TimeBase

class astropy.time.TimeBase[source]

Bases: ShapedLikeNDArray

Base time class from which Time and TimeDelta inherit.

Attributes Summary

T

Return an instance with the data transposed.

cache

Return the cache associated with this instance.

format

Get or set time format.

in_subfmt

Unix wildcard pattern to select subformats for parsing string input times.

isscalar

jd1

First of the two doubles that internally store time value(s) in JD.

jd2

Second of the two doubles that internally store time value(s) in JD.

mask

masked

ndim

The number of dimensions of the instance and underlying arrays.

out_subfmt

Unix wildcard pattern to select subformats for outputting times.

precision

Decimal precision when outputting seconds as floating point (int value between 0 and 9 inclusive).

scale

Time scale

shape

The shape of the time instances.

size

The size of the object, as calculated from its shape.

value

Time value(s) in current format

writeable

Methods Summary

argmax([axis, out])

Return indices of the maximum values along the given axis.

argmin([axis, out])

Return indices of the minimum values along the given axis.

argsort([axis])

Returns the indices that would sort the time array.

copy([format])

Return a fully independent copy the Time object, optionally changing the format.

diagonal(*args, **kwargs)

Return an instance with the specified diagonals.

flatten(*args, **kwargs)

Return a copy with the array collapsed into one dimension.

insert(obj, values[, axis])

Insert values before the given indices in the column and return a new Time or TimeDelta object.

isclose(other[, atol])

Returns a boolean or boolean array where two Time objects are element-wise equal within a time tolerance.

max([axis, out, keepdims])

Maximum along a given axis.

mean([axis, dtype, out, keepdims, where])

Mean along a given axis.

min([axis, out, keepdims])

Minimum along a given axis.

ptp([axis, out, keepdims])

Peak to peak (maximum - minimum) along a given axis.

ravel(*args, **kwargs)

Return an instance with the array collapsed into one dimension.

replicate([format, copy, cls])

Return a replica of the Time object, optionally changing the format.

reshape(*args, **kwargs)

Returns an instance containing the same data with a new shape.

sort([axis])

Return a copy sorted along the specified axis.

squeeze(*args, **kwargs)

Return an instance with single-dimensional shape entries removed

swapaxes(*args, **kwargs)

Return an instance with the given axes interchanged.

take(indices[, axis, out, mode])

Return a new instance formed from the elements at the given indices.

to_string()

Output a string representation of the Time or TimeDelta object.

to_value(format[, subfmt])

Get time values expressed in specified output format.

transpose(*args, **kwargs)

Return an instance with the data transposed.

Attributes Documentation

T

Return an instance with the data transposed.

Parameters are as for T. All internal data are views of the data of the original.

cache

Return the cache associated with this instance.

format

Get or set time format.

The format defines the way times are represented when accessed via the .value attribute. By default it is the same as the format used for initializing the Time instance, but it can be set to any other value that could be used for initialization. These can be listed with:

>>> list(Time.FORMATS)
['jd', 'mjd', 'decimalyear', 'unix', 'unix_tai', 'cxcsec', 'gps', 'plot_date',
 'stardate', 'datetime', 'ymdhms', 'iso', 'isot', 'yday', 'datetime64',
 'fits', 'byear', 'jyear', 'byear_str', 'jyear_str']
in_subfmt

Unix wildcard pattern to select subformats for parsing string input times.

isscalar
jd1

First of the two doubles that internally store time value(s) in JD.

jd2

Second of the two doubles that internally store time value(s) in JD.

mask
masked
ndim

The number of dimensions of the instance and underlying arrays.

out_subfmt

Unix wildcard pattern to select subformats for outputting times.

precision

Decimal precision when outputting seconds as floating point (int value between 0 and 9 inclusive).

scale

Time scale

shape

The shape of the time instances.

Like shape, can be set to a new shape by assigning a tuple. Note that if different instances share some but not all underlying data, setting the shape of one instance can make the other instance unusable. Hence, it is strongly recommended to get new, reshaped instances with the reshape method.

Raises:
ValueError

If the new shape has the wrong total number of elements.

