# Licensed under a 3-clause BSD style license - see LICENSE.rst
import re
import os
import io
import requests
import warnings
import numpy as np
from astropy.table import Table
import astropy.io.fits as fits
from astroquery.exceptions import NoResultsWarning
__all__ = ['query', 'save_file', 'get_file']
id_parse = re.compile(r'ID\=(\d+)')
# should skip only if remote_data = False
__doctest_skip__ = ['query', 'save_file', 'get_file']
uri = 'https://sha.ipac.caltech.edu/applications/Spitzer/SHA/servlet/DataService?'
[docs]
def query(*, coord=None, ra=None, dec=None, size=None, naifid=None, pid=None,
          reqkey=None, dataset=2, verbosity=3, return_response=False,
          return_payload=False):
    """
    Query the Spitzer Heritage Archive (SHA).
    Four query types are valid to search by position, NAIFID, PID, and ReqKey::
        position -> search a region
        naifid   -> NAIF ID, which is a unique number allocated to solar
                    system objects (e.g. planets, asteroids, comets,
                    spacecraft) by the NAIF at JPL.
        pid      -> program ID
        reqkey   -> AOR ID: Astronomical Observation Request ID
    For a valid query, enter only parameters related to a single query type::
        position -> ra, dec, size
        naifid   -> naifid
        pid      -> pid
        reqkey   -> reqkey
    Parameters
    ----------
    coord : astropy.coordinates.builtin_systems
        Astropy coordinate object. (query_type = 'position')
    ra : number
        Right ascension in degrees, alternative to using ``coord``.
        (query_type = 'position')
    dec : number
        Declination in degrees, alternative to using ``coord``.
        (query_type = 'position')
    size : number
        Region size in degrees. (query_type = 'position')
    naifid : number
        NAIF ID. (query_type = 'naifid')
    pid : number
        Program ID. (query_type = 'pid')
    reqkey : number
        Astronomical Observation Request ID. (query_type = 'reqkey')
    dataset : number, default 2
        Data set. Valid options::
            1 -> BCD data
            2 -> PBCD data
    verbosity : number, default 3
        Verbosity level, controls the number of columns to output.
    Returns
    -------
    table : `~astropy.table.Table`
    Examples
    --------
    Position query using an astropy coordinate object
    >>> import astropy.coordinates as coord
    >>> import astropy.units as u
    >>> from astroquery import sha
    >>> pos_t = sha.query(coord=coord.SkyCoord(ra=163.6136, dec=-11.784,
    ... unit=(u.degree, u.degree)), size=0.5)
    Position query with optional ``ra`` and ``dec`` parameters
    >>> pos_t = sha.query(ra=163.6136, dec=-11.784, size=0.5)
    NAIFID query
    >>> nid_t = sha.query(naifid=2003226)
    PID query
    >>> pid_t = sha.query(pid=30080)
    ReqKey query
    >>> rqk_t = sha.query(reqkey=21641216)
    Notes
    -----
    For column descriptions, metadata, and other information visit the SHA
    query API_ help page
    .. _API: https://sha.ipac.caltech.edu/applications/Spitzer/SHA/help/doc/api.html
    """
    # Use Coordinate instance if supplied
    if coord is not None:
        try:
            ra = coord.transform_to('fk5').ra.degree
            dec = coord.transform_to('fk5').dec.degree
        except ValueError:
            raise ValueError('Cannot parse `coord` variable.')
