatype
- class bioblend.galaxy.datatypes.DatatypesClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- get_datatypes(extension_only: bool = False, upload_only: bool = False) List[str]
Get the list of all installed datatypes.
- Parameters:
extension_only (bool) – Return only the extension rather than the datatype name
upload_only (bool) – Whether to return only datatypes which can be uploaded
- Return type:
list
- Returns:
A list of datatype names. For example:
['snpmatrix', 'snptest', 'tabular', 'taxonomy', 'twobit', 'txt', 'vcf', 'wig', 'xgmml', 'xml']
- get_sniffers() List[str]
Get the list of all installed sniffers.
- Return type:
list
- Returns:
A list of sniffer names. For example:
['galaxy.datatypes.tabular:Vcf', 'galaxy.datatypes.binary:TwoBit', 'galaxy.datatypes.binary:Bam', 'galaxy.datatypes.binary:Sff', 'galaxy.datatypes.xml:Phyloxml', 'galaxy.datatypes.xml:GenericXml', 'galaxy.datatypes.sequence:Maf', 'galaxy.datatypes.sequence:Lav', 'galaxy.datatypes.sequence:csFasta']
- module: str = 'datatypes'
Folders
Contains possible interactions with the Galaxy library folders
- class bioblend.galaxy.folders.FoldersClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- create_folder(parent_folder_id: str, name: str, description: str | None = None) Dict[str, Any]
Create a folder.
- Parameters:
parent_folder_id (str) – Folder’s description
name (str) – name of the new folder
description (str) – folder’s description
- Return type:
dict
- Returns:
details of the updated folder
- delete_folder(folder_id: str, undelete: bool = False) Dict[str, Any]
Marks the folder with the given
id
as deleted (or removes the deleted mark if the undelete param is True).- Parameters:
folder_id (str) – the folder’s encoded id, prefixed by ‘F’
undelete (bool) – If set to True, the folder will be undeleted (i.e. the deleted mark will be removed)
- Returns:
detailed folder information
- Return type:
dict
- get_permissions(folder_id: str, scope: Literal['current', 'available'] = 'current') Dict[str, Any]
Get the permissions of a folder.
- Parameters:
folder_id (str) – the folder’s encoded id, prefixed by ‘F’
scope (str) – scope of permissions, either ‘current’ or ‘available’
- Return type:
dict
- Returns:
dictionary including details of the folder permissions
- module: str = 'folders'
- set_permissions(folder_id: str, action: Literal['set_permissions'] = 'set_permissions', add_ids: List[str] | None = None, manage_ids: List[str] | None = None, modify_ids: List[str] | None = None) Dict[str, Any]
Set the permissions of a folder.
- Parameters:
folder_id (str) – the folder’s encoded id, prefixed by ‘F’
action (str) – action to execute, only “set_permissions” is supported.
add_ids (list of str) – list of role IDs which can add datasets to the folder
manage_ids (list of str) – list of role IDs which can manage datasets in the folder
modify_ids (list of str) – list of role IDs which can modify datasets in the folder
- Return type:
dict
- Returns:
dictionary including details of the folder
- show_folder(folder_id: str, contents: bool = False) Dict[str, Any]
Display information about a folder.
- Parameters:
folder_id (str) – the folder’s encoded id, prefixed by ‘F’
contents (bool) – True to get the contents of the folder, rather than just the folder details.
- Return type:
dict
- Returns:
dictionary including details of the folder
- update_folder(folder_id: str, name: str, description: str | None = None) Dict[str, Any]
Update folder information.
- Parameters:
folder_id (str) – the folder’s encoded id, prefixed by ‘F’
name (str) – name of the new folder
description (str) – folder’s description
- Return type:
dict
- Returns:
details of the updated folder
Forms
Contains possible interactions with the Galaxy Forms
- class bioblend.galaxy.forms.FormsClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- create_form(form_xml_text: str) List[Dict[str, Any]]
Create a new form.
- Parameters:
form_xml_text (str) – Form xml to create a form on galaxy instance
- Return type:
list of dicts
- Returns:
List with a single dictionary describing the created form
- get_forms() List[Dict[str, Any]]
Get the list of all forms.
- Return type:
list
- Returns:
Displays a collection (list) of forms. For example:
[{'id': 'f2db41e1fa331b3e', 'model_class': 'FormDefinition', 'name': 'First form', 'url': '/api/forms/f2db41e1fa331b3e'}, {'id': 'ebfb8f50c6abde6d', 'model_class': 'FormDefinition', 'name': 'second form', 'url': '/api/forms/ebfb8f50c6abde6d'}]
- module: str = 'forms'
- show_form(form_id: str) Dict[str, Any]
Get details of a given form.
- Parameters:
form_id (str) – Encoded form ID
- Return type:
dict
- Returns:
A description of the given form. For example:
{'desc': 'here it is ', 'fields': [], 'form_definition_current_id': 'f2db41e1fa331b3e', 'id': 'f2db41e1fa331b3e', 'layout': [], 'model_class': 'FormDefinition', 'name': 'First form', 'url': '/api/forms/f2db41e1fa331b3e'}
FTP files
Contains possible interactions with the Galaxy FTP Files
- class bioblend.galaxy.ftpfiles.FTPFilesClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- get_ftp_files(deleted: bool = False) List[dict]
Get a list of local files.
- Parameters:
deleted (bool) – Whether to include deleted files
- Return type:
list
- Returns:
A list of dicts with details on individual files on FTP
- module: str = 'ftp_files'
Genomes
Contains possible interactions with the Galaxy Histories
- class bioblend.galaxy.genomes.GenomeClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- get_genomes() list
Returns a list of installed genomes
- Return type:
list
- Returns:
List of installed genomes
- install_genome(func: Literal['download', 'index'] = 'download', source: str | None = None, dbkey: str | None = None, ncbi_name: str | None = None, ensembl_dbkey: str | None = None, url_dbkey: str | None = None, indexers: list | None = None) Dict[str, Any]
Download and/or index a genome.
- Parameters:
func (str) – Allowed values: ‘download’, Download and index; ‘index’, Index only
source (str) – Data source for this build. Can be: UCSC, Ensembl, NCBI, URL
dbkey (str) – DB key of the build to download, ignored unless ‘UCSC’ is specified as the source
ncbi_name (str) – NCBI’s genome identifier, ignored unless NCBI is specified as the source
ensembl_dbkey (str) – Ensembl’s genome identifier, ignored unless Ensembl is specified as the source
url_dbkey (str) – DB key to use for this build, ignored unless URL is specified as the source
indexers (list) – POST array of indexers to run after downloading (indexers[] = first, indexers[] = second, …)
- Return type:
dict
- Returns:
dict( status: ‘ok’, job: <job ID> ) If error: dict( status: ‘error’, error: <error message> )
- module: str = 'genomes'
- show_genome(id: str, num: str | None = None, chrom: str | None = None, low: str | None = None, high: str | None = None) Dict[str, Any]
Returns information about build <id>
- Parameters:
id (str) – Genome build ID to use
num (str) – num
chrom (str) – chrom
low (str) – low
high (str) – high
- Return type:
dict
- Returns:
Information about the genome build
Groups
Contains possible interactions with the Galaxy Groups
- class bioblend.galaxy.groups.GroupsClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- add_group_role(group_id: str, role_id: str) Dict[str, Any]
Add a role to the given group.
- Parameters:
group_id (str) – Encoded group ID
role_id (str) – Encoded role ID to add to the group
- Return type:
dict
- Returns:
Added group role’s info
- add_group_user(group_id: str, user_id: str) Dict[str, Any]
Add a user to the given group.
- Parameters:
group_id (str) – Encoded group ID
user_id (str) – Encoded user ID to add to the group
- Return type:
dict
- Returns:
Added group user’s info
- create_group(group_name: str, user_ids: List[str] | None = None, role_ids: List[str] | None = None) List[Dict[str, Any]]
Create a new group.
- Parameters:
group_name (str) – A name for the new group
user_ids (list) – A list of encoded user IDs to add to the new group
role_ids (list) – A list of encoded role IDs to add to the new group
- Return type:
list
- Returns:
A (size 1) list with newly created group details, like:
[{'id': '7c9636938c3e83bf', 'model_class': 'Group', 'name': 'My Group Name', 'url': '/api/groups/7c9636938c3e83bf'}]
- delete_group_role(group_id: str, role_id: str) Dict[str, Any]
Remove a role from the given group.
- Parameters:
group_id (str) – Encoded group ID
role_id (str) – Encoded role ID to remove from the group
- Return type:
dict
- Returns:
The role which was removed
- delete_group_user(group_id: str, user_id: str) Dict[str, Any]
Remove a user from the given group.
- Parameters:
group_id (str) – Encoded group ID
user_id (str) – Encoded user ID to remove from the group
- Return type:
dict
- Returns:
The user which was removed
- get_group_roles(group_id: str) List[Dict[str, Any]]
Get the list of roles associated to the given group.
- Parameters:
group_id (str) – Encoded group ID
- Return type:
list of dicts
- Returns:
List of group roles’ info
- get_group_users(group_id: str) List[Dict[str, Any]]
Get the list of users associated to the given group.
- Parameters:
group_id (str) – Encoded group ID
- Return type:
list of dicts
- Returns:
List of group users’ info
- get_groups() List[Dict[str, Any]]
Get all (not deleted) groups.
- Return type:
list
- Returns:
A list of dicts with details on individual groups. For example:
[{'id': '33abac023ff186c2', 'model_class': 'Group', 'name': 'Listeria', 'url': '/api/groups/33abac023ff186c2'}, {'id': '73187219cd372cf8', 'model_class': 'Group', 'name': 'LPN', 'url': '/api/groups/73187219cd372cf8'}]
- module: str = 'groups'
- show_group(group_id: str) Dict[str, Any]
Get details of a given group.
- Parameters:
group_id (str) – Encoded group ID
- Return type:
dict
- Returns:
A description of group For example:
{'id': '33abac023ff186c2', 'model_class': 'Group', 'name': 'Listeria', 'roles_url': '/api/groups/33abac023ff186c2/roles', 'url': '/api/groups/33abac023ff186c2', 'users_url': '/api/groups/33abac023ff186c2/users'}
- update_group(group_id: str, group_name: str | None = None, user_ids: List[str] | None = None, role_ids: List[str] | None = None) None
Update a group.
- Parameters:
group_id (str) – Encoded group ID
group_name (str) – A new name for the group. If None, the group name is not changed.
user_ids (list) – New list of encoded user IDs for the group. It will substitute the previous list of users (with [] if not specified)
role_ids (list) – New list of encoded role IDs for the group. It will substitute the previous list of roles (with [] if not specified)
- Return type:
None
- Returns:
None
Histories
Contains possible interactions with the Galaxy Histories
- class bioblend.galaxy.histories.HistoryClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- copy_content(history_id: str, content_id: str, source: Literal['hda', 'hdca', 'library', 'library_folder'] = 'hda') Dict[str, Any]
Copy existing content (e.g. a dataset) to a history.
- Parameters:
history_id (str) – ID of the history to which the content should be copied
content_id (str) – ID of the content to copy
source (str) – Source of the content to be copied: ‘hda’ (for a history dataset, the default), ‘hdca’ (for a dataset collection), ‘library’ (for a library dataset) or ‘library_folder’ (for all datasets in a library folder).
- Return type:
dict
- Returns:
Information about the copied content
- copy_dataset(history_id: str, dataset_id: str, source: Literal['hda', 'library', 'library_folder'] = 'hda') Dict[str, Any]
Copy a dataset to a history.
- Parameters:
history_id (str) – history ID to which the dataset should be copied
dataset_id (str) – dataset ID
source (str) – Source of the dataset to be copied: ‘hda’ (the default), ‘library’ or ‘library_folder’
- Return type:
dict
- Returns:
Information about the copied dataset
- create_dataset_collection(history_id: str, collection_description: CollectionDescription | Dict[str, Any]) Dict[str, Any]
Create a new dataset collection
- Parameters:
history_id (str) – Encoded history ID
collection_description (bioblend.galaxy.dataset_collections.CollectionDescription) –
a description of the dataset collection For example:
{'collection_type': 'list', 'element_identifiers': [{'id': 'f792763bee8d277a', 'name': 'element 1', 'src': 'hda'}, {'id': 'f792763bee8d277a', 'name': 'element 2', 'src': 'hda'}], 'name': 'My collection list'}
- Return type:
dict
- Returns:
Information about the new HDCA
- create_history(name: str | None = None) Dict[str, Any]
Create a new history, optionally setting the
name
.- Parameters:
name (str) – Optional name for new history
- Return type:
dict
- Returns:
Dictionary containing information about newly created history
- create_history_tag(history_id: str, tag: str) Dict[str, Any]
Create history tag
- Parameters:
history_id (str) – Encoded history ID
tag (str) – Add tag to history
- Return type:
dict
- Returns:
A dictionary with information regarding the tag. For example:
{'id': 'f792763bee8d277a', 'model_class': 'HistoryTagAssociation', 'user_tname': 'NGS_PE_RUN', 'user_value': None}
- delete_dataset(history_id: str, dataset_id: str, purge: bool = False) None
Mark corresponding dataset as deleted.