AttributeError

If the shape of the jd1, jd2, location, delta_ut1_utc, or delta_tdb_tt attributes cannot be changed without the arrays being copied. For these cases, use the Time.reshape method (which copies any arrays that cannot be reshaped in-place).

size

The size of the object, as calculated from its shape.

value

Time value(s) in current format

writeable

Methods Documentation

argmax(axis=None, out=None)[source]

Return indices of the maximum values along the given axis.

This is similar to argmax(), but adapted to ensure that the full precision given by the two doubles jd1 and jd2 is used. See argmax() for detailed documentation.

argmin(axis=None, out=None)[source]

Return indices of the minimum values along the given axis.

This is similar to argmin(), but adapted to ensure that the full precision given by the two doubles jd1 and jd2 is used. See argmin() for detailed documentation.

argsort(axis=-1)[source]

Returns the indices that would sort the time array.

This is similar to argsort(), but adapted to ensure that the full precision given by the two doubles jd1 and jd2 is used, and that corresponding attributes are copied. Internally, it uses lexsort(), and hence no sort method can be chosen.

copy(format=None)[source]

Return a fully independent copy the Time object, optionally changing the format.

If format is supplied then the time format of the returned Time object will be set accordingly, otherwise it will be unchanged from the original.

In this method a full copy of the internal time arrays will be made. The internal time arrays are normally not changeable by the user so in most cases the replicate() method should be used.

Parameters:
formatpython:str, optional

Time format of the copy.

Returns:
tmTime object

Copy of this object

diagonal(*args, **kwargs)

Return an instance with the specified diagonals.

Parameters are as for diagonal(). All internal data are views of the data of the original.

flatten(*args, **kwargs)

Return a copy with the array collapsed into one dimension.

Parameters are as for flatten().

insert(obj, values, axis=0)[source]

Insert values before the given indices in the column and return a new Time or TimeDelta object.

The values to be inserted must conform to the rules for in-place setting of Time objects (see Get and set values in the Time documentation).

The API signature matches the np.insert API, but is more limited. The specification of insert index obj must be a single integer, and the axis must be 0 for simple row insertion before the index.

Parameters:
objpython:int

Integer index before which values is inserted.

valuesnumpy:array_like

Value(s) to insert. If the type of values is different from that of quantity, values is converted to the matching type.

axispython:int, optional

Axis along which to insert values. Default is 0, which is the only allowed value and will insert a row.

Returns:
outTime subclass

New time object with inserted value(s)

isclose(other, atol=None)[source]

Returns a boolean or boolean array where two Time objects are element-wise equal within a time tolerance.

This evaluates the expression below:

abs(self - other) <= atol
Parameters:
otherTime

Time object for comparison.

atolQuantity or TimeDelta

Absolute tolerance for equality with units of time (e.g. u.s or u.day). Default is two bits in the 128-bit JD time representation, equivalent to about 40 picosecs.

max(axis=None, out=None, keepdims=False)[source]

Maximum along a given axis.

This is similar to max(), but adapted to ensure that the full precision given by the two doubles jd1 and jd2 is used, and that corresponding attributes are copied.

Note that the out argument is present only for compatibility with np.max; since Time instances are immutable, it is not possible to have an actual out to store the result in.

mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)[source]

Mean along a given axis.

This is similar to mean(), but adapted to ensure that the full precision given by the two doubles jd1 and jd2 is used, and that corresponding attributes are copied.

Note that the out argument is present only for compatibility with np.mean; since Time instances are immutable, it is not possible to have an actual out to store the result in.

Similarly, the dtype argument is also present for compatibility only; it has no meaning for Time.

Parameters:
axispython:None or python:int or python:tuple of python:int, optional

Axis or axes along which the means are computed. The default is to compute the mean of the flattened array.

dtypepython:None

Only present for compatibility with mean(), must be None.

outpython:None

Only present for compatibility with mean(), must be None.

keepdimsbool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.

wherenumpy:array_like of bool, optional

Elements to include in the mean. See reduce for details.

Returns:
mTime

A new Time instance containing the mean values

min(axis=None, out=None, keepdims=False)[source]

Minimum along a given axis.

This is similar to min(), but adapted to ensure that the full precision given by the two doubles jd1 and jd2 is used, and that corresponding attributes are copied.