    # Query parameters
    payload = {'RA': ra,
               'DEC': dec,
               'SIZE': size,
               'NAIFID': naifid,
               'PID': pid,
               'REQKEY': reqkey,
               'VERB': verbosity,
               'DATASET': 'ivo://irsa.ipac.spitzer.level{0}'.format(dataset)}
    if return_payload:
        return payload
    # Make request
    response = requests.get(uri, params=payload)
    if return_response:
        return response
    response.raise_for_status()
    # Parse output
    # requests returns unicode strings, encode back to ascii
    # because of '|foo|bar|' delimiters, remove first and last empty columns
    raw_data = [line for line in response.text.split('\n')]
    field_widths = [len(s) + 1 for s in raw_data[1].split('|')][1:-1]
    col_names = [s.strip() for s in raw_data[1].split('|')][1:-1]
    type_names = [s.strip() for s in raw_data[2].split('|')][1:-1]
    cs = [0] + np.cumsum(field_widths).tolist()
    def parse_line(line, cs=cs):
        return [line[a:b] for a, b in zip(cs[:-1], cs[1:])]
    data = [parse_line(row) for row in raw_data[4:-1]]
    # Parse type names
    dtypes = _map_dtypes(type_names, field_widths)
    # To table
    # transpose data for appropriate table instance handling
    if len(data) > 0:
        table = Table(list(zip(*data)), names=col_names, dtype=dtypes)
    else:
        warnings.warn(NoResultsWarning("No matching rows were found in the query."))
        table = Table()
    return table 
[docs]
def save_file(url, *, out_dir='sha_tmp/', out_name=None):
    """
    Download image to output directory given a URL from a SHA query.
    Parameters
    ----------
    url : str
        Access URL from SHA query. Requires complete URL, valid URLs from the
        SHA query include columns::
            accessUrl -> The URL to be used to retrieve an image or table
            withAnc1  -> The URL to be used to retrieve the image or spectra
                         with important ancillary products (mask, uncertainty,
                         etc.) as a zip archive
    out_dir : str
        Path for output table or image
    out_name : str
        Name for output table or image, if None use the file ID as name.
    Examples
    --------
    >>> from astroquery import sha
    >>> url = sha.query(pid=30080)['accessUrl'][0]
    >>> sha.save_file(url)
    """
    exten_types = {'image/fits': '.fits',
                   'text/plain; charset=UTF-8': '.tbl',
                   'application/zip': '.zip',
                   }
    # Make request
    response = requests.get(url, stream=True)
    response.raise_for_status()
    # Name file using ID at end
    if out_name is None:
        out_name = 'shaID_' + id_parse.findall(url)[0]
    # Determine extension
    exten = exten_types[response.headers['Content-Type']]
    # Check if path exists
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    # Write file
    with open(out_dir + out_name + exten, 'wb') as f:
        for block in response.iter_content(1024):
            f.write(block) 
[docs]
def get_file(url):
    """
    Return object from SHA query URL.
    Currently only supports FITS files.
    Parameters
    ----------
    url : str
        Access URL from SHA query. Requires complete URL, valid URLs from the
        SHA query include columns::
            accessUrl -> The URL to be used to retrieve an image or table
            withAnc1  -> The URL to be used to retrieve the image or spectra
                         with important ancillary products (mask, uncertainty,
                         etc.) as a zip archive
    Returns
    -------
    obj : `~astropy.table.Table`, `astropy.io.fits`, list
        Return object depending if link points to a table, fits image, or zip
        file of products.
    Examples
    --------
    >>> from astroquery import sha
    >>> url = sha.query(pid=30080)['accessUrl'][0]
    >>> img = sha.get_file(url)
    """
    # Make request
    response = requests.get(url, stream=True)
    response.raise_for_status()
    # Read fits
    iofile = io.BytesIO(response.content)
    content_type = response.headers['Content-Type']
    if content_type == 'image/fits':
        obj = fits.open(iofile)
    else:
        raise Exception('Unknown content type: {0}.'.format(content_type))
    return obj 
def _map_dtypes(type_names, field_widths):
    """
    Create dtype string based on column lengths and field type names.
    Parameters
    ----------
    type_names : list
        List of type names from file header
    field_widths : list
        List of field width values
    Returns
    -------
    dtypes : list
        List of dtype for each column in data
    """
    dtypes = []
    for i, name in enumerate(type_names):
        if name == 'int':
            dtypes.append('i8')
        elif name == 'double':
            dtypes.append('f8')
        elif name == 'char':
            dtypes.append('a{0}'.format(field_widths[i]))
        else:
            raise ValueError('Unexpected type name: {0}.'.format(name))
    return dtypes