- Parameters:
history_id (str) – Encoded history ID
dataset_id (str) – Encoded dataset ID
purge (bool) – if
True
, also purge (permanently delete) the dataset
- Return type:
None
- Returns:
None
Note
The
purge
option works only if the Galaxy instance has theallow_user_dataset_purge
option set totrue
in theconfig/galaxy.yml
configuration file.
- delete_dataset_collection(history_id: str, dataset_collection_id: str) None
Mark corresponding dataset collection as deleted.
- Parameters:
history_id (str) – Encoded history ID
dataset_collection_id (str) – Encoded dataset collection ID
- Return type:
None
- Returns:
None
- delete_history(history_id: str, purge: bool = False) Dict[str, Any]
Delete a history.
- Parameters:
history_id (str) – Encoded history ID
purge (bool) – if
True
, also purge (permanently delete) the history
- Return type:
dict
- Returns:
An error object if an error occurred or a dictionary containing:
id
(the encoded id of the history),deleted
(if the history was marked as deleted),purged
(if the history was purged).
Note
The
purge
option works only if the Galaxy instance has theallow_user_dataset_purge
option set totrue
in theconfig/galaxy.yml
configuration file.
- download_history(history_id: str, jeha_id: str, outf: IO[bytes], chunk_size: int = 4096) None
Download a history export archive. Use
export_history()
to create an export.- Parameters:
history_id (str) – history ID
jeha_id (str) – jeha ID (this should be obtained via
export_history()
)outf (file) – output file object, open for writing in binary mode
chunk_size (int) – how many bytes at a time should be read into memory
- Return type:
None
- Returns:
None
- export_history(history_id: str, gzip: bool = True, include_hidden: bool = False, include_deleted: bool = False, wait: bool = False, maxwait: float | None = None) str
Start a job to create an export archive for the given history.
- Parameters:
history_id (str) – history ID
gzip (bool) – create .tar.gz archive if
True
, else .tarinclude_hidden (bool) – whether to include hidden datasets in the export
include_deleted (bool) – whether to include deleted datasets in the export
wait (bool) – if
True
, block until the export is ready; else, return immediatelymaxwait (float) – Total time (in seconds) to wait for the export to become ready. When set, implies that
wait
isTrue
.
- Return type:
str
- Returns:
jeha_id
of the export, or empty ifwait
isFalse
and the export is not ready.
- get_extra_files(history_id: str, dataset_id: str) List[str]
Get extra files associated with a composite dataset, or an empty list if there are none.
- Parameters:
history_id (str) – history ID
dataset_id (str) – dataset ID
- Return type:
list
- Returns:
List of extra files
- get_histories(history_id: str | None = None, name: str | None = None, deleted: bool = False, published: bool | None = None, slug: str | None = None, all: bool | None = False) List[Dict[str, Any]]
Get all histories, or select a subset by specifying optional arguments for filtering (e.g. a history name).
- Parameters:
name (str) – History name to filter on.
deleted (bool) – whether to filter for the deleted histories (
True
) or for the non-deleted ones (False
)published (bool or None) – whether to filter for the published histories (
True
) or for the non-published ones (False
). If not set, no filtering is applied. Note the filtering is only applied to the user’s own histories; to access all histories published by any user, use theget_published_histories
method.slug (str) – History slug to filter on
all (bool) – Whether to include histories from other users. This parameter works only on Galaxy 20.01 or later and can be specified only if the user is a Galaxy admin.
- Return type:
list
- Returns:
List of history dicts.
Changed in version 0.17.0: Using the deprecated
history_id
parameter now raises aValueError
exception.
- get_most_recently_used_history() Dict[str, Any]
Returns the current user’s most recently used history (not deleted).
- Return type:
dict
- Returns:
History representation
- get_published_histories(name: str | None = None, deleted: bool = False, slug: str | None = None) List[Dict[str, Any]]
Get all published histories (by any user), or select a subset by specifying optional arguments for filtering (e.g. a history name).
- Parameters:
name (str) – History name to filter on.
deleted (bool) – whether to filter for the deleted histories (
True
) or for the non-deleted ones (False
)slug (str) – History slug to filter on
- Return type:
list
- Returns:
List of history dicts.
- get_status(history_id: str) Dict[str, Any]
Returns the state of this history
- Parameters:
history_id (str) – Encoded history ID
- Return type:
dict
- Returns:
A dict documenting the current state of the history. Has the following keys: ‘state’ = This is the current state of the history, such as ok, error, new etc. ‘state_details’ = Contains individual statistics for various dataset states. ‘percent_complete’ = The overall number of datasets processed to completion.
- gi: GalaxyInstance
- import_history(file_path: str | None = None, url: str | None = None) Dict[str, Any]
Import a history from an archive on disk or a URL.
- Parameters:
file_path (str) – Path to exported history archive on disk.
url (str) – URL for an exported history archive
- Return type:
dict
- Returns:
Dictionary containing information about the imported history
- module: str = 'histories'
- open_history(history_id: str) None
Open Galaxy in a new tab of the default web browser and switch to the specified history.
- Parameters:
history_id (str) – ID of the history to switch to
- Return type:
NoneType
- Returns:
None
Warning
After opening the specified history, all previously opened Galaxy tabs in the browser session will have the current history changed to this one, even if the interface still shows another history. Refreshing any such tab is recommended.
- show_dataset(history_id: str, dataset_id: str) Dict[str, Any]
Get details about a given history dataset.
- Parameters:
history_id (str) – Encoded history ID
dataset_id (str) – Encoded dataset ID
- Return type:
dict
- Returns:
Information about the dataset
- show_dataset_collection(history_id: str, dataset_collection_id: str) Dict[str, Any]
Get details about a given history dataset collection.
- Parameters:
history_id (str) – Encoded history ID
dataset_collection_id (str) – Encoded dataset collection ID
- Return type:
dict
- Returns:
Information about the dataset collection
- show_dataset_provenance(history_id: str, dataset_id: str, follow: bool = False) Dict[str, Any]
Get details related to how dataset was created (
id
,job_id
,tool_id
,stdout
,stderr
,parameters
,inputs
, etc…).- Parameters:
history_id (str) – Encoded history ID
dataset_id (str) – Encoded dataset ID
follow (bool) – If
True
, recursively fetch dataset provenance information for all inputs and their inputs, etc.
- Return type:
dict
- Returns:
Dataset provenance information For example:
{'id': '6fbd9b2274c62ebe', 'job_id': '5471ba76f274f929', 'parameters': {'chromInfo': '"/usr/local/galaxy/galaxy-dist/tool-data/shared/ucsc/chrom/mm9.len"', 'dbkey': '"mm9"', 'experiment_name': '"H3K4me3_TAC_MACS2"', 'input_chipseq_file1': {'id': '6f0a311a444290f2', 'uuid': 'null'}, 'input_control_file1': {'id': 'c21816a91f5dc24e', 'uuid': '16f8ee5e-228f-41e2-921e-a07866edce06'}, 'major_command': '{"gsize": "2716965481.0", "bdg": "False", "__current_case__": 0, "advanced_options": {"advanced_options_selector": "off", "__current_case__": 1}, "input_chipseq_file1": 104715, "xls_to_interval": "False", "major_command_selector": "callpeak", "input_control_file1": 104721, "pq_options": {"pq_options_selector": "qvalue", "qvalue": "0.05", "__current_case__": 1}, "bw": "300", "nomodel_type": {"nomodel_type_selector": "create_model", "__current_case__": 1}}'}, 'stderr': '', 'stdout': '', 'tool_id': 'toolshed.g2.bx.psu.edu/repos/ziru-zhou/macs2/modencode_peakcalling_macs2/2.0.10.2', 'uuid': '5c0c43f5-8d93-44bd-939d-305e82f213c6'}
- show_history(history_id: str, contents: Literal[False] = False) Dict[str, Any]
- show_history(history_id: str, contents: Literal[True], deleted: bool | None = None, visible: bool | None = None, details: str | None = None, types: List[str] | None = None) List[Dict[str, Any]]
- show_history(history_id: str, contents: bool = False, deleted: bool | None = None, visible: bool | None = None, details: str | None = None, types: List[str] | None = None) Dict[str, Any] | List[Dict[str, Any]]
Get details of a given history. By default, just get the history meta information.
- Parameters:
history_id (str) – Encoded history ID to filter on
contents (bool) – When
True
, instead of the history details, return a list with info for all datasets in the given history. Note that inside each dataset info dict, the id which should be used for further requests about this history dataset is given by the value of the id (not dataset_id) key.deleted (bool or None) – When
contents=True
, whether to filter for the deleted datasets (True
) or for the non-deleted ones (False
). If not set, no filtering is applied.visible (bool or None) – When
contents=True
, whether to filter for the visible datasets (True
) or for the hidden ones (False
). If not set, no filtering is applied.details (str) – When
contents=True
, include dataset details. Set to ‘all’ for the most information.types (list) – When
contents=True
, filter for history content types. If set to['dataset']
, return only datasets. If set to['dataset_collection']
, return only dataset collections. If not set, no filtering is applied.
- Return type:
dict or list of dicts
- Returns:
details of the given history or list of dataset info
Note
As an alternative to using the
contents=True
parameter, consider usinggi.datasets.get_datasets(history_id=history_id)
which offers more extensive functionality for filtering and ordering the results.
- show_matching_datasets(history_id: str, name_filter: str | Pattern[str] | None = None) List[Dict[str, Any]]
Get dataset details for matching datasets within a history.
- Parameters:
history_id (str) – Encoded history ID
name_filter (str) – Only datasets whose name matches the
name_filter
regular expression will be returned; use plain strings for exact matches and None to match all datasets in the history
- Return type:
list
- Returns:
List of dictionaries
- undelete_history(history_id: str) str
Undelete a history
- Parameters:
history_id (str) – Encoded history ID
- Return type:
str
- Returns:
‘OK’ if it was deleted
- update_dataset(history_id: str, dataset_id: str, **kwargs: Any) Dict[str, Any]
Update history dataset metadata. Some of the attributes that can be modified are documented below.
- Parameters:
history_id (str) – Encoded history ID
dataset_id (str) – ID of the dataset
name (str) – Replace history dataset name with the given string
datatype (str) – Replace the datatype of the history dataset with the given string. The string must be a valid Galaxy datatype, both the current and the target datatypes must allow datatype changes, and the dataset must not be in use as input or output of a running job (including uploads), otherwise an error will be raised.
genome_build (str) – Replace history dataset genome build (dbkey)
annotation (str) – Replace history dataset annotation with given string
deleted (bool) – Mark or unmark history dataset as deleted
visible (bool) – Mark or unmark history dataset as visible
- Return type:
dict
- Returns:
details of the updated dataset
Changed in version 0.8.0: Changed the return value from the status code (type int) to a dict.
- update_dataset_collection(history_id: str, dataset_collection_id: str, **kwargs: Any) Dict[str, Any]
Update history dataset collection metadata. Some of the attributes that can be modified are documented below.
- Parameters:
history_id (str) – Encoded history ID
dataset_collection_id (str) – Encoded dataset_collection ID
name (str) – Replace history dataset collection name with the given string
deleted (bool) – Mark or unmark history dataset collection as deleted
visible (bool) – Mark or unmark history dataset collection as visible
- Return type:
dict
- Returns:
the updated dataset collection attributes
Changed in version 0.8.0: Changed the return value from the status code (type int) to a dict.
- update_history(history_id: str, **kwargs: Any) Dict[str, Any]
Update history metadata information. Some of the attributes that can be modified are documented below.
- Parameters:
history_id (str) – Encoded history ID
name (str) – Replace history name with the given string
annotation (str) – Replace history annotation with given string
deleted (bool) – Mark or unmark history as deleted
purged (bool) – If
True
, mark history as purged (permanently deleted).published (bool) – Mark or unmark history as published
importable (bool) – Mark or unmark history as importable
tags (list) – Replace history tags with the given list
- Return type:
dict
- Returns:
details of the updated history
Changed in version 0.8.0: Changed the return value from the status code (type int) to a dict.
- upload_dataset_from_library(history_id: str, lib_dataset_id: str) Dict[str, Any]
Upload a dataset into the history from a library. Requires the library dataset ID, which can be obtained from the library contents.