Note that the out argument is present only for compatibility with np.min; since Time instances are immutable, it is not possible to have an actual out to store the result in.

ptp(axis=None, out=None, keepdims=False)[source]

Peak to peak (maximum - minimum) along a given axis.

This is similar to ptp(), but adapted to ensure that the full precision given by the two doubles jd1 and jd2 is used.

Note that the out argument is present only for compatibility with ptp; since Time instances are immutable, it is not possible to have an actual out to store the result in.

ravel(*args, **kwargs)

Return an instance with the array collapsed into one dimension.

Parameters are as for ravel(). Note that it is not always possible to unravel an array without copying the data. If you want an error to be raise if the data is copied, you should should assign shape (-1,) to the shape attribute.

replicate(format=None, copy=False, cls=None)[source]

Return a replica of the Time object, optionally changing the format.

If format is supplied then the time format of the returned Time object will be set accordingly, otherwise it will be unchanged from the original.

If copy is set to True then a full copy of the internal time arrays will be made. By default the replica will use a reference to the original arrays when possible to save memory. The internal time arrays are normally not changeable by the user so in most cases it should not be necessary to set copy to True.

The convenience method copy() is available in which copy is True by default.

Parameters:
formatpython:str, optional

Time format of the replica.

copybool, optional

Return a true copy instead of using references where possible.

Returns:
tmTime object

Replica of this object

reshape(*args, **kwargs)

Returns an instance containing the same data with a new shape.

Parameters are as for reshape(). Note that it is not always possible to change the shape of an array without copying the data (see reshape() documentation). If you want an error to be raise if the data is copied, you should assign the new shape to the shape attribute (note: this may not be implemented for all classes using NDArrayShapeMethods).

sort(axis=-1)[source]

Return a copy sorted along the specified axis.

This is similar to sort(), but internally uses indexing with lexsort() to ensure that the full precision given by the two doubles jd1 and jd2 is kept, and that corresponding attributes are properly sorted and copied as well.

Parameters:
axispython:int or python:None

Axis to be sorted. If None, the flattened array is sorted. By default, sort over the last axis.

squeeze(*args, **kwargs)

Return an instance with single-dimensional shape entries removed

Parameters are as for squeeze(). All internal data are views of the data of the original.

swapaxes(*args, **kwargs)

Return an instance with the given axes interchanged.

Parameters are as for swapaxes(): axis1, axis2. All internal data are views of the data of the original.

take(indices, axis=None, out=None, mode='raise')

Return a new instance formed from the elements at the given indices.

Parameters are as for take(), except that, obviously, no output array can be given.

to_string()[source]

Output a string representation of the Time or TimeDelta object.

Similar to str(self.value) (which uses numpy array formatting) but array values are evaluated only for the items that actually are output. For large arrays this can be a substantial performance improvement.

Returns:
outpython:str

String representation of the time values.

to_value(format, subfmt='*')[source]

Get time values expressed in specified output format.

This method allows representing the Time object in the desired output format and optional sub-format subfmt. Available built-in formats include jd, mjd, iso, and so forth. Each format can have its own sub-formats

For built-in numerical formats like jd or unix, subfmt can be one of ‘float’, ‘long’, ‘decimal’, ‘str’, or ‘bytes’. Here, ‘long’ uses numpy.longdouble for somewhat enhanced precision (with the enhancement depending on platform), and ‘decimal’ decimal.Decimal for full precision. For ‘str’ and ‘bytes’, the number of digits is also chosen such that time values are represented accurately.

For built-in date-like string formats, one of ‘date_hms’, ‘date_hm’, or ‘date’ (or ‘longdate_hms’, etc., for 5-digit years in TimeFITS). For sub-formats including seconds, the number of digits used for the fractional seconds is as set by precision.

Parameters:
formatpython:str

The format in which one wants the time values. Default: the current format.

subfmtpython:str or python:None, optional

Value or wildcard pattern to select the sub-format in which the values should be given. The default of ‘*’ picks the first available for a given format, i.e., ‘float’ or ‘date_hms’. If None, use the instance’s out_subfmt.

transpose(*args, **kwargs)

Return an instance with the data transposed.

Parameters are as for transpose(). All internal data are views of the data of the original.