- Parameters:
history_id (str) – Encoded history ID
lib_dataset_id (str) – Encoded library dataset ID
- Return type:
dict
- Returns:
Information about the newly created HDA
Invocations
Contains possible interactions with the Galaxy workflow invocations
- class bioblend.galaxy.invocations.InvocationClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- cancel_invocation(invocation_id: str) Dict[str, Any]
Cancel the scheduling of a workflow.
- Parameters:
invocation_id (str) – Encoded workflow invocation ID
- Return type:
dict
- Returns:
The workflow invocation being cancelled
- get_invocation_biocompute_object(invocation_id: str) Dict[str, Any]
Get a BioCompute object for an invocation.
- Parameters:
invocation_id (str) – Encoded workflow invocation ID
- Return type:
dict
- Returns:
The BioCompute object
- get_invocation_report(invocation_id: str) Dict[str, Any]
Get a Markdown report for an invocation.
- Parameters:
invocation_id (str) – Encoded workflow invocation ID
- Return type:
dict
- Returns:
The invocation report. For example:
{'markdown': '\n# Workflow Execution Summary of Example workflow\n\n ## Workflow Inputs\n\n\n## Workflow Outputs\n\n\n ## Workflow\n```galaxy\n workflow_display(workflow_id=f2db41e1fa331b3e)\n```\n', 'render_format': 'markdown', 'workflows': {'f2db41e1fa331b3e': {'name': 'Example workflow'}}}
- get_invocation_report_pdf(invocation_id: str, file_path: str, chunk_size: int = 4096) None
Get a PDF report for an invocation.
- Parameters:
invocation_id (str) – Encoded workflow invocation ID
file_path (str) – Path to save the report
- get_invocation_step_jobs_summary(invocation_id: str) List[Dict[str, Any]]
Get a detailed summary of an invocation, listing all jobs with their job IDs and current states.
- Parameters:
invocation_id (str) – Encoded workflow invocation ID
- Return type:
list of dicts
- Returns:
The invocation step jobs summary. For example:
[{'id': 'e85a3be143d5905b', 'model': 'Job', 'populated_state': 'ok', 'states': {'ok': 1}}, {'id': 'c9468fdb6dc5c5f1', 'model': 'Job', 'populated_state': 'ok', 'states': {'running': 1}}, {'id': '2a56795cad3c7db3', 'model': 'Job', 'populated_state': 'ok', 'states': {'new': 1}}]
- get_invocation_summary(invocation_id: str) Dict[str, Any]
Get a summary of an invocation, stating the number of jobs which succeed, which are paused and which have errored.
- Parameters:
invocation_id (str) – Encoded workflow invocation ID
- Return type:
dict
- Returns:
The invocation summary. For example:
{'states': {'paused': 4, 'error': 2, 'ok': 2}, 'model': 'WorkflowInvocation', 'id': 'a799d38679e985db', 'populated_state': 'ok'}
- get_invocations(workflow_id: str | None = None, history_id: str | None = None, user_id: str | None = None, include_terminal: bool = True, limit: int | None = None, view: str = 'collection', step_details: bool = False) List[Dict[str, Any]]
Get all workflow invocations, or select a subset by specifying optional arguments for filtering (e.g. a workflow ID).
- Parameters:
workflow_id (str) – Encoded workflow ID to filter on
history_id (str) – Encoded history ID to filter on
user_id (str) – Encoded user ID to filter on. This must be your own user ID if your are not an admin user.
include_terminal (bool) – Whether to include terminal states.
limit (int) – Maximum number of invocations to return - if specified, the most recent invocations will be returned.
view (str) – Level of detail to return per invocation, either ‘element’ or ‘collection’.
step_details (bool) – If ‘view’ is ‘element’, also include details on individual steps.
- Return type:
list
- Returns:
A list of workflow invocations. For example:
[{'history_id': '2f94e8ae9edff68a', 'id': 'df7a1f0c02a5b08e', 'model_class': 'WorkflowInvocation', 'state': 'new', 'update_time': '2015-10-31T22:00:22', 'uuid': 'c8aa2b1c-801a-11e5-a9e5-8ca98228593c', 'workflow_id': '03501d7626bd192f'}]
- gi: GalaxyInstance
- module: str = 'invocations'
- rerun_invocation(invocation_id: str, inputs_update: dict | None = None, params_update: dict | None = None, history_id: str | None = None, history_name: str | None = None, import_inputs_to_history: bool = False, replacement_params: dict | None = None, allow_tool_state_corrections: bool = False, inputs_by: Literal['step_index|step_uuid', 'step_index', 'step_id', 'step_uuid', 'name'] | None = None, parameters_normalized: bool = False) Dict[str, Any]
Rerun a workflow invocation. For more extensive documentation of all parameters, see the
gi.workflows.invoke_workflow()
method.- Parameters:
invocation_id (str) – Encoded workflow invocation ID to be rerun
inputs_update (dict) – If different datasets should be used to the original invocation, this should contain a mapping of workflow inputs to the new datasets and dataset collections.
params_update (dict) – If different non-dataset tool parameters should be used to the original invocation, this should contain a mapping of the new parameter values.
history_id (str) – The encoded history ID where to store the workflow outputs. Alternatively,
history_name
may be specified to create a new history.history_name (str) – Create a new history with the given name to store the workflow outputs. If both
history_id
andhistory_name
are provided,history_name
is ignored. If neither is specified, a new ‘Unnamed history’ is created.import_inputs_to_history (bool) – If
True
, used workflow inputs will be imported into the history. IfFalse
, only workflow outputs will be visible in the given history.allow_tool_state_corrections (bool) – If True, allow Galaxy to fill in missing tool state when running workflows. This may be useful for workflows using tools that have changed over time or for workflows built outside of Galaxy with only a subset of inputs defined.
replacement_params (dict) – pattern-based replacements for post-job actions
inputs_by (str) – Determines how inputs are referenced. Can be “step_index|step_uuid” (default), “step_index”, “step_id”, “step_uuid”, or “name”.
parameters_normalized (bool) – Whether Galaxy should normalize the input parameters to ensure everything is referenced by a numeric step ID. Default is
False
, but when setting parameters for a subworkflow,True
is required.
- Return type:
dict
- Returns:
A dict describing the new workflow invocation.
Note
This method works only on Galaxy 21.01 or later.
- run_invocation_step_action(invocation_id: str, step_id: str, action: Any) Dict[str, Any]
Execute an action for an active workflow invocation step. The nature of this action and what is expected will vary based on the the type of workflow step (the only currently valid action is True/False for pause steps).
- Parameters:
invocation_id (str) – Encoded workflow invocation ID
step_id (str) – Encoded workflow invocation step ID
action (object) – Action to use when updating state, semantics depends on step type.
- Return type:
dict
- Returns:
Representation of the workflow invocation step
- show_invocation(invocation_id: str) Dict[str, Any]
Get a workflow invocation dictionary representing the scheduling of a workflow. This dictionary may be sparse at first (missing inputs and invocation steps) and will become more populated as the workflow is actually scheduled.
- Parameters:
invocation_id (str) – Encoded workflow invocation ID
- Return type:
dict
- Returns:
The workflow invocation. For example:
{'history_id': '2f94e8ae9edff68a', 'id': 'df7a1f0c02a5b08e', 'inputs': {'0': {'id': 'a7db2fac67043c7e', 'src': 'hda', 'uuid': '7932ffe0-2340-4952-8857-dbaa50f1f46a'}}, 'model_class': 'WorkflowInvocation', 'state': 'ready', 'steps': [{'action': None, 'id': 'd413a19dec13d11e', 'job_id': None, 'model_class': 'WorkflowInvocationStep', 'order_index': 0, 'state': None, 'update_time': '2015-10-31T22:00:26', 'workflow_step_id': 'cbbbf59e8f08c98c', 'workflow_step_label': None, 'workflow_step_uuid': 'b81250fd-3278-4e6a-b269-56a1f01ef485'}, {'action': None, 'id': '2f94e8ae9edff68a', 'job_id': 'e89067bb68bee7a0', 'model_class': 'WorkflowInvocationStep', 'order_index': 1, 'state': 'new', 'update_time': '2015-10-31T22:00:26', 'workflow_step_id': '964b37715ec9bd22', 'workflow_step_label': None, 'workflow_step_uuid': 'e62440b8-e911-408b-b124-e05435d3125e'}], 'update_time': '2015-10-31T22:00:26', 'uuid': 'c8aa2b1c-801a-11e5-a9e5-8ca98228593c', 'workflow_id': '03501d7626bd192f'}
- show_invocation_step(invocation_id: str, step_id: str) Dict[str, Any]
See the details of a particular workflow invocation step.
- Parameters:
invocation_id (str) – Encoded workflow invocation ID
step_id (str) – Encoded workflow invocation step ID
- Return type:
dict
- Returns:
The workflow invocation step. For example:
{'action': None, 'id': '63cd3858d057a6d1', 'job_id': None, 'model_class': 'WorkflowInvocationStep', 'order_index': 2, 'state': None, 'update_time': '2015-10-31T22:11:14', 'workflow_step_id': '52e496b945151ee8', 'workflow_step_label': None, 'workflow_step_uuid': '4060554c-1dd5-4287-9040-8b4f281cf9dc'}
- wait_for_invocation(invocation_id: str, maxwait: float = 12000, interval: float = 3, check: bool = True) Dict[str, Any]
Wait until an invocation is in a terminal state.
- Parameters:
invocation_id (str) – Invocation ID to wait for.
maxwait (float) – Total time (in seconds) to wait for the invocation state to become terminal. If the invocation state is not terminal within this time, a
TimeoutException
will be raised.interval (float) – Time (in seconds) to wait between 2 consecutive checks.
check (bool) – Whether to check if the invocation terminal state is ‘scheduled’.
- Return type:
dict
- Returns:
Details of the workflow invocation.
Jobs
Contains possible interactions with the Galaxy Jobs
- class bioblend.galaxy.jobs.JobsClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- cancel_job(job_id: str) bool
Cancel a job, deleting output datasets.
- Parameters:
job_id (str) – job ID
- Return type:
bool
- Returns:
True
if the job was successfully cancelled,False
if it was already in a terminal state before the cancellation.
- get_common_problems(job_id: str) Dict[str, Any]
Query inputs and jobs for common potential problems that might have resulted in job failure.
- Parameters:
job_id (str) – job ID
- Return type:
dict
- Returns:
dict containing potential problems
Note
This method works only on Galaxy 19.05 or later.
- get_destination_params(job_id: str) Dict[str, Any]
Get destination parameters for a job, describing the environment and location where the job is run.
- Parameters:
job_id (str) – job ID
- Return type:
dict
- Returns:
Destination parameters for the given job
Note
This method works only on Galaxy 20.05 or later and if the user is a Galaxy admin.
- get_inputs(job_id: str) List[Dict[str, Any]]
Get dataset inputs used by a job.
- Parameters:
job_id (str) – job ID
- Return type:
list of dicts
- Returns:
Inputs for the given job
- get_jobs(state: str | None = None, history_id: str | None = None, invocation_id: str | None = None, tool_id: str | None = None, workflow_id: str | None = None, user_id: str | None = None, date_range_min: str | None = None, date_range_max: str | None = None, limit: int = 500, offset: int = 0, user_details: bool = False, order_by: Literal['create_time', 'update_time'] = 'update_time') List[Dict[str, Any]]
Get all jobs, or select a subset by specifying optional arguments for filtering (e.g. a state).
If the user is an admin, this will return jobs for all the users, otherwise only for the current user.
- Parameters:
state (str or list of str) – Job states to filter on.
history_id (str) – Encoded history ID to filter on.
invocation_id (string) – Encoded workflow invocation ID to filter on.
tool_id (str or list of str) – Tool IDs to filter on.
workflow_id (string) – Encoded workflow ID to filter on.
user_id (str) – Encoded user ID to filter on. Only admin users can access the jobs of other users.
date_range_min (str) – Mininum job update date (in YYYY-MM-DD format) to filter on.
date_range_max (str) – Maximum job update date (in YYYY-MM-DD format) to filter on.
limit (int) – Maximum number of jobs to return.
offset (int) – Return jobs starting from this specified position. For example, if
limit
is set to 100 andoffset
to 200, jobs 200-299 will be returned.user_details (bool) – If
True
and the user is an admin, add the user email to each returned job dictionary.order_by (str) – Whether to order jobs by
create_time
orupdate_time
(the default).
- Return type:
list of dict
- Returns:
Summary information for each selected job. For example:
[{'create_time': '2014-03-01T16:16:48.640550', 'exit_code': 0, 'id': 'ebfb8f50c6abde6d', 'model_class': 'Job', 'state': 'ok', 'tool_id': 'fasta2tab', 'update_time': '2014-03-01T16:16:50.657399'}, {'create_time': '2014-03-01T16:05:34.851246', 'exit_code': 0, 'id': '1cd8e2f6b131e891', 'model_class': 'Job', 'state': 'ok', 'tool_id': 'upload1', 'update_time': '2014-03-01T16:05:39.558458'}]
Note
The following parameters work only on Galaxy 21.05 or later:
user_id
,limit
,offset
,workflow_id
,invocation_id
.
- get_metrics(job_id: str) List[Dict[str, Any]]
Return job metrics for a given job.
- Parameters:
job_id (str) – job ID
- Return type:
list
- Returns:
list containing job metrics
Note
Calling
show_job()
withfull_details=True
also returns the metrics for a job if the user is an admin. This method allows to fetch metrics even as a normal user as long as the Galaxy instance has theexpose_potentially_sensitive_job_metrics
option set totrue
in theconfig/galaxy.yml
configuration file.
- get_outputs(job_id: str) List[Dict[str, Any]]
Get dataset outputs produced by a job.
- Parameters:
job_id (str) – job ID
- Return type:
list of dicts
- Returns:
Outputs of the given job
- get_state(job_id: str) str
Display the current state for a given job of the current user.
- Parameters:
job_id (str) – job ID
- Return type:
str
- Returns:
state of the given job among the following values: new, queued, running, waiting, ok. If the state cannot be retrieved, an empty string is returned.
New in version 0.5.3.
- module: str = 'jobs'
- report_error(job_id: str, dataset_id: str, message: str, email: str | None = None) Dict[str, Any]
Report an error for a given job and dataset to the server administrators.
- Parameters:
job_id (str) – job ID
dataset_id (str) – Dataset ID
message (str) – Error message
email (str) – Email for error report submission. If not specified, the email associated with the Galaxy user account is used by default.
- Return type:
dict
- Returns:
dict containing job error reply
Note
This method works only on Galaxy 20.01 or later.
- rerun_job(job_id: str, remap: bool = False, tool_inputs_update: Dict[str, Any] | None = None, history_id: str | None = None) Dict[str, Any]
Rerun a job.
- Parameters:
job_id (str) – job ID
remap (bool) – when
True
, the job output(s) will be remapped onto the dataset(s) created by the original job; if other jobs were waiting for this job to finish successfully, they will be resumed using the new outputs of this tool run. WhenFalse
, new job output(s) will be created. Note that if Galaxy does not permit remapping for the job in question, specifyingTrue
will result in an error.tool_inputs_update (dict) – dictionary specifying any changes which should be made to tool parameters for the rerun job. This dictionary should have the same structure as is required when submitting the
tool_inputs
dictionary togi.tools.run_tool()
, but only needs to include the inputs or parameters to be updated for the rerun job.history_id (str) – ID of the history in which the job should be executed; if not specified, the same history will be used as the original job run.
- Return type:
dict
- Returns:
Information about outputs and the rerun job
Note
This method works only on Galaxy 21.01 or later.
- resume_job(job_id: str) List[Dict[str, Any]]
Resume a job if it is paused.
- Parameters:
job_id (str) – job ID
- Return type:
list of dicts
- Returns:
list of dictionaries containing output dataset associations
- search_jobs(tool_id: str, inputs: Dict[str, Any], state: str | None = None) List[Dict[str, Any]]
Return jobs matching input parameters.
- Parameters:
tool_id (str) – only return jobs associated with this tool ID
inputs (dict) – return only jobs that have matching inputs
state (str) – only return jobs in this state
- Return type:
list of dicts
- Returns:
Summary information for each matching job
This method is designed to scan the list of previously run jobs and find records of jobs with identical input parameters and datasets. This can be used to minimize the amount of repeated work by simply recycling the old results.
Changed in version 0.16.0: Replaced the
job_info
parameter with separatetool_id
,inputs
andstate
.
- show_job(job_id: str, full_details: bool = False) Dict[str, Any]
Get details of a given job of the current user.
- Parameters:
job_id (str) – job ID
full_details (bool) – when
True
, the complete list of details for the given job.
- Return type:
dict
- Returns:
A description of the given job. For example:
{'create_time': '2014-03-01T16:17:29.828624', 'exit_code': 0, 'id': 'a799d38679e985db', 'inputs': {'input': {'id': 'ebfb8f50c6abde6d', 'src': 'hda'}}, 'model_class': 'Job', 'outputs': {'output': {'id': 'a799d38679e985db', 'src': 'hda'}}, 'params': {'chromInfo': '"/opt/galaxy-central/tool-data/shared/ucsc/chrom/?.len"', 'dbkey': '"?"', 'seq_col': '"2"', 'title_col': '["1"]'}, 'state': 'ok', 'tool_id': 'tab2fasta', 'update_time': '2014-03-01T16:17:31.930728'}
- show_job_lock() bool
Show whether the job lock is active or not. If it is active, no jobs will dispatch on the Galaxy server.
- Return type:
bool
- Returns:
Status of the job lock
Note
This method works only on Galaxy 20.05 or later and if the user is a Galaxy admin.
- update_job_lock(active: bool = False) bool
Update the job lock status by setting
active
to eitherTrue
orFalse
. IfTrue
, all job dispatching will be blocked.- Return type:
bool
- Returns:
Updated status of the job lock
Note
This method works only on Galaxy 20.05 or later and if the user is a Galaxy admin.
- wait_for_job(job_id: str, maxwait: float = 12000, interval: float = 3, check: bool = True) Dict[str, Any]
Wait until a job is in a terminal state.
- Parameters:
job_id (str) – job ID
maxwait (float) – Total time (in seconds) to wait for the job state to become terminal. If the job state is not terminal within this time, a
TimeoutException
will be raised.interval (float) – Time (in seconds) to wait between 2 consecutive checks.
check (bool) – Whether to check if the job terminal state is ‘ok’.
- Return type:
dict
- Returns:
Details of the given job.
Libraries
Contains possible interactions with the Galaxy Data Libraries
- class bioblend.galaxy.libraries.LibraryClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- copy_from_dataset(library_id: str, dataset_id: str, folder_id: str | None = None, message: str = '') Dict[str, Any]
Copy a Galaxy dataset into a library.
- Parameters:
library_id (str) – id of the library where to place the uploaded file
dataset_id (str) – id of the dataset to copy from
folder_id (str) – id of the folder where to place the uploaded files. If not provided, the root folder will be used
message (str) – message for copying action
- Return type:
dict
- Returns:
LDDA information
- create_folder(library_id: str, folder_name: str, description: str | None = None, base_folder_id: str | None = None) List[Dict[str, Any]]
Create a folder in a library.
- Parameters:
library_id (str) – library id to use
folder_name (str) – name of the new folder in the data library
description (str) – description of the new folder in the data library
base_folder_id (str) – id of the folder where to create the new folder. If not provided, the root folder will be used
- Return type:
list
- Returns:
List with a single dictionary containing information about the new folder
- create_library(name: str, description: str | None = None, synopsis: str | None = None) Dict[str, Any]
Create a data library with the properties defined in the arguments.
- Parameters:
name (str) – Name of the new data library
description (str) – Optional data library description
synopsis (str) – Optional data library synopsis
- Return type:
dict
- Returns:
Details of the created library. For example:
{'id': 'f740ab636b360a70', 'name': 'Library from bioblend', 'url': '/api/libraries/f740ab636b360a70'}
- delete_library(library_id: str) Dict[str, Any]
Delete a data library.
- Parameters:
library_id (str) – Encoded data library ID identifying the library to be deleted
- Return type:
dict
- Returns:
Information about the deleted library
Warning
Deleting a data library is irreversible - all of the data from the library will be permanently deleted.
- delete_library_dataset(library_id: str, dataset_id: str, purged: bool = False) Dict[str, Any]
Delete a library dataset in a data library.
- Parameters:
library_id (str) – library id where dataset is found in
dataset_id (str) – id of the dataset to be deleted
purged (bool) – Indicate that the dataset should be purged (permanently deleted)
- Return type:
dict
- Returns:
A dictionary containing the dataset id and whether the dataset has been deleted. For example:
{'deleted': True, 'id': '60e680a037f41974'}
- get_dataset_permissions(dataset_id: str) Dict[str, Any]
Get the permissions for a dataset.
- Parameters:
dataset_id (str) – id of the dataset
- Return type:
dict
- Returns:
dictionary with all applicable permissions’ values
- get_folders(library_id: str, folder_id: str | None = None, name: str | None = None) List[Dict[str, Any]]
Get all the folders in a library, or select a subset by specifying a folder name for filtering.
- Parameters:
library_id (str) – library id to use
name (str) – Folder name to filter on. For
name
specify the full path of the folder starting from the library’s root folder, e.g./subfolder/subsubfolder
.
- Return type:
list
- Returns:
list of dicts each containing basic information about a folder
Changed in version 1.1.1: Using the deprecated
folder_id
parameter now raises aValueError
exception.
- get_libraries(library_id: str | None = None, name: str | None = None, deleted: bool | None = False) List[Dict[str, Any]]
Get all libraries, or select a subset by specifying optional arguments for filtering (e.g. a library name).
- Parameters:
name (str) – Library name to filter on.
deleted (bool) – If
False
(the default), return only non-deleted libraries. IfTrue
, return only deleted libraries. IfNone
, return both deleted and non-deleted libraries.
- Return type:
list
- Returns:
list of dicts each containing basic information about a library
Changed in version 1.1.1: Using the deprecated
library_id
parameter now raises aValueError
exception.
- get_library_permissions(library_id: str) Dict[str, Any]
Get the permissions for a library.
- Parameters:
library_id (str) – id of the library
- Return type:
dict
- Returns:
dictionary with all applicable permissions’ values
- module: str = 'libraries'
- set_dataset_permissions(dataset_id: str, access_in: List[str] | None = None, modify_in: List[str] | None = None, manage_in: List[str] | None = None) Dict[str, Any]
Set the permissions for a dataset. Note: it will override all security for this dataset even if you leave out a permission type.
- Parameters:
dataset_id (str) – id of the dataset
access_in (list) – list of role ids
modify_in (list) – list of role ids
manage_in (list) – list of role ids
- Return type:
dict
- Returns:
dictionary with all applicable permissions’ values
- set_library_permissions(library_id: str, access_in: List[str] | None = None, modify_in: List[str] | None = None, add_in: List[str] | None = None, manage_in: List[str] | None = None) Dict[str, Any]
Set the permissions for a library. Note: it will override all security for this library even if you leave out a permission type.
- Parameters:
library_id (str) – id of the library
access_in (list) – list of role ids
modify_in (list) – list of role ids
add_in (list) – list of role ids
manage_in (list) – list of role ids
- Return type:
dict
- Returns:
General information about the library
- show_dataset(library_id: str, dataset_id: str) Dict[str, Any]
Get details about a given library dataset. The required
library_id
can be obtained from the datasets’s library content details.- Parameters:
library_id (str) – library id where dataset is found in
dataset_id (str) – id of the dataset to be inspected
- Return type:
dict
- Returns:
A dictionary containing information about the dataset in the library
- show_folder(library_id: str, folder_id: str) Dict[str, Any]
Get details about a given folder. The required
folder_id
can be obtained from the folder’s library content details.- Parameters:
library_id (str) – library id to inspect folders in
folder_id (str) – id of the folder to be inspected
- Return type:
dict
- Returns:
Information about the folder
- show_library(library_id: str, contents: bool = False) Dict[str, Any]
Get information about a library.
- Parameters:
library_id (str) – filter for library by library id
contents (bool) – whether to get contents of the library (rather than just the library details)
- Return type:
dict
- Returns:
details of the given library
- update_library_dataset(dataset_id: str, **kwargs: Any) Dict[str, Any]
Update library dataset metadata. Some of the attributes that can be modified are documented below.
- Parameters:
dataset_id (str) – id of the dataset to be updated
name (str) – Replace library dataset name with the given string
misc_info (str) – Replace library dataset misc_info with given string
file_ext (str) – Replace library dataset extension (must exist in the Galaxy registry)
genome_build (str) – Replace library dataset genome build (dbkey)
tags (list) – Replace library dataset tags with the given list
- Return type:
dict
- Returns:
details of the updated dataset
- upload_file_contents(library_id: str, pasted_content: str, folder_id: str | None = None, file_type: str = 'auto', dbkey: str = '?', tags: List[str] | None = None) List[Dict[str, Any]]
Upload pasted_content to a data library as a new file.
- Parameters:
library_id (str) – id of the library where to place the uploaded file
pasted_content (str) – Content to upload into the library
folder_id (str) – id of the folder where to place the uploaded file. If not provided, the root folder will be used
file_type (str) – Galaxy file format name
dbkey (str) – Dbkey
tags (list) – A list of tags to add to the datasets
- Return type:
list
- Returns:
List with a single dictionary containing information about the LDDA
- upload_file_from_local_path(library_id: str, file_local_path: str, folder_id: str | None = None, file_type: str = 'auto', dbkey: str = '?', tags: List[str] | None = None) List[Dict[str, Any]]
Read local file contents from file_local_path and upload data to a library.
- Parameters:
library_id (str) – id of the library where to place the uploaded file
file_local_path (str) – path of local file to upload
folder_id (str) – id of the folder where to place the uploaded file. If not provided, the root folder will be used
file_type (str) – Galaxy file format name
dbkey (str) – Dbkey
tags (list) – A list of tags to add to the datasets
- Return type:
list
- Returns:
List with a single dictionary containing information about the LDDA
- upload_file_from_server(library_id: str, server_dir: str, folder_id: str | None = None, file_type: str = 'auto', dbkey: str = '?', link_data_only: Literal['copy_files', 'link_to_files'] | None = None, roles: str = '', preserve_dirs: bool = False, tag_using_filenames: bool = False, tags: List[str] | None = None) List[Dict[str, Any]]
Upload all files in the specified subdirectory of the Galaxy library import directory to a library.
- Parameters:
library_id (str) – id of the library where to place the uploaded file
server_dir (str) – relative path of the subdirectory of
library_import_dir
to upload. All and only the files (i.e. no subdirectories) contained in the specified directory will be uploadedfolder_id (str) – id of the folder where to place the uploaded files. If not provided, the root folder will be used
file_type (str) – Galaxy file format name
dbkey (str) – Dbkey
link_data_only (str) – either ‘copy_files’ (default) or ‘link_to_files’. Setting to ‘link_to_files’ symlinks instead of copying the files
roles (str) –
???
preserve_dirs (bool) – Indicate whether to preserve the directory structure when importing dir
tag_using_filenames (bool) –
Indicate whether to generate dataset tags from filenames.
Changed in version 0.14.0: Changed the default from
True
toFalse
.tags (list) – A list of tags to add to the datasets
- Return type:
list
- Returns:
List with a single dictionary containing information about the LDDA
Note
This method works only if the Galaxy instance has the
library_import_dir
option configured in theconfig/galaxy.yml
configuration file.
- upload_file_from_url(library_id: str, file_url: str, folder_id: str | None = None, file_type: str = 'auto', dbkey: str = '?', tags: List[str] | None = None) List[Dict[str, Any]]
Upload a file to a library from a URL.
- Parameters:
library_id (str) – id of the library where to place the uploaded file
file_url (str) – URL of the file to upload
folder_id (str) – id of the folder where to place the uploaded file. If not provided, the root folder will be used
file_type (str) – Galaxy file format name
dbkey (str) – Dbkey
tags (list) – A list of tags to add to the datasets
- Return type:
list
- Returns:
List with a single dictionary containing information about the LDDA
- upload_from_galaxy_filesystem(library_id: str, filesystem_paths: str, folder_id: str | None = None, file_type: str = 'auto', dbkey: str = '?', link_data_only: Literal['copy_files', 'link_to_files'] | None = None, roles: str = '', preserve_dirs: bool = False, tag_using_filenames: bool = False, tags: List[str] | None = None) List[Dict[str, Any]]
Upload a set of files already present on the filesystem of the Galaxy server to a library.
- Parameters:
library_id (str) – id of the library where to place the uploaded file
filesystem_paths (str) – file paths on the Galaxy server to upload to the library, one file per line
folder_id (str) – id of the folder where to place the uploaded files. If not provided, the root folder will be used
file_type (str) – Galaxy file format name
dbkey (str) – Dbkey
link_data_only (str) – either ‘copy_files’ (default) or ‘link_to_files’. Setting to ‘link_to_files’ symlinks instead of copying the files
roles (str) –
???
preserve_dirs (bool) – Indicate whether to preserve the directory structure when importing dir
tag_using_filenames (bool) –
Indicate whether to generate dataset tags from filenames.
Changed in version 0.14.0: Changed the default from
True
toFalse
.tags (list) – A list of tags to add to the datasets
- Return type:
list
- Returns:
List of dictionaries containing information about each uploaded LDDA.
Note
This method works only if the Galaxy instance has the
allow_path_paste
option set totrue
in theconfig/galaxy.yml
configuration file.
- wait_for_dataset(library_id: str, dataset_id: str, maxwait: float = 12000, interval: float = 3) Dict[str, Any]
Wait until the library dataset state is terminal (‘ok’, ‘empty’, ‘error’, ‘discarded’ or ‘failed_metadata’).
- Parameters:
library_id (str) – library id where dataset is found in
dataset_id (str) – id of the dataset to wait for
maxwait (float) – Total time (in seconds) to wait for the dataset state to become terminal. If the dataset state is not terminal within this time, a
DatasetTimeoutException
will be thrown.interval (float) – Time (in seconds) to wait between 2 consecutive checks.
- Return type:
dict
- Returns:
A dictionary containing information about the dataset in the library
Quotas
Contains possible interactions with the Galaxy Quota
- class bioblend.galaxy.quotas.QuotaClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- create_quota(name: str, description: str, amount: str, operation: Literal['+', '-', '='], default: Literal['no', 'registered', 'unregistered'] | None = 'no', in_users: List[str] | None = None, in_groups: List[str] | None = None) Dict[str, Any]
Create a new quota
- Parameters:
name (str) – Name for the new quota. This must be unique within a Galaxy instance.
description (str) – Quota description
amount (str) – Quota size (E.g.
10000MB
,99 gb
,0.2T
,unlimited
)operation (str) – One of (
+
,-
,=
)default (str) – Whether or not this is a default quota. Valid values are
no
,unregistered
,registered
. None is equivalent tono
.in_users (list of str) – A list of user IDs or user emails.
in_groups (list of str) – A list of group IDs or names.
- Return type:
dict
- Returns:
A description of quota. For example:
{'url': '/galaxy/api/quotas/386f14984287a0f7', 'model_class': 'Quota', 'message': "Quota 'Testing' has been created with 1 associated users and 0 associated groups.", 'id': '386f14984287a0f7', 'name': 'Testing'}
- delete_quota(quota_id: str) str
Delete a quota
Before a quota can be deleted, the quota must not be a default quota.
- Parameters:
quota_id (str) – Encoded quota ID.
- Return type:
str
- Returns:
A description of the changes, mentioning the deleted quota. For example:
"Deleted 1 quotas: Testing-B"
- get_quotas(deleted: bool = False) List[Dict[str, Any]]
Get a list of quotas
- Parameters:
deleted (bool) – Only return quota(s) that have been deleted
- Return type:
list
- Returns:
A list of dicts with details on individual quotas. For example:
[{'id': '0604c8a56abe9a50', 'model_class': 'Quota', 'name': 'test ', 'url': '/api/quotas/0604c8a56abe9a50'}, {'id': '1ee267091d0190af', 'model_class': 'Quota', 'name': 'workshop', 'url': '/api/quotas/1ee267091d0190af'}]
- module: str = 'quotas'
- show_quota(quota_id: str, deleted: bool = False) Dict[str, Any]
Display information on a quota
- Parameters:
quota_id (str) – Encoded quota ID
deleted (bool) – Search for quota in list of ones already marked as deleted
- Return type:
dict
- Returns:
A description of quota. For example:
{'bytes': 107374182400, 'default': [], 'description': 'just testing', 'display_amount': '100.0 GB', 'groups': [], 'id': '0604c8a56abe9a50', 'model_class': 'Quota', 'name': 'test ', 'operation': '=', 'users': []}
- undelete_quota(quota_id: str) str
Undelete a quota
- Parameters:
quota_id (str) – Encoded quota ID.
- Return type:
str
- Returns:
A description of the changes, mentioning the undeleted quota. For example:
"Undeleted 1 quotas: Testing-B"
- update_quota(quota_id: str, name: str | None = None, description: str | None = None, amount: str | None = None, operation: Literal['+', '-', '='] | None = None, default: str = 'no', in_users: List[str] | None = None, in_groups: List[str] | None = None) str
Update an existing quota
- Parameters:
quota_id (str) – Encoded quota ID
name (str) – Name for the new quota. This must be unique within a Galaxy instance.
description (str) – Quota description. If you supply this parameter, but not the name, an error will be thrown.
amount (str) – Quota size (E.g.
10000MB
,99 gb
,0.2T
,unlimited
)operation (str) – One of (
+
,-
,=
). If you wish to change this value, you must also provide theamount
, otherwise it will not take effect.default (str) – Whether or not this is a default quota. Valid values are
no
,unregistered
,registered
. Calling this method withdefault="no"
on a non-default quota will throw an error. Not passing this parameter is equivalent to passingno
.in_users (list of str) – A list of user IDs or user emails.
in_groups (list of str) – A list of group IDs or names.
- Return type:
str
- Returns:
A semicolon separated list of changes to the quota. For example:
"Quota 'Testing-A' has been renamed to 'Testing-B'; Quota 'Testing-e' is now '-100.0 GB'; Quota 'Testing-B' is now the default for unregistered users"
Roles
Contains possible interactions with the Galaxy Roles
- class bioblend.galaxy.roles.RolesClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- create_role(role_name: str, description: str, user_ids: List[str] | None = None, group_ids: List[str] | None = None) Dict[str, Any]
Create a new role.
- Parameters:
role_name (str) – A name for the new role
description (str) – Description for the new role
user_ids (list) – A list of encoded user IDs to add to the new role
group_ids (list) – A list of encoded group IDs to add to the new role
- Return type:
dict
- Returns:
Details of the newly created role. For example:
{'description': 'desc', 'url': '/api/roles/ebfb8f50c6abde6d', 'model_class': 'Role', 'type': 'admin', 'id': 'ebfb8f50c6abde6d', 'name': 'Foo'}
Changed in version 0.15.0: Changed the return value from a 1-element list to a dict.
- get_roles() List[Dict[str, Any]]
Displays a collection (list) of roles.
- Return type:
list
- Returns:
A list of dicts with details on individual roles. For example:
[{"id": "f2db41e1fa331b3e", "model_class": "Role", "name": "Foo", "url": "/api/roles/f2db41e1fa331b3e"}, {"id": "f597429621d6eb2b", "model_class": "Role", "name": "Bar", "url": "/api/roles/f597429621d6eb2b"}]
- module: str = 'roles'
- show_role(role_id: str) Dict[str, Any]
Display information on a single role
- Parameters:
role_id (str) – Encoded role ID
- Return type:
dict
- Returns:
Details of the given role. For example:
{"description": "Private Role for Foo", "id": "f2db41e1fa331b3e", "model_class": "Role", "name": "Foo", "type": "private", "url": "/api/roles/f2db41e1fa331b3e"}
Tools
Tool data tables
Contains possible interactions with the Galaxy Tool data tables
- class bioblend.galaxy.tool_data.ToolDataClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- delete_data_table(data_table_id: str, values: str) Dict[str, Any]
Delete an item from a data table.
- Parameters:
data_table_id (str) – ID of the data table
values (str) – a “|” separated list of column contents, there must be a value for all the columns of the data table
- Return type:
dict
- Returns:
Remaining contents of the given data table
- get_data_tables() List[Dict[str, Any]]
Get the list of all data tables.
- Return type:
list
- Returns:
A list of dicts with details on individual data tables. For example:
[{"model_class": "TabularToolDataTable", "name": "fasta_indexes"}, {"model_class": "TabularToolDataTable", "name": "bwa_indexes"}]
- module: str = 'tool_data'
- reload_data_table(data_table_id: str) Dict[str, Any]
Reload a data table.
- Parameters:
data_table_id (str) – ID of the data table
- Return type:
dict
- Returns:
A description of the given data table and its content. For example:
{'columns': ['value', 'dbkey', 'name', 'path'], 'fields': [['test id', 'test', 'test name', '/opt/galaxy-dist/tool-data/test/seq/test id.fa']], 'model_class': 'TabularToolDataTable', 'name': 'all_fasta'}
- show_data_table(data_table_id: str) Dict[str, Any]
Get details of a given data table.
- Parameters:
data_table_id (str) – ID of the data table
- Return type:
dict
- Returns:
A description of the given data table and its content. For example:
{'columns': ['value', 'dbkey', 'name', 'path'], 'fields': [['test id', 'test', 'test name', '/opt/galaxy-dist/tool-data/test/seq/test id.fa']], 'model_class': 'TabularToolDataTable', 'name': 'all_fasta'}
Tool dependencies
Contains interactions dealing with Galaxy dependency resolvers.
- class bioblend.galaxy.tool_dependencies.ToolDependenciesClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- delete_unused_dependency_paths(paths: List[str]) None
Delete unused paths
- Parameters:
paths (list) – paths to delete
- module: str = 'dependency_resolvers'
- summarize_toolbox(index: int | None = None, tool_ids: List[str] | None = None, resolver_type: str | None = None, include_containers: bool = False, container_type: str | None = None, index_by: Literal['requirements', 'tools'] = 'requirements') list
Summarize requirements across toolbox (for Tool Management grid).
- Parameters:
index (int) – index of the dependency resolver with respect to the dependency resolvers config file
tool_ids (list) – tool_ids to return when index_by=tools
resolver_type (str) – restrict to specified resolver type
include_containers (bool) – include container resolvers in resolution
container_type (str) – restrict to specified container type
index_by (str) – By default results are grouped by requirements. Set to ‘tools’ to return one entry per tool.
- Return type:
list of dicts
- Returns:
dictified descriptions of the dependencies, with attribute dependency_type: None if no match was found. For example:
[{'requirements': [{'name': 'galaxy_sequence_utils', 'specs': [], 'type': 'package', 'version': '1.1.4'}, {'name': 'bx-python', 'specs': [], 'type': 'package', 'version': '0.8.6'}], 'status': [{'cacheable': False, 'dependency_type': None, 'exact': True, 'model_class': 'NullDependency', 'name': 'galaxy_sequence_utils', 'version': '1.1.4'}, {'cacheable': False, 'dependency_type': None, 'exact': True, 'model_class': 'NullDependency', 'name': 'bx-python', 'version': '0.8.6'}], 'tool_ids': ['vcf_to_maf_customtrack1']}]
Note
This method works only on Galaxy 20.01 or later and if the user is a Galaxy admin. It relies on an experimental API particularly tied to the GUI and therefore is subject to breaking changes.
- unused_dependency_paths() List[str]
List unused dependencies
ToolShed
Users
Visual
Workflows
Contains possible interactions with the Galaxy Workflows
- class bioblend.galaxy.workflows.WorkflowClient(galaxy_instance: GalaxyInstance)
A generic Client interface defining the common fields.
All clients must define the following field (which will be used as part of the URL composition (e.g.,
http://<galaxy_instance>/api/libraries
):self.module = 'workflows' | 'libraries' | 'histories' | ...
- cancel_invocation(workflow_id: str, invocation_id: str) Dict[str, Any]
Cancel the scheduling of a workflow.
- Parameters:
workflow_id (str) – Encoded workflow ID
invocation_id (str) – Encoded workflow invocation ID
- Return type:
dict
- Returns:
The workflow invocation being cancelled
- delete_workflow(workflow_id: str) None
Delete a workflow identified by workflow_id.
- Parameters:
workflow_id (str) – Encoded workflow ID
Warning
Deleting a workflow is irreversible in Galaxy versions < 23.01 - all workflow data will be permanently deleted.
- export_workflow_dict(workflow_id: str, version: int | None = None) Dict[str, Any]
Exports a workflow.
- Parameters:
workflow_id (str) – Encoded workflow ID
version (int) – Workflow version to export
- Return type:
dict
- Returns:
Dictionary representing the requested workflow
- export_workflow_to_local_path(workflow_id: str, file_local_path: str, use_default_filename: bool = True) None
Exports a workflow in JSON format to a given local path.
- Parameters:
workflow_id (str) – Encoded workflow ID
file_local_path (str) – Local path to which the exported file will be saved. (Should not contain filename if use_default_name=True)
use_default_filename (bool) – If the use_default_name parameter is True, the exported file will be saved as file_local_path/Galaxy-Workflow-%s.ga, where %s is the workflow name. If use_default_name is False, file_local_path is assumed to contain the full file path including filename.
- Return type:
None
- Returns:
None
- extract_workflow_from_history(history_id: str, workflow_name: str, job_ids: List[str] | None = None, dataset_hids: List[str] | None = None, dataset_collection_hids: List[str] | None = None) Dict[str, Any]
Extract a workflow from a history.
- Parameters:
history_id (str) – Encoded history ID
workflow_name (str) – Name of the workflow to create
job_ids (list) – Optional list of job IDs to filter the jobs to extract from the history
dataset_hids (list) – Optional list of dataset hids corresponding to workflow inputs when extracting a workflow from history
dataset_collection_hids (list) – Optional list of dataset collection hids corresponding to workflow inputs when extracting a workflow from history
- Return type:
dict
- Returns:
A description of the created workflow
- get_invocations(workflow_id: str) List[Dict[str, Any]]
Get a list containing all the workflow invocations corresponding to the specified workflow.
For more advanced filtering use InvocationClient.get_invocations().
- Parameters:
workflow_id (str) – Encoded workflow ID
- Return type:
list
- Returns:
A list of workflow invocations. For example:
[{'history_id': '2f94e8ae9edff68a', 'id': 'df7a1f0c02a5b08e', 'model_class': 'WorkflowInvocation', 'state': 'new', 'update_time': '2015-10-31T22:00:22', 'uuid': 'c8aa2b1c-801a-11e5-a9e5-8ca98228593c', 'workflow_id': '03501d7626bd192f'}]
- get_workflow_inputs(workflow_id: str, label: str) List[str]
Get a list of workflow input IDs that match the given label. If no input matches the given label, an empty list is returned.
- Parameters:
workflow_id (str) – Encoded workflow ID
label (str) – label to filter workflow inputs on
- Return type:
list
- Returns:
list of workflow inputs matching the label query
- get_workflows(workflow_id: str | None = None, name: str | None = None, published: bool = False) List[Dict[str, Any]]
Get all workflows, or select a subset by specifying optional arguments for filtering (e.g. a workflow name).
- Parameters:
name (str) – Workflow name to filter on.
published (bool) – if
True
, return also published workflows
- Return type:
list
- Returns:
A list of workflow dicts. For example:
[{'id': '92c56938c2f9b315', 'name': 'Simple', 'url': '/api/workflows/92c56938c2f9b315'}]
Changed in version 1.1.1: Using the deprecated
workflow_id
parameter now raises aValueError
exception.
Imports a new workflow from the shared published workflows.
- Parameters:
workflow_id (str) – Encoded workflow ID
- Return type:
dict
- Returns:
A description of the workflow. For example:
{'id': 'ee0e2b4b696d9092', 'model_class': 'StoredWorkflow', 'name': 'Super workflow that solves everything!', 'published': False, 'tags': [], 'url': '/api/workflows/ee0e2b4b696d9092'}
- import_workflow_dict(workflow_dict: Dict[str, Any], publish: bool = False) Dict[str, Any]
Imports a new workflow given a dictionary representing a previously exported workflow.
- Parameters:
workflow_dict (dict) – dictionary representing the workflow to be imported
publish (bool) – if
True
the uploaded workflow will be published; otherwise it will be visible only by the user which uploads it (default)
- Return type:
dict
- Returns:
Information about the imported workflow. For example:
{'name': 'Training: 16S rRNA sequencing with mothur: main tutorial', 'tags': [], 'deleted': false, 'latest_workflow_uuid': '368c6165-ccbe-4945-8a3c-d27982206d66', 'url': '/api/workflows/94bac0a90086bdcf', 'number_of_steps': 44, 'published': false, 'owner': 'jane-doe', 'model_class': 'StoredWorkflow', 'id': '94bac0a90086bdcf'}
- import_workflow_from_local_path(file_local_path: str, publish: bool = False) Dict[str, Any]
Imports a new workflow given the path to a file containing a previously exported workflow.
- Parameters:
file_local_path (str) – File to upload to the server for new workflow
publish (bool) – if
True
the uploaded workflow will be published; otherwise it will be visible only by the user which uploads it (default)
- Return type:
dict
- Returns:
Information about the imported workflow. For example:
{'name': 'Training: 16S rRNA sequencing with mothur: main tutorial', 'tags': [], 'deleted': false, 'latest_workflow_uuid': '368c6165-ccbe-4945-8a3c-d27982206d66', 'url': '/api/workflows/94bac0a90086bdcf', 'number_of_steps': 44, 'published': false, 'owner': 'jane-doe', 'model_class': 'StoredWorkflow', 'id': '94bac0a90086bdcf'}
- invoke_workflow(workflow_id: str, inputs: dict | None = None, params: dict | None = None, history_id: str | None = None, history_name: str | None = None, import_inputs_to_history: bool = False, replacement_params: dict | None = None, allow_tool_state_corrections: bool = False, inputs_by: Literal['step_index|step_uuid', 'step_index', 'step_id', 'step_uuid', 'name'] | None = None, parameters_normalized: bool = False, require_exact_tool_versions: bool = True) Dict[str, Any]
Invoke the workflow identified by
workflow_id
. This will cause a workflow to be scheduled and return an object describing the workflow invocation.- Parameters:
workflow_id (str) – Encoded workflow ID
inputs (dict) –
A mapping of workflow inputs to datasets and dataset collections. The datasets source can be a LibraryDatasetDatasetAssociation (
ldda
), LibraryDataset (ld
), HistoryDatasetAssociation (hda
), or HistoryDatasetCollectionAssociation (hdca
).The map must be in the following format:
{'<input_index>': {'id': <encoded dataset ID>, 'src': '[ldda, ld, hda, hdca]'}}
(e.g.{'2': {'id': '29beef4fadeed09f', 'src': 'hda'}}
)This map may also be indexed by the UUIDs of the workflow steps, as indicated by the
uuid
property of steps returned from the Galaxy API. Alternatively workflow steps may be addressed by the label that can be set in the workflow editor. If using uuid or label you need to also set theinputs_by
parameter tostep_uuid
orname
.params (dict) – A mapping of non-datasets tool parameters (see below)
history_id (str) – The encoded history ID where to store the workflow output. Alternatively,
history_name
may be specified to create a new history.history_name (str) – Create a new history with the given name to store the workflow output. If both
history_id
andhistory_name
are provided,history_name
is ignored. If neither is specified, a new ‘Unnamed history’ is created.import_inputs_to_history (bool) – If
True
, used workflow inputs will be imported into the history. IfFalse
, only workflow outputs will be visible in the given history.allow_tool_state_corrections (bool) – If True, allow Galaxy to fill in missing tool state when running workflows. This may be useful for workflows using tools that have changed over time or for workflows built outside of Galaxy with only a subset of inputs defined.
replacement_params (dict) – pattern-based replacements for post-job actions (see below)
inputs_by (str) – Determines how inputs are referenced. Can be “step_index|step_uuid” (default), “step_index”, “step_id”, “step_uuid”, or “name”.
parameters_normalized (bool) – Whether Galaxy should normalize
params
to ensure everything is referenced by a numeric step ID. Default isFalse
, but when settingparams
for a subworkflow,True
is required.require_exact_tool_versions (bool) – Whether invocation should fail if Galaxy does not have the exact tool versions. Default is
True
. Parameter does not any effect for Galaxy versions < 22.05.
- Return type:
dict
- Returns:
A dict containing the workflow invocation describing the scheduling of the workflow. For example:
{'history_id': '2f94e8ae9edff68a', 'id': 'df7a1f0c02a5b08e', 'inputs': {'0': {'id': 'a7db2fac67043c7e', 'src': 'hda', 'uuid': '7932ffe0-2340-4952-8857-dbaa50f1f46a'}}, 'model_class': 'WorkflowInvocation', 'state': 'ready', 'steps': [{'action': None, 'id': 'd413a19dec13d11e', 'job_id': None, 'model_class': 'WorkflowInvocationStep', 'order_index': 0, 'state': None, 'update_time': '2015-10-31T22:00:26', 'workflow_step_id': 'cbbbf59e8f08c98c', 'workflow_step_label': None, 'workflow_step_uuid': 'b81250fd-3278-4e6a-b269-56a1f01ef485'}, {'action': None, 'id': '2f94e8ae9edff68a', 'job_id': 'e89067bb68bee7a0', 'model_class': 'WorkflowInvocationStep', 'order_index': 1, 'state': 'new', 'update_time': '2015-10-31T22:00:26', 'workflow_step_id': '964b37715ec9bd22', 'workflow_step_label': None, 'workflow_step_uuid': 'e62440b8-e911-408b-b124-e05435d3125e'}], 'update_time': '2015-10-31T22:00:26', 'uuid': 'c8aa2b1c-801a-11e5-a9e5-8ca98228593c', 'workflow_id': '03501d7626bd192f'}
The
params
dict should be specified as follows:{STEP_ID: PARAM_DICT, ...}
where PARAM_DICT is:
{PARAM_NAME: VALUE, ...}
For backwards compatibility, the following (deprecated) format is also supported for
params
:{TOOL_ID: PARAM_DICT, ...}
in which case PARAM_DICT affects all steps with the given tool id. If both by-tool-id and by-step-id specifications are used, the latter takes precedence.
Finally (again, for backwards compatibility), PARAM_DICT can also be specified as:
{'param': PARAM_NAME, 'value': VALUE}
Note that this format allows only one parameter to be set per step.
For a
repeat
parameter, the names of the contained parameters needs to be specified as<repeat name>_<repeat index>|<param name>
, with the repeat index starting at 0. For example, if the tool XML contains:<repeat name="cutoff" title="Parameters used to filter cells" min="1"> <param name="name" type="text" value="n_genes" label="Name of param..."> <option value="n_genes">n_genes</option> <option value="n_counts">n_counts</option> </param> <param name="min" type="float" min="0" value="0" label="Min value"/> </repeat>
then the PARAM_DICT should be something like:
{... "cutoff_0|name": "n_genes", "cutoff_0|min": "2", "cutoff_1|name": "n_counts", "cutoff_1|min": "4", ...}
At the time of this writing, it is not possible to change the number of times the contained parameters are repeated. Therefore, the parameter indexes can go from 0 to n-1, where n is the number of times the repeated element was added when the workflow was saved in the Galaxy UI.
The
replacement_params
dict should map parameter names in post-job actions (PJAs) to their runtime values. For instance, if the final step has a PJA like the following:{'RenameDatasetActionout_file1': {'action_arguments': {'newname': '${output}'}, 'action_type': 'RenameDatasetAction', 'output_name': 'out_file1'}}
then the following renames the output dataset to ‘foo’:
replacement_params = {'output': 'foo'}
see also this email thread.
Warning
Historically, workflow invocation consumed a
dataset_map
data structure that was indexed by unencoded workflow step IDs. These IDs would not be stable across Galaxy instances. The newinputs
property is instead indexed by either theorder_index
property (which is stable across workflow imports) or the step UUID which is also stable.
- module: str = 'workflows'
- refactor_workflow(workflow_id: str, actions: List[Dict[str, Any]], dry_run: bool = False) Dict[str, Any]
Refactor workflow with given actions.
- Parameters:
workflow_id (str) – Encoded workflow ID
actions (list of dicts) –
- Actions to use for refactoring the workflow. The following
actions are supported: update_step_label, update_step_position, update_output_label, update_name, update_annotation, update_license, update_creator, update_report, add_step, add_input, disconnect, connect, fill_defaults, fill_step_defaults, extract_input, extract_legacy_parameter, remove_unlabeled_workflow_outputs, upgrade_all_steps, upgrade_subworkflow, upgrade_tool.
An example value for the
actions
argument might be:actions = [ {"action_type": "add_input", "type": "data", "label": "foo"}, {"action_type": "update_step_label", "label": "bar", "step": {"label": "foo"}}, ]
dry_run (bool) – When true, perform a dry run where the existing workflow is preserved. The refactored workflow is returned in the output of the method, but not saved on the Galaxy server.
- Return type:
dict
- Returns:
Dictionary containing logged messages for the executed actions and the refactored workflow.
- run_invocation_step_action(workflow_id: str, invocation_id: str, step_id: str, action: Any) Dict[str, Any]
Execute an action for an active workflow invocation step. The nature of this action and what is expected will vary based on the the type of workflow step (the only currently valid action is True/False for pause steps).
- Parameters:
workflow_id (str) – Encoded workflow ID
invocation_id (str) – Encoded workflow invocation ID
step_id (str) – Encoded workflow invocation step ID
action (object) – Action to use when updating state, semantics depends on step type.
- Return type:
dict
- Returns:
Representation of the workflow invocation step
- show_invocation(workflow_id: str, invocation_id: str) Dict[str, Any]
Get a workflow invocation object representing the scheduling of a workflow. This object may be sparse at first (missing inputs and invocation steps) and will become more populated as the workflow is actually scheduled.
- Parameters:
workflow_id (str) – Encoded workflow ID
invocation_id (str) – Encoded workflow invocation ID
- Return type:
dict
- Returns:
The workflow invocation. For example:
{'history_id': '2f94e8ae9edff68a', 'id': 'df7a1f0c02a5b08e', 'inputs': {'0': {'id': 'a7db2fac67043c7e', 'src': 'hda', 'uuid': '7932ffe0-2340-4952-8857-dbaa50f1f46a'}}, 'model_class': 'WorkflowInvocation', 'state': 'ready', 'steps': [{'action': None, 'id': 'd413a19dec13d11e', 'job_id': None, 'model_class': 'WorkflowInvocationStep', 'order_index': 0, 'state': None, 'update_time': '2015-10-31T22:00:26', 'workflow_step_id': 'cbbbf59e8f08c98c', 'workflow_step_label': None, 'workflow_step_uuid': 'b81250fd-3278-4e6a-b269-56a1f01ef485'}, {'action': None, 'id': '2f94e8ae9edff68a', 'job_id': 'e89067bb68bee7a0', 'model_class': 'WorkflowInvocationStep', 'order_index': 1, 'state': 'new', 'update_time': '2015-10-31T22:00:26', 'workflow_step_id': '964b37715ec9bd22', 'workflow_step_label': None, 'workflow_step_uuid': 'e62440b8-e911-408b-b124-e05435d3125e'}], 'update_time': '2015-10-31T22:00:26', 'uuid': 'c8aa2b1c-801a-11e5-a9e5-8ca98228593c', 'workflow_id': '03501d7626bd192f'}
- show_invocation_step(workflow_id: str, invocation_id: str, step_id: str) Dict[str, Any]
See the details of a particular workflow invocation step.
- Parameters:
workflow_id (str) – Encoded workflow ID
invocation_id (str) – Encoded workflow invocation ID
step_id (str) – Encoded workflow invocation step ID
- Return type:
dict
- Returns:
The workflow invocation step. For example:
{'action': None, 'id': '63cd3858d057a6d1', 'job_id': None, 'model_class': 'WorkflowInvocationStep', 'order_index': 2, 'state': None, 'update_time': '2015-10-31T22:11:14', 'workflow_step_id': '52e496b945151ee8', 'workflow_step_label': None, 'workflow_step_uuid': '4060554c-1dd5-4287-9040-8b4f281cf9dc'}
- show_versions(workflow_id: str) List[Dict[str, Any]]
Get versions for a workflow.
- Parameters:
workflow_id (str) – Encoded workflow ID
- Return type:
list of dicts
- Returns:
Ordered list of version descriptions for this workflow
- show_workflow(workflow_id: str, version: int | None = None) Dict[str, Any]
Display information needed to run a workflow.
- Parameters:
workflow_id (str) – Encoded workflow ID
version (int) – Workflow version to show
- Return type:
dict
- Returns:
A description of the workflow and its inputs. For example:
{'id': '92c56938c2f9b315', 'inputs': {'23': {'label': 'Input Dataset', 'value': ''}}, 'name': 'Simple', 'url': '/api/workflows/92c56938c2f9b315'}
- update_workflow(workflow_id: str, **kwargs: Any) Dict[str, Any]
Update a given workflow.
- Parameters:
workflow_id (str) – Encoded workflow ID
workflow (dict) – dictionary representing the workflow to be updated
name (str) – New name of the workflow
annotation (str) – New annotation for the workflow
menu_entry (bool) – Whether the workflow should appear in the user’s menu
tags (list of str) – Replace workflow tags with the given list
published (bool) – Whether the workflow should be published or unpublished
- Return type:
dict
- Returns:
Dictionary representing the updated workflow
Object-oriented Galaxy API
Client
Wrappers
Usage documentation
This page describes some sample use cases for the Galaxy API and provides
examples for these API calls.
In addition to this page, there are functional examples of complete scripts in the
docs/examples
directory of the BioBlend source code repository.
Connect to a Galaxy server
To connect to a running Galaxy server, you will need an account on that Galaxy instance and an API key for the account. Instructions on getting an API key can be found at https://galaxyproject.org/develop/api/ .
To open a connection call:
from bioblend.galaxy import GalaxyInstance
gi = GalaxyInstance(url='http://example.galaxy.url', key='your-API-key')
We now have a GalaxyInstance
object which allows us to interact with the Galaxy server under our account, and access our data. If the account is a Galaxy admin account we also will be able to use this connection to carry out admin actions.
View Histories and Datasets
Methods for accessing histories and datasets are grouped under GalaxyInstance.histories.*
and GalaxyInstance.datasets.*
respectively.
To get information on the Histories currently in your account, call:
>>> gi.histories.get_histories()
[{'id': 'f3c2b0f3ecac9f02',
'name': 'RNAseq_DGE_BASIC_Prep',
'url': '/api/histories/f3c2b0f3ecac9f02'},
{'id': '8a91dcf1866a80c2',
'name': 'June demo',
'url': '/api/histories/8a91dcf1866a80c2'}]
This returns a list of dictionaries containing basic metadata, including the id and name of each History. In this case, we have two existing Histories in our account, 'RNAseq_DGE_BASIC_Prep' and 'June demo'. To get more detailed information about a History we can pass its id to the show_history
method:
>>> gi.histories.show_history('f3c2b0f3ecac9f02', contents=False)
{'annotation': '',
'contents_url': '/api/histories/f3c2b0f3ecac9f02/contents',
'id': 'f3c2b0f3ecac9f02',
'name': 'RNAseq_DGE_BASIC_Prep',
'nice_size': '93.5 MB',
'state': 'ok',
'state_details': {'discarded': 0,
'empty': 0,
'error': 0,
'failed_metadata': 0,
'new': 0,
'ok': 7,
'paused': 0,
'queued': 0,
'running': 0,
'setting_metadata': 0,
'upload': 0},
'state_ids': {'discarded': [],
'empty': [],
'error': [],
'failed_metadata': [],
'new': [],
'ok': ['d6842fb08a76e351',
'10a4b652da44e82a',
'81c601a2549966a0',
'a154f05e3bcee26b',
'1352fe19ddce0400',
'06d549c52d753e53',
'9ec54455d6279cc7'],
'paused': [],
'queued': [],
'running': [],
'setting_metadata': [],
'upload': []}}
This gives us a dictionary containing the History's metadata. With contents=False
(the default), we only get a list of ids of the datasets contained within the History; with contents=True
we would get metadata on each dataset. We can also directly access more detailed information on a particular dataset by passing its id to the show_dataset
method:
>>> gi.datasets.show_dataset('10a4b652da44e82a')
{'data_type': 'fastqsanger',
'deleted': False,
'file_size': 16527060,
'genome_build': 'dm3',
'id': 17499,
'metadata_data_lines': None,
'metadata_dbkey': 'dm3',
'metadata_sequences': None,
'misc_blurb': '15.8 MB',
'misc_info': 'Noneuploaded fastqsanger file',
'model_class': 'HistoryDatasetAssociation',
'name': 'C1_R2_1.chr4.fq',
'purged': False,
'state': 'ok',
'visible': True}
Uploading Datasets to a History
To upload a local file to a Galaxy server, you can run the upload_file
method, supplying the path to a local file:
>>> gi.tools.upload_file('test.txt', 'f3c2b0f3ecac9f02')
{'implicit_collections': [],
'jobs': [{'create_time': '2015-07-28T17:52:39.756488',
'exit_code': None,
'id': '9752b387803d3e1e',
'model_class': 'Job',
'state': 'new',
'tool_id': 'upload1',
'update_time': '2015-07-28T17:52:39.987509'}],
'output_collections': [],
'outputs': [{'create_time': '2015-07-28T17:52:39.331176',
'data_type': 'galaxy.datatypes.data.Text',
'deleted': False,
'file_ext': 'auto',
'file_size': 0,
'genome_build': '?',
'hda_ldda': 'hda',
'hid': 16,
'history_content_type': 'dataset',
'history_id': 'f3c2b0f3ecac9f02',
'id': '59c76a119581e190',
'metadata_data_lines': None,
'metadata_dbkey': '?',
'misc_blurb': None,
'misc_info': None,
'model_class': 'HistoryDatasetAssociation',
'name': 'test.txt',
'output_name': 'output0',
'peek': '<table cellspacing="0" cellpadding="3"></table>',
'purged': False,
'state': 'queued',
'tags': [],
'update_time': '2015-07-28T17:52:39.611887',
'uuid': 'ff0ee99b-7542-4125-802d-7a193f388e7e',
'visible': True}]}
If files are greater than 2GB in size, they will need to be uploaded via FTP. Importing files from the user's FTP folder can be done via running the upload tool again:
>>> gi.tools.upload_from_ftp('test.txt', 'f3c2b0f3ecac9f02')
{'implicit_collections': [],
'jobs': [{'create_time': '2015-07-28T17:57:43.704394',
'exit_code': None,
'id': '82b264d8c3d11790',
'model_class': 'Job',
'state': 'new',
'tool_id': 'upload1',
'update_time': '2015-07-28T17:57:43.910958'}],
'output_collections': [],
'outputs': [{'create_time': '2015-07-28T17:57:43.209041',
'data_type': 'galaxy.datatypes.data.Text',
'deleted': False,
'file_ext': 'auto',
'file_size': 0,
'genome_build': '?',
'hda_ldda': 'hda',
'hid': 17,
'history_content_type': 'dataset',
'history_id': 'f3c2b0f3ecac9f02',
'id': 'a676e8f07209a3be',
'metadata_data_lines': None,
'metadata_dbkey': '?',
'misc_blurb': None,
'misc_info': None,
'model_class': 'HistoryDatasetAssociation',
'name': 'test.txt',
'output_name': 'output0',
'peek': '<table cellspacing="0" cellpadding="3"></table>',
'purged': False,
'state': 'queued',
'tags': [],
'update_time': '2015-07-28T17:57:43.544407',
'uuid': '2cbe8f0a-4019-47c4-87e2-005ce35b8449',
'visible': True}]}
View Data Libraries
Methods for accessing Data Libraries are grouped under GalaxyInstance.libraries.*
. Most Data Library methods are available to all users, but as only administrators can create new Data Libraries within Galaxy, the create_folder
and create_library
methods can only be called using an API key belonging to an admin account.
We can view the Data Libraries available to our account using:
>>> gi.libraries.get_libraries()
[{'id': '8e6f930d00d123ea',
'name': 'RNA-seq workshop data',
'url': '/api/libraries/8e6f930d00d123ea'},
{'id': 'f740ab636b360a70',
'name': '1000 genomes',
'url': '/api/libraries/f740ab636b360a70'}]
This gives a list of metadata dictionaries with basic information on each library. We can get more information on a particular Data Library by passing its id to the show_library
method:
>>> gi.libraries.show_library('8e6f930d00d123ea')
{'contents_url': '/api/libraries/8e6f930d00d123ea/contents',
'description': 'RNA-Seq workshop data',
'name': 'RNA-Seq',
'synopsis': 'Data for the RNA-Seq tutorial'}
Upload files to a Data Library
We can get files into Data Libraries in several ways: by uploading from our local machine, by retrieving from a URL, by passing the new file content directly into the method, or by importing a file from the filesystem on the Galaxy server.
For instance, to upload a file from our machine we might call:
>>> gi.libraries.upload_file_from_local_path('8e6f930d00d123ea', '/local/path/to/mydata.fastq', file_type='fastqsanger')
Note that we have provided the id of the destination Data Library, and in this case we have specified the type that Galaxy should assign to the new dataset. The default value for file_type
is 'auto', in which case Galaxy will attempt to guess the dataset type.
View Workflows
Methods for accessing workflows are grouped under GalaxyInstance.workflows.*
.
To get information on the Workflows currently in your account, use:
>>> gi.workflows.get_workflows()
[{'id': 'e8b85ad72aefca86',
'name': 'TopHat + cufflinks part 1',
'url': '/api/workflows/e8b85ad72aefca86'},
{'id': 'b0631c44aa74526d',
'name': 'CuffDiff',
'url': '/api/workflows/b0631c44aa74526d'}]
This returns a list of metadata dictionaries. We can get the details of a particular Workflow, including its steps, by passing its id to the show_workflow
method:
>>> gi.workflows.show_workflow('e8b85ad72aefca86')
{'id': 'e8b85ad72aefca86',
'inputs': {'252': {'label': 'Input RNA-seq fastq', 'value': ''}},
'name': 'TopHat + cufflinks part 1',
'steps': {'250': {'id': 250,
'input_steps': {'input1': {'source_step': 252,
'step_output': 'output'}},
'tool_id': 'tophat',
'type': 'tool'},
'251': {'id': 251,
'input_steps': {'input': {'source_step': 250,
'step_output': 'accepted_hits'}},
'tool_id': 'cufflinks',
'type': 'tool'},
'252': {'id': 252,
'input_steps': {},
'tool_id': None,
'type': 'data_input'}},
'url': '/api/workflows/e8b85ad72aefca86'}
Export or import a workflow
Workflows can be exported from or imported into Galaxy. This makes it possible to archive workflows, or to move them between Galaxy instances.
To export a workflow, we can call:
>>> workflow_dict = gi.workflows.export_workflow_dict('e8b85ad72aefca86')
This gives us a complex dictionary representing the workflow. We can import this dictionary as a new workflow with:
>>> gi.workflows.import_workflow_dict(workflow_dict)
{'id': 'c0bacafdfe211f9a',
'name': 'TopHat + cufflinks part 1 (imported from API)',
'url': '/api/workflows/c0bacafdfe211f9a'}
This call returns a dictionary containing basic metadata on the new workflow. Since in this case we have imported the dictionary into the original Galaxy instance, we now have a duplicate of the original workflow in our account:
>>> gi.workflows.get_workflows()
[{'id': 'c0bacafdfe211f9a',
'name': 'TopHat + cufflinks part 1 (imported from API)',
'url': '/api/workflows/c0bacafdfe211f9a'},
{'id': 'e8b85ad72aefca86',
'name': 'TopHat + cufflinks part 1',
'url': '/api/workflows/e8b85ad72aefca86'},
{'id': 'b0631c44aa74526d',
'name': 'CuffDiff',
'url': '/api/workflows/b0631c44aa74526d'}]
Instead of using dictionaries directly, workflows can be exported to or imported from files on the local disk using the export_workflow_to_local_path
and import_workflow_from_local_path
methods. See the API reference for details.
Note
If we export a workflow from one Galaxy instance and import it into another, Galaxy will only run it without modification if it has the same versions of the tool wrappers installed. This is to ensure reproducibility. Otherwise, we will need to manually update the workflow to use the new tool versions.
Invoke a workflow
To invoke a workflow, we need to tell Galaxy which datasets to use for which workflow inputs. We can use datasets from histories or data libraries.
Examine the workflow above. We can see that it takes only one input file. That is:
>>> wf = gi.workflows.show_workflow('e8b85ad72aefca86')
>>> wf['inputs']
{'252': {'label': 'Input RNA-seq fastq', 'value': ''}}
There is one input, labelled 'Input RNA-seq fastq'. This input is passed to the Tophat tool and should be a fastq file. We will use the dataset we examined above, under View Histories and Datasets, which had name 'C1_R2_1.chr4.fq' and id '10a4b652da44e82a'.
To specify the inputs, we build a data map and pass this to the invoke_workflow
method. This data map is a nested dictionary object which maps inputs to datasets. We call:
>>> datamap = {'252': {'src':'hda', 'id':'10a4b652da44e82a'}}
>>> gi.workflows.invoke_workflow('e8b85ad72aefca86', inputs=datamap, history_name='New output history')
{'history': '0a7b7992a7cabaec',
'outputs': ['33be8ad9917d9207',
'fbee1c2dc793c114',
'85866441984f9e28',
'1c51aa78d3742386',
'a68e8770e52d03b4',
'c54baf809e3036ac',
'ba0db8ce6cd1fe8f',
'c019e4cf08b2ac94']}
In this case the only input id is '252' and the corresponding dataset id is '10a4b652da44e82a'. We have specified the dataset source to be 'hda' (HistoryDatasetAssociation) since the dataset is stored in a History. See the API reference for allowed dataset specifications. We have also requested that a new History be created and used to store the results of the run, by setting history_name='New output history'
.
The invoke_workflow
call submits all the jobs which need to be run to the Galaxy workflow engine, with the appropriate dependencies so that they will run in order. The call returns immediately, so we can continue to submit new jobs while waiting for this workflow to execute. invoke_workflow
returns the a dictionary describing the workflow invocation.
If we view the output History immediately after calling invoke_workflow
, we will see something like:
>>> gi.histories.show_history('0a7b7992a7cabaec')
{'annotation': '',
'contents_url': '/api/histories/0a7b7992a7cabaec/contents',
'id': '0a7b7992a7cabaec',
'name': 'New output history',
'nice_size': '0 bytes',
'state': 'queued',
'state_details': {'discarded': 0,
'empty': 0,
'error': 0,
'failed_metadata': 0,
'new': 0,
'ok': 0,
'paused': 0,
'queued': 8,
'running': 0,
'setting_metadata': 0,
'upload': 0},
'state_ids': {'discarded': [],
'empty': [],
'error': [],
'failed_metadata': [],
'new': [],
'ok': [],
'paused': [],
'queued': ['33be8ad9917d9207',
'fbee1c2dc793c114',
'85866441984f9e28',
'1c51aa78d3742386',
'a68e8770e52d03b4',
'c54baf809e3036ac',
'ba0db8ce6cd1fe8f',
'c019e4cf08b2ac94'],
'running': [],
'setting_metadata': [],
'upload': []}}
In this case, because the submitted jobs have not had time to run, the output History contains 8 datasets in the 'queued' state and has a total size of 0 bytes. If we make this call again later we should instead see completed output files.
View Users
Methods for managing users are grouped under GalaxyInstance.users.*
. User management is only available to Galaxy administrators, that is, the API key used to connect to Galaxy must be that of an admin account.
To get a list of users, call:
>>> gi.users.get_users()
[{'email': 'userA@example.org',
'id': '975a9ce09b49502a',
'quota_percent': None,
'url': '/api/users/975a9ce09b49502a'},
{'email': 'userB@example.org',
'id': '0193a95acf427d2c',
'quota_percent': None,
'url': '/api/users/0193a95acf427d2c'}]
Using BioBlend for raw API calls
BioBlend can be used to make HTTP requests to the Galaxy API in a more convenient way than using e.g. the requests
Python library. There are 5 available methods corresponding to the most common HTTP methods: make_get_request
, make_post_request
, make_put_request
, make_delete_request
and make_patch_request
.
One advantage of using these methods is that the API keys stored in the GalaxyInstance
object is automatically added to the request.
To make a GET request to the Galaxy API with BioBlend, call:
>>> gi.make_get_request(gi.base_url + "/api/version").json()
{'version_major': '19.05',
'extra': {}}
To make a POST request to the Galaxy API with BioBlend, call:
>>> gi.make_post_request(gi.base_url + "/api/histories", payload={"name": "test history"})
{'importable': False,
'create_time': '2019-07-05T20:10:04.823716',
'contents_url': '/api/histories/a77b3f95070d689a/contents',
'id': 'a77b3f95070d689a',
'size': 0, 'user_id': '5b732999121d4593',
'username_and_slug': None,
'annotation': None,
'state_details': {'discarded': 0,
'ok': 0,
'failed_metadata': 0,
'upload': 0,
'paused': 0,
'running': 0,
'setting_metadata': 0,
'error': 0,
'new': 0,
'queued': 0,
'empty': 0},
'state': 'new',
'empty': True,
'update_time': '2019-07-05T20:10:04.823742',
'tags': [],
'deleted': False,
'genome_build': None,
'slug': None,
'name': 'test history',
'url': '/api/histories/a77b3f95070d689a',
'state_ids': {'discarded': [],
'ok': [],
'failed_metadata': [],
'upload': [],
'paused': [],
'running': [],
'setting_metadata': [],
'error': [],
'new': [],
'queued': [],
'empty': []},
'published': False,
'model_class': 'History',
'purged': False}
Toolshed API
API used to interact with the Galaxy Toolshed, including repository management.
Configuration
BioBlend allows library-wide configuration to be set in external files. These configuration files can be used to specify access keys, for example.
Configuration documents for BioBlend
BioBlend
- exception bioblend.ConnectionError(message: str, body: bytes | str | None = None, status_code: int | None = None)
An exception class that is raised when unexpected HTTP responses come back.
Should make it easier to debug when strange HTTP things happen such as a proxy server getting in the way of the request etc. @see: body attribute to see the content of the http response
- class bioblend.NullHandler(level=0)
Initializes the instance - basically setting the formatter to None and the filter list to empty.
- emit(record: LogRecord) None
Do whatever it takes to actually log the specified logging record.
This version is intended to be implemented by subclasses and so raises a NotImplementedError.
- exception bioblend.TimeoutException
- bioblend.get_version() str
Returns a string with the current version of the library (e.g., "0.2.0")
- bioblend.init_logging() None
Initialize BioBlend's logging from a configuration file.
- bioblend.set_file_logger(name: str, filepath: str, level: int | str = 20, format_string: str | None = None) None
- bioblend.set_stream_logger(name: str, level: int | str = 10, format_string: str | None = None) None
Config
- class bioblend.config.Config(path: str | None = None, fp: IO[str] | None = None, do_load: bool = True)
BioBlend allows library-wide configuration to be set in external files. These configuration files can be used to specify access keys, for example. By default we use two locations for the BioBlend configurations:
System wide:
/etc/bioblend.cfg
Individual user:
~/.bioblend
(which works on both Windows and Unix)
Testing
If you would like to do more than just a mock test, you need to point BioBlend to an instance of Galaxy. Do so by exporting the following two variables:
$ export BIOBLEND_GALAXY_URL=http://127.0.0.1:8080
$ export BIOBLEND_GALAXY_API_KEY=<API key>
The unit tests, stored in the tests
folder, can be run using
pytest. From the project root:
$ pytest
Getting help
If you have run into issues, found a bug, or can't seem to find an answer to your question regarding the use and functionality of BioBlend, please use the Github Issues page to ask your question.